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Abstract

The coefficient of earth pressure at rest)(Kor normally consolidated clays increases
nonlinearly with increasing consolidation pressure towards a steady value under high pressure
rather than remaining constant. Analytical expressions for evaluating pressure-depgndent K
were derived from three representative critical state soil models: Modified Cam-clay model
(MCC), Original Cam-clay Model (OCC) and Clay and Sand Model (CASM) proposed by Yu
(1998). In formulations, we relaxed a well-adopted assumption that stress ratio is kept constant
during 1D compression. It is found that the constant stress ratio, corresponding to the well-
adopted assumption, is essentially a limit value of the stress ratio as predicted by MCC and
CASM under high pressure during 1D compression. The predicted relation betwaed K
consolidation pressure is significantly affected by critical state stress ratio. Without considering
the effect of high pressure, the value @fnkay be considerably underestimated. The results
predicted by the proposed formula based on CASM agree well with experimental data, showing
the capability of this formula for predicting pressure-dependent

Keywords. Clay; Pressure-dependent; Critical state soil models; Coefficient of earth pressure

at rest.



38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

Introduction

The coefficient of earth pressure at rest,&S coined by Terzaghi (192@fers to the ratio
of horizontal effective stress to vertical effective stress under the condition of no lateral
deformation, the stresses being principal stresses with no shear stress applied to the planes on
which these stresses act ( Bishop1958; Mesri and Hayat 1993). Since this special condition well
represents in-situ stress state of groundmay be one of the most important parameters in
geotechnical engineering. It is widely used in both analysis and design of geotechnical
structures related to foundations and excavations (Kamei 1997). As suggested by many
standards, e.g. Chinese code for design of coal mine shaft and chamber (GB 50384-2007), it is
essential to usdo to calculate the at-rest lateral soil pressure based on vertical stresses.
Underestimating K andhence lateral loads, may increase the failure risk of a geotechnical
design (Army Corps of Engineers 1989; Cui 2003; Li and Li 2005). Additionally, in advanced
soil models, e.g. MIT-S1 model (Pestana and Whittle 1999) and E-SCLAMA&e!
(Sivasithamparam and Castro 2016)isusually used as a basic material parameter for model
calibration. Therefore, accurately evaluating iK of great significance in both theory and
application.

In laboratory, k can be measured by one-dimensional (1D) consolidation test which is
normally used to simulate the stress path experienced by the deposition process of soils. As
comprehensively reviewed by Kamei (1997),i& affected by a number of factors, including
effective angle of internal friction, the stress history (or over consolidation ratio) and
microstructural anisotropy etc. Results from early research have suggested that the walue of K

for normally consolidated soils can be recognized as a constant for a specific soil type (Mayne
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and Kulhawy 1982). This may be reasonable when the applied pressure is in a narrow range.
However, over the past two decades, accumulated evidence has demonstratedsthat K
generally kept constant, but may vary obviously with consolidation pressure in a wide range
for both clays (Ting et al. 1994; Li et al. 2006; Abdulhadi et al. 2012; Yao et al. 2014) and sands
(Okochi and Tatsuoka 1984; Yamamuro et al. 1996; Guo 2010). This is not surprising if we are
aware of that the fabric of clays change dramatically from low pressure to high pressure during
1D compression (Martin and Ladd 1997). In fact, clays consolidated at high pressures possess
a much smaller void ratio and stronger water-clay links than that at low pressures. The traits of
stress-strain relation of clay under high pressure differ from those under low pressure: (1) the
normal consolidation line (NCL) of clay subjected to a wide range of pressure is bilinear with
the slope changing typically at around @MPa (Djéra-Maigre et al. 1998; Marcial et al.
2002;Balle et al. 2010 ;Shang et al. 2015a); (2) The slope of critical state pitgplane (i.e.,
critical state stress ratio) decreases with increasing mean effective pressure (Wang and Mao
1980; Graham et al. 1990; Shang et al. 2012; Abdulhadi et al. 2012).

Analytical expressions ofghave been proposed for both normally consolidated and over-
consolidated soils. In particular, Jaky (1944) theoretically relatdd e effective angle of

internal friction ¢':

_ ey 112/3 sing’
The above equation can be simplified using the following approximation:
Ky =1 —sing’ (2)

This approximation has been widely adopted in geotechnical engineering (Mayne and Kulhawy

1982; Mesri and Hayat 1993) due to its simplicity with relative accuracy (Wroth, 1972). In
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Jaky’s equation, ¢’ is mobilized friction angle and assumed to be a constant. In fact, this angle
is not necessarily a constant, especially for soils exhibiting behavior of strain hardening and
softening. In practice, both peak value and critical state value of friction angle may be used,
e.g., for sands. However, for normally consolidated clay, the critical state friction angle is
usually used since no peak friction angle is existent (Mesri and Hayat 1993, Lee et al. 2013).
Analytical expressions of Khave also been proposed based on the critical state soil models
such as Cam-clay models under various assumptions (Schofield and Wroth 1968; Wood 1990;
Federico et al. 2009). The assumption that the stress ratio remains constant during 1D
compression is well-adopted in the theoretical derivation ©fltkis worth noting that the
decrease in Kwith increasing critical state friction angle, as featured by Eqg. (2), is similar to
predictions from critical state models (Schofield and Wroth 1968; Wood 1990; Kamei 1997).
Nonetheless, few attempts have been made in literature to calculatthKncorporating
the effect of high pressure using critical state soil models. The aim of this paper is to propose
analytical expressions of pressure-dependefdknormally consolidated clays based on three
critical state soil models, including Modified Cam-clay model (MCC), Original Cam-clay
model (OCC) and Clay and Sand Model (CASM by Yu 1998, 2006). In theoretical derivations,
the assumption that stress ratio remains constant was relaxed. The results from the proposed
analytical expressions were compared to the numerical results of finite element method (FEM)
for verification and experimental tests for validation. We also discussed the variations of K

with the compressibility under high pressure and with critical state stress ratio.

Evidence of Pressure-Dependent Ko
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Evaluation of k in deep clays has been of particular interest to Chinese geotechnical engineers
working in mining engineering for designing mining shaft. Since 1990s, high pressure
oedometers (Sui et al. 1994; Li et al. 2006; Wang et al. 2007; Chen 2012) and high pressure
triaxial apparatus (Wang et al. 2007; Tian et al. 2009; Xu et al. 2009; Min 2010) have been used
to investigate K for undisturbed deep clays (Sui et al. 1994; Li et al. 2006; Wang et al. 2007)
and remolded deep clays (Tian et al. 2009; Xu et al. 2009; Min 2010; Chen 2012). The clays
employed in these tests were taken from various parts of East China, e.g. Shandong province
(Sui et al. 1994; Li et al. 2006; Tian et al. 2009; Xu et al. 2009; Min 2010; Chen 2012) and
Hebei province (Wang et al. 2007). Abdulhadi et al. (2012) also reporgetests on
resedimented Boston blue clay with the maximum consolidation pressure up to 10 MPa. Results
of relation between and vertical effective stress@sfor clays from these tests are presented

in Fig.1.

All of these clays, except for the speciman Chen’s test (2012), were normally
consolidated clays and the maximum vertical effective stresses applied in tests were larger than
1MPa. It is shown in Fig.1 that in generab For normally consolidated clays increases
nonlinearly with increasing pressure and gradually reaches a steady value under high pressure.
However, the rate of increase in &d the consolidation pressure at which the valueqof K
becomes steady are different for different clays. The same tendency has been observed for soft
remolded kaolinite clay in 1D compression tests even when the maximum consolidation
pressure is applied only up to 150kPa (Ting et al.,1984)ould be noted that in Chen’s data
the sample is pre-consolidated and the lowest value obitesponds to the pre-consolidated

pressure. After this point, it can be taken as normally consolidated sample and an obvious



125 increase in Kis observed in sequential compression. A mild increasepiwitd vertical

126  pressure can be observiedm Wang’s data (2007). In this case, we may expect that under a

127 lower pressure the increase in$hould be remarked and the shown data is in a high pressure
128 range and the corresponding tkas already been approaching the steady value. The data from
129  Abdulhadi et al. (2012) can be interpreted in a similar way.

130 The microscopic mechanism of the above tendency may be reasonably related to the
131 nonlinear development of anisotropic micro-structure in clays during 1D consolidation. X-ray
132 diffraction data (Martin and Ladd 1997) showed that the change in fabric with increasing
133  consolidation pressure is most pronounced with samples at low stresses, while the change in
134  fabric is very small at large stresses. Scanning Electron Microscope (SEM) observation by Li
135 et al. (2006) indicated that the platy clay particles tend to be rearranged gradually from an
136 initially non-parallel state into a parallel stacked state as consolidation pressure increases. In
137 the stacked state the normals of particles coincide with direction of vertical stress. At high
138 pressures, the normals of particles stop changing. The characteristic of fabric evolution of clay
139  particles during 1D compression was also demonstrated by numerical simulations using discrete
140 element method (Anandarajah1994, 2000; Smith et al. 2009; Ferrage et al. 2015) and coarse-
141 grained molecular modelling (Sjoblom 2016). Besides, using the particle-scale numerical
142 simulations in which physicochemical forces between clay particles are considered, Smith et al.
143  (2009) showed that &Kof a montmorillonite with stacked parallel particles decreases with
144 decreasing face-to-face distance and increasing edge-to-edge distance. The dependency of these
145 distances on consolidation pressure may also result in the pressure-depen#é@ncy of

146 A similar tendency of Khas been observed in laboratory test of granular materials like
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sands. Yamamuro et al. (1996) exhibited that the valug fairk& Gypsum sand increases with
pressure up to hundreds of megapascals with massive breakage. Results from tests on two
granular materials carried out by Guo (2010) revealed tha@gpends not only on critical state
friction angle, but also on void ratio and pressure. The maximum vertical effective stress applied
in Guo’s tests is less than 800kPa, where the breakage of sand grain is less likely to occur.
Micromechanical model (Liou and Pan 2003) and discrete element method (Shin and
Santamarina 2009) have been successfully used to capture the experimentally observed relation
between lkand fabric evolution during 1D compression.

In this paper our aim is to predict the pressure-dependémirk phenomenological models

based on critical state concept, which will be presented in the following sections.

Theoretical Analyses

We denote the maximum and minimum effective principal stressesand o3, respectively.
In triaxial stress state, the effective mean stpemsd deviatoric stresgcan be expressed by
o1andoz as follows:
p = (01 + 203)/3 3
q=01—03 (4)
During 1D compression for normally consolidated soils, the vertical effective styeand
horizontal effective stress, equal o1 and o3, respectively. Using the definition &b, it can be

related to the stress ratiy

Ko=2t=2="71 5)

wherey is the stress ratio defined as
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n="2 (6)
If Kovaries nonlinearly with pressure, then it is impossible for the stress ratio to remain constant
during 1D compression for clays. By differentiating Eq. (6), we generally obtain:
dq = pdn + ndp (7)
The assumption of constant stress ratio requiresdhat 0, and hence there is
dq = ndp (8)
Formulations with assumption of constant ratio
With assuming that elastic shear deformation is negligible and stress ratio does not change with
increasing pressure, analytical expression ©fvids derived by Schofield and Wroth (1968)

from energy conservation equation of OCC as follows:

_ 6+3A-2M
T 6—6A+4AM

0 , M>1.5(1#/4) (9)
whereA=(1-x/1), A andk are the slopes of normal compression line and swelling line in semi-

logarithmic compression plane, andtérmed as critical state stress ratio, is the slope of critical

state line in the-qspace. Mcan be linked to critical state friction angje through

M= 6sir.1<pcl (10)
3—sing,

By adopting the same assumptions, Schofield and Wroth (1968) showed that the use of MCC

leads to a more reasonable: K

where W = /AZ + §M2 — A

By incorporating the elastic shear strain but still assuming a constant stress ratio, Wood

2y
07 2(1+w)

(11)

(1990) obtained a cubic equation for determining the stress ratio during 1D compression based

on MCC:
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MKne (1+V’)(1_A) 3ANK e _
3(1-2v") Moo L (12)

where v’ isthe Poisson’s ratio, and ng,. IS the stress ratio corresponding to the valu& pf
during 1D compression. The first term at the left-hand side of Eq.(12) can be recognized as the
contribution from elastic shear strain. Wheh= 1(i.e.x/A =0), the elastic strain is
negligible as compared with the plastic strain. Ignoring the first term, Eq. (12) reduces to
Mine” + 3ANKn — M? = 0 (13)

The solution of Eq. (13) is thajk,, = 3¥/2. Eq. (11) is thus obtained by insertimg,, into
Eq. (5). Eq. (12) can be rewritten in the form of cubic equation with respegt,toas

Q(M? = Ncne”IMiine — (M? = e®) + 3AnK, = 0 (14)

where Q reflects the influence of elastic shear strain, i.e.,

_ (1+v")(a-n)
T o3(1-2v")

(15)

It is evident that none of the above formulae takes into consideration the effect of high
pressure ornk,. In the formulations of Egs. (9), (11) and (12) the assumption that stress ratio is
kept constant during 1D compression is employed. However, this may not be consistent with
experimental observation since, as mentioned abay&glce the stress ratio, is not a constant
during the one-dimensional compression of clay under high consolidation pressure. lllustrated
as an example,s derived from MCC by relaxing the assumption of the constant stress ratio
in the following section.

Formulation based on MCC
For normally consolidated soils, the response of soils should always be elastic-plastic during
1D compression. Stress-strain relation of MCC can be summarized in an incremental form as

follows (Wood 1990):

10
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z;§1= f K]m

9(1— 217’) vp

—n? Zn
vp(M2+712)

where dej anddeg are the elastic and plastic volumetric strain incremedt§; and de};

(17)

are the elastic and plastic shear strain incremefisand dqg are the mean and deviatoric
stress increments; amd1+eis the specific volume in whichis the void ratio. In case of 1D
compression, the strain condition should satisfy:

e agP
where de,, and de, are the total volumetric and deviatoric strain increments, respectively.
With the aid of Eqg. (18), together with constitutive equations (16) and (17), elimindging
Eq. (7) leads to a relation between the mean effective spremsd the stress ratigp in an
incremental form:

L = R(n)dn = == d (19)

where Rfy) represents the integrand, andi(n) and De(n) are denoted, respectively, as the

numerator and denominator of integrang)R(

Nu(n) = (M? —n? = 3mn — Q(M? —n?) (20)

M2+71

De(n) = Q(M? —n*)n — (M? —1*) + 3An (21)
Integrating Eq. (19) for a given initial condition gives
p= poef,?OR(n)dn (22)
where p, is the initial mean effective stress apds the initial stress ratio. Bearing Eq. (5) in

mind, the pressure-dependencyif is implied by Eq.(22). As long as material parametérs

R(n)dn

n
Aand Mare known, the integraéfﬂo on the right-hand side of Eq. (22) can be numerically

11
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determined. However, it is instructive to analyze the characteristics of integr@nbeRgre
performing numerical integration.

Characteristics of the formula

It is interesting to find that the equatid® () = O with respect tg is equivalent to Eq. (14)

with respect tong,, as obtained by Wood (1990). Rearranging Eq. (19) leads to

_ De(n) dp
~ Nu(p) p (23)

When De(y) approaches zero, the increment of stress datidends to vanish, regardless of
increasingp, which means that stress ratio tends to reach a limit valugs,i.en Eq. (14). If
De(n) = 0 is reached, then R)(in Eq. (19) would be singular and Eq. (22) would be unsolvable.
Therefore, the stress ratig,, which satisfies Eqg. (14) should be a limit value of the stress
ratio during 1D compression if MCC is assumed for soil behavior.

Since the stress ratio that satisfi®s () = O significantly affects the solution of Eq. (22),
it is necessary to study the roots of equaben() = 0.The denominatobDe (1), which is a
cubic function of stress ratio, always has three distinct rfaote wide range of realistic
(experimentally observed) valuesiof 4 and M, which has been confirmed by our numerous
calculations Figure 2 illustrates typical distribution of rootsé () = O for a set of typical
values of V', 4 and M As shown in Fig.2, the only reasonable rege{or nx,.), locates in the
interval (0, M. Consequently, the feasible integral interval for Eq. (22) with respeciso
(M1, Mol If o> 51, OF [ny,1m1) if no<m1 wherenois the initial stress ratio.

When stress ratio falls into any of the two intervals, the numeXat(y) is always negative,
and hence Ry has the opposite sign agaibst (7). As shown in Fig.2, the denominaide (1)

is positive when evaluated ifm,,1,]; it is negative when evaluated if,,7,). Therefore, the

12
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stress ratio will decrease (increase) with increasing mean effective stiesg1if{r7o<71) form
Eqg. (9). Recalling Eqg. (5), Kwill correspondingly increase (decrease).
Using the solution of cubic equation (e.g. William et al. 1997), the expressiarcah be

given in closed form:

N =-2 Qcos(@—z?”)+% (24)
where
L AL S VRS W Y Ui
Q—E+a+?,9—arccos<\/§>,U— 2708 202 3Q

The influences of parameters M,andv’ on limit stress ratig: are presented in Fig.3. It
can be seen from Fig. (3) thai increases remarkably as the increasinigivh specific v' and
A while it only changes slightly over a wide range oénd/ for a specificM. This is also
confirmed by more numerical calculations using different parameter sets (not showing here).
Among them, Mhas the most significant influence gn It is not surprising if we notice that
in Jakys formula, Ko is only affected by friction angle, and hence the corresponging
essentially dependent only on by considering the relationship betweenakl critical state
friction angle, i.e. Eq. (10). By comparing the differences betwgen12) and (14), Poisson’s
ratio v and parametet actually reflect the effect of elastic strain on limit stress ratio, which is
the reason why they are insensitivejti@s compared with M.

Recalling that critical state stress ratioudder high pressure is normally lower than that
under low pressure, it can be inferred thathould be lower under high pressure. For normally
consolidated clay, critical state friction angfg can be used ag’in Jaky’s formula in Eq.

(2). And critical state stress ratio 8&n be linked top, in Eq. (10). By employing Egs. (5)

and (10), we can rewritaky’s formula as follows:

13
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3M
6—M

M = Nkne = (25)

From this relation, it can be seen thairidreases monotonically with,, which is consistent

with the tendency shown in Fig 3.a.

Resultsbased on MCC

Verification and Validation
Although some results ofgdor clays under high pressure were reported as presented in Fig.1,
there have been few experimental studies on the critical state behavior of clayey soils under
high pressure. This may be due to the huge challenge for conventional laboratory shear devices
to perform high pressure triaxial tests on clayey soils. A series of triaxial tests on a remolded
deep clay which is also used by Min (2010), subjected to a wide range of consolidation
pressures, were carried out to investigate its critical state mechanical properties (Shang et al.
2015b). Therefore, experimental data of Min (2010) shown in Fig.1 were chosen to validate the
solution of Eq. (22). Material parameters of the remolded deep clay relevant to MCC were
calibrated (Shang et al. 2015b) from these tests as follov®s093, k0.023 and M0.99
(applicable to normal pressure less than 2MPa) or 0.447 (applicable to high pressure greater
than 2MPa), respectively. In addition, the value of the Poissatio»’ was estimated to be
0.26 which can be used to give a reasonable FEM simulation of pre-yield behavior based on a
critical state model (Shang 2009). Take the start point oMih® curve in Fig.1 as the initial
state at whichyo is 0.381 and gis 1.565 MPa.

Note that the relation betweenr &doy can be established by combining Eq. (22) with Eqs.

(3) and (5). As Eq. (22) cannot be analytically integrated, a simple numerical technigue is used

14
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to calculate the solution, which is verified by results of finite element simulation. FEM
simulation was performed in ABAQUS (2013), a well-known commercial finite element
package, using an axial symmetric four-node reduced integration element CAX4R (shown in
Fig.4) and extended Cam-clay model. The nodes at the bottom are vertically fixed, and all the
nodes are laterally fixed. Through these constraints, only vertical deformation is allowed in the
element, so that 1D compression is properly modelled.

The yield function of extended Cam-clay model in ABAQUS is

t

f(p,t,a)=%(§—1)2+(%)2—1=0 (26)
where
S .

p
q=J3(L-")= I = 007 + (0= 02 + (0 — 2]
1/3

F=(ZL - 9L, + 1)
in which Iy, 12, 13 are the first, second and third stress invariants, respectivahg pare mean
effective stress and deviatoric stress in general stress state and can be naturally reduced to those
defined in Egs. (3) and (4) in triaxial stress state respectp/edya constant used to control the
shape of the yield surface on the “wet” side of the critical state; a is a hardening variable which
defines the size of the yield surface; andsk constant used to modify the shape of the yield
surface in the deviatoric plane. In this stuBlgnd Kwere both set to be 1 so that the yield
surface of the extended Cam-clay model reduces to that of MCC. Like MCC, associated flow
rule and volume hardening rule originated from normal compression line were also adopted in
ABAQUS. In addition, the poroelastic model in ABAQUS was used, which leads to the same

elastic stress-strain relation as that presented in Eq. (16) as long as the assumption of small

15
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deformation holds true. More details are referred to the documentation of ABAQUS (2013).
Theoretically, the solution of Eq. (22) which is derived from MCC should agree exactly with
that from the FEM simulation.

It is evident from Fig.4 that the analytical solutions are closely consistent with the FEM
simulation so that the numerical integration of Eq. (22) is verified. Through the comparisons in
Fig.4, Eq. (22) based on MCC is capable of predicting the general tendency of nonlinear
increase in Kwith increasing pressure towards a steady value, which may be attributed to the
relaxation of the assumption of constant stress ratio. The significant influence of M on the
steady value of Kis also shown in Fig.4. In particular, a lower tbrresponding to a high
pressure, contributes to a rapider increaseoinTiKe use of critical state stress ratio at low
pressures (M0.99) may largely underestimated high pressures, although a similar tendency
can be observed.

Critical state stress ratio Mepresents the average (or macroscopic) internal friction
coefficient of a clay. In fact, as an intrinsic variable at constant volume, it has a very close
relationship with the friction coefficient between particles in a granular material (Bolton 1986;
Lee et al. 2013). For a clay, it can characterize the degree of difficulty of the relative movement
between two clay particles. During 1D compression, clay particle tends to align in the same
direction as the increase of pressure. Under high pressure, the orientation of clay particle
becomes almost identical, which may form the microscopic fabric underlying a steady value of
Ko. Friction coefficient is a key factor controlling the movement of clay particle during this
process. The greater the friction coefficient is, the more difficult clay particle reorganizes into

an order stack. This may be the physical orientation for which the valugisfaffected by

16
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critical state stress ratio.

When M=0.447 the steady value ob s slightly over-predicted as compared to test data,
which is consistent with what reported by Federico et al. (2009). However, there still is a large
gap between experimental results and theoretical prediction especially before the steady value
is reached, as shown in Fig.4. This large gap may be caused by the yield surface used in MCC,
which is not applicable to model clay behavior under high pressure.

Clay behavior under high pressure

The behavior of normally consolidated clay is discussed based on the results from MCC.
Figure 5 presents the stress paths in thefage during 1D compression up to a high pressure
from different initial stress states on yield surface. In particular, initial state A represents the
initial stress state of the sample testes by Min (2010), while the initial state B represents an
isotropic stress state. All the initial stress states are reasonably assumed in yield as normally
consolidated clays are concerned. It can be seen that whether the initial stregsgdaiger
than the limit stress ratip. or not, stress paths in the plane obtained from the MCC during
1D compression, will gradually move to the line with a slopesf.. Hence, under high
pressure the stress ratio predicted by MCC will gradually approach the limit stress ratio
independent of the initial stress ratio. It should be noted that when the initial stress ratio is
smaller than the limit stress ratio, the value efdfadually decreases to the steady value
corresponding to the limit stress ratio.

Figure 6 presents the compression curves in-ng plane corresponding to stress ratios
noandsa for the results obtained from both the FEM simulation and state boundary surface of

MCC. The lines with circular markers in Figs.6 (a) and (b) are compression lines calculated
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364 from FEM simulation from two different initial stress states, i.e., Aand B in Fig.5. It is evident
365 in Fig.6 that the calculated compression curve is not a straight line over a wide range of
366 pressures, but transfers fromaormal compression line (RMNCL) for initial stress ratigo to

367 thatfor the limit stress ratip. In particular, in the case of that>#1, the simulated compression

368 curve in Fig. 6(b) shows that the clay under a higher pressure turns out to be slightly less
369 compressible. This is qualitatively consistent with the observation from the experimental
370 compression curves of remolded clays under high presBjgm+Maigre et al. 1998, Shang

371 etal. 2015b).

372 Analysesbased on OCC and CASM

373 Formulations

374  Similar analyses were carried out on the basis of OCC and CASM (Yu 1998, 2006). For brevity,
375 only key results are presented with omitting the derivation. For OGE rREq. (22) should

376 be replaced as follows:

(v-n-2)-a-)

377 Rn) = !?(M—n)n—(M—nH%A 27

378  with

379 De(n) = QM —m = (M —1) +3A (28)

380 CASM was proposed on the basis of the state parameter concept proposed by Been and

381 Jefferies (1985). It is applicable to both sand and clay. CASM and MCC use the same elastic
382 model and hardening rule, but differ in yield surface and flow rule. The yiled surface in CASM

383 can be written as

a\"  In@/pr) _
384 (M_p) + W =0 (29)
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where nis a material constant used to modify the shape of the state boundary surface (Yu 1998),
r is the spacing ratio defining the distance between the critical state line and the normal
consolidation line (NCL) in semi-logarithmic compression plane, pnis reference
consolidation pressure which controlling the size of yield surfeaed mare newly-introduced
material parameterns addition to those of MCC. With=1 and =e=2.718, yield surface of

OCC is exactly recovered from Eq. (29). Figure 7 illustrates the yield surfaces of MCC, OCC
and CASM for M=0.99 and M=0.447. It can be seen the spacingrralso controls the ratio
between p at critical state andp, (note that #2 for MCC). Under high pressure
(corresponding to M=0.447), the yield surface is much smaller in the normpiizpthne.

The original CASM (19983dopted Rowe’s stress-dilatancy relation:

di 9(M—1) (30)

ded T 3aM—2Mn+9

Qg

However, it was shown to be unrealistic for stress paths with lower stress ratios, e.g. in case of
1D compression (Yu 2006, P108). Our calculation also showed that the root of the denominator
of R(x#) obtained from the original CASM is much larger thanIMorder to overcome this
disadvantage, Yu (2006) proposed a general stress-dilatancy relation as follows:

L _MIn" (31)

mpn-1

Genearally, nrmay be treated as a material constant. Whdhand 1, Eq. (31) reduces to
the plastic flow rule of OCC. By setting8 and mx2, Eq. (31) reduces to the plastic flow rule
of MCC.
By replacing stress-dilatancy relation in Eqg. (30) by Eqg. (31), the incremental elastic and

plastic stress-strain relations of CASM can be summarized as follows
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] 2(1+0) x] [dp] (32)

9(1-2v") vp
- _ noon-1
dgg _ (A-r)lnr (lnr il ) Mnn d (33)
de?|  wp (L_L n)Ln_l non-1mn* | |dg
a Inr M" M*t—pn Mnn M*—n

Following the similar procedure for obtaining Eq. (19))Ror CASM with stress-dilatancy
relation in Eq. (31) is obtained as

Alnr—nn 1 Mn_nn_3_mnn—1 —Q(M™—n™)
RGp) = e )

(34)

QM=) ~(MT =)+ ZAm "
And there is

De(n) = QM™ — ™) — (M™ —1™) + = Amyp~! (35)
With n=1 and m=1 and+e=2.718, OCC is exactly recovered from CASM. As a result, it is not
surprising that Eq. (34) reduces R(n) of OCC. With =2 and m=2,De(n)of MCC is
recovered from Eg. (35) as CASM and MCC are the same in flow rule and elastic model and
hardening law. This means that CASM witt2nand ns2 can predict the same limit stress ratio
as that of MCC under high pressure. Agalrgnd./ reflect the effect of elastic strain on limit
stress ratio in Eq. (35). Similar to the case in MCC, the limit stress ratio determined by Eq. (35)
is mostly affected by Mimong the three parametétsA andv.
Comparisons
Figure 8 presents the variation ob &gainst vertical pressure calculated from OCC. The
predicted curves for MD.447 and M0.99 both deviate remarkably from the test result. The
predicted ik does not become steady even under a very high pressure, and the steady value of
Ko predicted from OCC is too high to be rational. This is because the limit stress ratios under

high pressure, i.e. roots of the denominator in Eqg. (28) for beth.447 and M0.99, are
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negative, which is shown in Fig.9. The integral interval fof) &) in Eq. (27) is#1, #o). Note
thaty#=0 corresponds tod<1l. When stress ratio becomes negatives, megative. In the case,
the vertical stress is smaller than the lateral stress arsd&tger than 1. As a resultp Bannot
approach to a steady value less than 1. Obviously, the prediction is not supported by the
experimental results shown in Fig.1. From the above discussion, it can be drawn that OCC is
not a suitable model for predicting Kinder high pressure.

Figure 10 presents the calculategldsed on CASM for various values oand Mwith
m=n=2. We intentionally set m=n=2 to compare formula from CASM with that from MCC. In
case of m=n2 the denominators obtained from CASM and MCC are the same so that the steady
values of kg under high pressure are also identical for a specifiClglarly, the steady value of
Ko is independent of, because is not involved in Eq. (35). A largenmplies a faster increase
in Ko with increasing vertical pressure. Again, the steady value =f ¢teatly affected by M.
Prediction of kusing Mat a low pressure (e.g.,#@.99) can largely underestimate the value
of Ko. In general, Maffects the steady value under high pressure whatects the rate of
approaching the steady value délculated from CASM with=*2 is almost the same as that
from MCC because in this case CASM is almost reduced to MCC. Wih81vr the theoretical
prediction of corresponding stress path is very close with the test counterpart, as shown in
Fig.11.

Recently, Federico et al. (2009) also predictedfknormally consolidated clays using an
isotropic critical state model with the same yield surface of MCC but a non-associated potential
surface. It was found that the potential surface has an influence on steady valuetotKis

consistent with our calculations. More specifically, when the same value isf ided in
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469

calculations, the steady values of ptedicted by OCC are obviously different from those by
MCC and CASM (n=2 and m=2). It turns to be more interesting if we notice that MCC and
CASM (n=2 and m=2) with different yield surfaces predicted the same steady values. However,
in their formulations (Federico et al. 2009) the effect of high pressure on critical state stress
ratio was ignored and the assumption of constant stress ratio was employed, therefore, only
steady value of iKcan be obtained.

Sivasithamparam and Castro (2016) discussed the predictianbafskd on an anisotropic
soil model named as E-SCLAY 1S.The model is extended from an anisotropic MCC-type model
S-CLAY, proposed by Wheeler et al. (2003), by introducing a new parameter (contractancy
parameter) to control the shape of yield surface and plastic potential surface. Similar as that in
S-CLAY, anisotropy behavior is represented by the inclination of a distorted yield surface and
a rotational hardening law to model anisotropy evolution. Using the magenkoe linked to
critical state stress ratio, inclination of yield surface (anisotropy parameter) and contractancy
parameter. It is noted that in their derivation both elastic volumetric and shear strains were
ignored, and hence only steady value @€&n be obtained. As pointed out by Sivasithamparam
and Castro (2016), when soil anisotropy is deactivated (i.e., anisotropy parameter is not
involved) in the prediction, the contractancy parameter provides an additional degree of
freedom to perfectly fit the desired &nd the prediction gives similar values to Jayrmula
in Eq.(2) when a suitable value of contractancy parameter is chosen. Once soil anisotropy is
involved in the prediction, anisotropy parameter can provide another degree of freedom to fit
Ko.However, the problem of introducing anisotropy in practical calculation is that it is difficult

to determine the initial inclination of the yield surface due to the lack of enough data. Therefore,
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their formulation is more effective for calibrating model parameters (e.g., initial inclination of

yield surface) by fitting a knownd€ather than for predicting steady value of K

Concluding remarks

From the above discussions, the following conclusions can be drawn:

(a) The value of K increases with increasing consolidation pressure towards a steady value
under high pressure. This tendency may be caused by the dramatic evolution of clay fabric
at a microscopic scale.

(b) It is essential to use a lower critical state stress ratio for calculagmgder high pressure
using critical state soil models. Ignoring the effect of high pressure may lead to a severe
underestimation of the calculat&d, which may result in underestimating the lateral loads
and greatly increasing the failure risk of a geotechnical design.

(c) The assumption that stress ratio during 1D compression is kept constant (e.g. Wood 1990)
may be not applicable to the situation that a remolded clay experiences a wide range of
consolidation pressure. When this assumption is relaxed, the derived formuldaded
on MCC is shown to be capable of predicting the general tendency of nonlinear increase in
Ko. The predicted Kbased on CASM with=5.7 shows good agreement with experimental
results.

(d) For both the predictions from MCC and CASM with suitable valuesasfchm the stress
ratio during 1D compression will gradually reach a limit stress ratio, which corresponds to
the steady value of Kunder high pressure. This limit value is equal to the stress ratio

obtained using the assumption of constant stress ratio, and is independent of the initial stress
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ratio. Among the widely-usedhaterial parameters, i.e:', 4 and M, M has the most

significant influence on limit stress ratio (see Fig.3), hence on steady valge of K

The proposed equation fornKased on CASM has potential applications in calculating
lateral loads of mining shaft and shatft friction of pile foundations in deep soils subjected to
vertical loading. It should be noted that our discussions are restricted to normally consolidated
clays and hence over-consolidated clays are beyond the scope of this paper. However, in many
cases an overconsolidated clay will become normally consolidated again under high pressure.
Although Ky of sands also show a tendency of pressure-dependency, the underlying mechanism
of this tendency for sands is probably different from that for clays. Further investigations are

required for predicting iKof over-consolidated clays and sands.
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Notation

The following symbols are used in this paper:

Ko =coefficient of earth pressure at rest;
o' =effective angle of internal friction;
@, =critical state friction angle;

on =horizontal effective stress; kPa

ov =vertical effective stress; kPa

M =critical state stress ratio;
m,n =material constants in CASM,;
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Refer ences

= mean effective stress; kPa

=deviatoric stress; kPa

=mean effective stress increment; kPa

=deviatoric stress increment; kPa

=initial mean effective stress; kPa

=reference consolidation pressure; kPa

=integrand appeared in solution;

=denominator of Ry);

=nominator of R);

=spacing ratio defined in CASM,;

=variables related to extended Cam-clay model in ABAQUS; kPa
=parameters related to extended Cam-clay model in ABAQUS;

= variables for calculating the limit stress ratio;

=elastic volumetric strain increment;

=plastic volumetric strain increment;

=elastic shear strain increment;

=plastic shear strain increment;

=slope of compression line in semi-logarithmic compression plane;

=slope of unloading-reloading in semi-logarithmic compression plane;

=specific volume,;

=void ratio;

=Poisson’s ratio;

=stress ratio;

=initial stress ratio;

=limit stress ratio;

=stress ratio corresponding te;K
=1-x/2;and

=(1+v)(1—A)/3(1 —2v").
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