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Abstract. Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route

for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to

which this reaction is subject and provides reliable cross sections has been used at the Argonne National Labo-

ratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding

excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a

broad S-factor maximum for this system. Experimental results are presented and discussed.

1 Introduction

Reaction rates for C burning are essential ingredients to

understand the production of chemical elements heavier

than carbon as well as the evolution of massive stars. Car-

bon burning processes determine whether a star will join

to the heavy-ion burning branches following hydrogen and

helium burning and if white dwarfs will evolve into type

Ia supernovae. It is thus of very high importance to know

the 12C+12C fusion cross section with good accuracy from

the Coulomb barrier (CB) down to the Gamow window

which is centered around EG = 1.5 ± 0.3 MeV at a tem-

perature of T = 5x108 K [1]. In a stellar environments, C

burning occurs essentially via the 12C+12C fusion reaction.

The exit channels for this reaction are : 12C(12C,α)20Ne,
12C(12C,p)23Na and 12C(12C,n)23Mg. The associated Q-

values are 4.62 MeV, 2.24 MeV and -2.62 MeV MeV re-

spectively. The 23Mg channel with negative Q-value is es-

sentially closed at deep sub-barrier energies.

One of the most striking results obtained in the early

studies of heavy-ion collisions is the observation of reso-

nant structures in the reaction cross-sections : i.e. elas-
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tic, inelastic and fusion channels of some light heavy-ion

systems. These structures were found especially strong

in the fusion cross section of the 12C+12C system at en-

ergies above the CB down to sub barrier energies. These

resonances have often been attributed to 12C-12C molec-

ular configurations of the 24Mg compound nucleus, and

their strength related to the number of open channels in

the reaction which is minimal for this system at the CB

[2]. The possible persistance of these resonances at as-

trophysical energies is still a debated question. For ex-

ample, the resonance phenomena in 12C+12C have been

explained through the impact on the cross section of the

relatively large spacings and the narrow widths of 24Mg

compound levels in the corresponding excitation-energy

region [3] years. The 12C+12C fusion reaction has been the

object of a realm of experimental investigations in the past

[4-10]. The lowest-energy measured resonance in this re-

action is at Ec.m. = 2.1 MeV [9], only partially overlapping

with the high-energy part of the Gamow window. Some of

the previous experimental results are presented in Fig. 1.

Techniques used to measure these S factors where

based on the identification of charged particles, i.e. p and

α, or of the γ-rays emitted from the evaporation residues,
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Figure 1. Experimental S factor for the 12C+12C fusion reaction from refs. [4,6,7,9,10]. The astrophysics region is indicated by the

green area.

20Ne and 23Na. It should be noted that at the lowest investi-

gated energies, the error bars are large and large discrepan-

cies appear between the different measurements. Interest-

ingly enough, the different extrapolations based on differ-

ent potentials differ from more than 2 orders of magnitude

in the Gamow region. The ubiquitus contamination of he-

lium and deuterium in the target can indeed lead to severe

background at low energies for both techniques. More-

over measurements based on γ-ray detection are subject to

room and cosmic γ backgrounds. To suppress these back-

grounds, a new technique has been developed at the Ar-

gonne National Laboratory recently, based on γ-particle

coincidences. Details about the technique as well as spec-

tra describing the drastic suppression of background are

given in Ref. [11]. This method was used in the present

work.

2 Experimental set-up

The experiment has been performed at the Argonne Na-

tional Laboratory using a 12C beam delivered by the AT-

LAS facility impinging on a highly enriched (99.9 %) 12C

target. The beam intensity was ∼ 600 pnA and the target

thickness was ∼ 50 µg.cm−2.

Ten energy points have been measured between Ec.m. =

4.93 and 2.68 MeV. Gamma transitions from the evapora-

tion residues were measured using the Gammasphere 100

Ge detectors array in coincidence with charged particles

(p and α) from 3 annular double sided silicon detectors.

Fig. 2 shows the target chamber with 2 annular detectors

at backward angles and 1 at forward angles covering in

total ∼ 25 % of 4π. Normalization of the beam current

was obtained using a Faraday cup and two surface barrier

Si monitor detectors identifiying scattered 12C nuclei, at

45 ◦ forward angles.

The 12C(12C,α)20Ne and 12C(12C,p)23Na were identi-

fied by gating on the characteristic γ transitions 1635 keV

2+→ 0+ of 20Ne and 440 keV 5
2

+

→
3
2

+
of 23Na. The asso-

ciated α and p particles were identified in coincidence in

the annular DSSDs.

The measured cross-sections converted into S factors are

presented in the next section.

3 Results and discussion

Figure 3 shows 12C+12C S factors as a function of Ec.m.

measured in the present work in the type IA supernova

Gamow energy region (indicated by the yellow region on

the figure) together with the most recent results for the

same system [12]. The present data, which lowest point

corresponds to a cross section of 6 nb, is in fairly good

agreement with this measurement but shows smaller er-

ror bars. It should be noted that at the lowest measured

energies, the data seem to indicate a decreasing S factor,

which would be in agreement with the Jiang extrapolation
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Figure 2. Schematic view of the target chamber showing the 3 annular DSSDs, the Si monitors and the Faraday cup.

[15]. Extrapolations predicting an increasing S factor or a

slight decrease at low energies are based on standard po-

tentials and use the sudden model or coupled-channel ap-

proach whereas the Jiang extrapolation takes into account

the fusion hindrance phenomenon. This phenomenon was

introduced by Jiang et al. fifteen years ago in fusion re-

actions of medium-mass systems, measured below the 0.1

mb regime [17]. Indeed, at low energies, the fusion cross

sections are smaller than predicted by coupled-channel

calculations using standard Woods-Saxon potentials. Sev-

eral theoretical descriptions were proposed for this phe-

nomenon : i. a consequence of the saturation properties

of the nuclear matter introduced in calculations using a

double-folding potentiel + repulsive core [18], ii. the ef-

fects of a 2 steps process involving the capture in a 2 body

potential pocket and then the penetration of a one body po-

tential to reach a compound nucleus state [19], iii. Effects

of the Pauli repulsion during the fusion process introduced

recently by C. Simenel et al. and presented at this Fusion

17 conference.

Two representations have been used to discuss signa-

tures of fusion hindrance, the logarithmic derivative of the

energy-weighted cross section and the S factor. In the lat-

ter, often used for systems of astrophysics relevance, a

maximum and a decrease of S when going down in energy

is taken as a signature of fusion hindrance. Interestingly

enough, the present data seem to be in agreement with the

presence of a broad S factor maximum. This phenomenon

may have dramatic consequences on the reaction rate of

C burning and the subsequent nucleosynthesis of heavier

chemical elements in massive stars.
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