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ABSTRACT

We show that there are simple one-dimensional problems for which the MHD code, ZEUS, generates significant
errors, whereas upwind conservative schemes perform very well on these problems.

Subject headings: hydrodynamics — methods: numerical — MHD

1. INTRODUCTION

ZEUS is a freely available MHD code that is widely used
by the astrophysical community. Although Stone & Norman
(1992a, 1992b) give results for the Sod problem (Sod 1978)
and its MHD equivalent, the Brio & Wu problem (Brio & Wu
1988), ZEUS does not appear to have been tested on a wide
range of Riemann problems such as those described in, e.g.,
Dai & Woodward (1994), Ryu & Jones (1995), Falle, Kom-
issarov, & Joarder (1998), and Balsara (1998).

Since ZEUS is neither upwind for all characteristic fields
nor conservative, we might expect it to perform significantly
less well than upwind conservative codes (e.g., Brio & Wu
1988; Dai & Woodward 1994; Ryu & Jones 1995; Falle et al.
1998; Balsara 1998; Powell et al. 1999). As we shall see, this
is indeed true in the sense that there are a number of simple
problems for which the ZEUS solution contains significant er-
rors that are absent in solutions calculated with an upwind
conservative scheme.

2. RAREFACTION SHOCKS

Figures 1 and 2 show that ZEUS generates rarefaction shocks
for both pure gas rarefactions and fast magnetosonic rarefac-
tions, whereas the upwind conservative scheme described in
Falle et al. (1998) gives quite satisfactory results. In both cases,
the ZEUS solutions are sensitive to the inertial frame, and the
rarefaction shocks can be removed by a Galilean transformation
that increases thex-velocity sufficiently.

These rarefaction shocks are steady structures whose width
does not increase with time. Since the effect of the nonlinear
terms is to spread such structures, it is clear that the truncation
errors in ZEUS must be antidiffusive in these cases. The most
obvious explanation for this is that ZEUS is second order in
space but first order in time since this can lead to an antidif-
fusive term in the truncation error. For example, the upwind
scheme can be made first order in time and second order in
space by omitting the preliminary first-order step, and in that
case it can be shown to be antidiffusive and also produces
rarefaction shocks.

Although ZEUS is second order in space and time for linear
advection, the use of a partially updated velocity in the ad-
vection step means that it is only first order in time if the
velocity is not constant. Further evidence that this is the cause
of the problem is provided by the sensitivity of the rarefaction
shocks to the Galilean frame and the fact that they disappear
when the Courant number is reduced from 0.5 to 0.1, whereas
they become much worse if the Courant number is increased
above 0.5.

ZEUS has a facility for adding a linear artificial viscosity
whose magnitude is determined by the parameter qlin. The
addition of such a viscosity removes the antidiffusive terms by
reducing the scheme to first order in space for everything except
linear advection. For the gas rarefaction, cures theqlin p 0.25
problem and seems to be optimal for a global Courant number
of 0.5, but it is too large if the local Courant number associated
with the wave is small. Since the linear viscous term must
balance an antidiffusive term that scales like the time step, it
would be better if the viscous term that is implemented in ZEUS
were multiplied by the local Courant number associated with
the wave that is causing the problem. Since rarefaction shocks
arise only for rarefactions associated with the sound wave with
the largest speed relative to the grid, it is the smallest local
Courant number that is appropriate.

In MHD, the situation is even worse since, although the
rarefaction shocks in the fast rarefaction can be removed by
setting , this makes the scheme very diffusive for otherqlin p 1
waves. Furthermore, the required value of qlin depends on the
particular problem. It might be possible to avoid such a large
value of qlin by adding an appropriate artificial resistivity, but
the code has no facility for this.

Figures 3 and 4 show that, even for an initially smooth
rarefaction wave, ZEUS is significantly less accurate than an
upwind scheme. The results are for , but Figure 4qlin p 0.25
shows that ZEUS is still first order even without this. In con-
trast, it is evident from Figure 4 that the rate of convergence
of the upwind scheme is second order. Note that the upwind
scheme also has an artificial viscosity as described in Falle et
al. (1998), but since this is applied in the Riemann solver, it
does not reduce the order in smooth regions. Incidentally,
ZEUS performs even worse if one does not take the staggered
grid into account in setting up the initial solution. Furthermore,
for both codes, point samples were used to project the exact
solution onto the grid, which is reasonable for ZEUS but is
somewhat unfair to a conservative scheme.

The upwind scheme produces reasonable results at the lowest
resolution, even though this corresponds to only two cells in
the rarefaction at the initial time, whereas ZEUS needs at least
four cells for the same accuracy. For a three-dimensional cal-
culation, this would require 24 times the computing time and
8 times the memory since ZEUS is about times the speed2

3

of the upwind scheme. The disparity in efficiency is actually
greater than this because for both codes the Courant number
was set to the ZEUS default value of 0.5 for all cases described
in this Letter. The upwind code can run at larger Courant num-
bers than this, whereas even 0.5 can be too large for ZEUS
for some Riemann problems. Of course, the slower convergence
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Fig. 1.—Gas rarefaction at .Left state: , , .t p 80 r p 1 p p 10 v p �3g x

Right state: , , . The discontinuity is atr p 0.87469 p p 8 v p �2.46537g x

at and .x p 700 t p 0 Dx p 1.0

Fig. 2.—Fast rarefaction at .Left state: , ,t p 100 r p 1 p p 0.2327g

, , , . Right state:v p �4.6985 v p �1.085146 B p �0.7 B p 1.9680 r px yx y

, , , , ,0.7270 p p 0.1368 v p �4.0577 v p �0.8349 B p �0.7 B pg x yx y

. The discontinuity is at at and .1.355 x p 1000 t p 0 Dx p 1.0

of ZEUS also means that the situation would be even worse
if greater accuracy were required.

3. SHOCK ERRORS

Since ZEUS is not conservative, we expect it to generate
errors at shocks that cannot be reduced by increasing the res-
olution. As it turns out, these errors are small (!5%) for pure
gasdynamics and are entirely absent for an isothermal equation
of state. However, they can be significant for adiabatic MHD.

Figure 5 shows that, for a nearly perpendicular fast shock,
the postshock gas pressure in the ZEUS solution is too low by
a factor of 2. In contrast, the conservative upwind scheme gets
the solution exact to rounding. It is true that this is a somewhat
extreme case since the plasmab is negligible upstream of the
shock and downstream. However, such low valuesb p 0.037
of b do occur in dense molecular clouds and protostellar disks
(e.g., Crutcher 1999). Furthermore, even thoughb is small,
such errors in the gas pressure can have a significant effect on
the dynamics because the gas pressure provides a force parallel
to the field, whereas the Lorentz force does not.

Finally, Figure 6 shows that a relatively small error at a fast
shock can be amplified by a slow shock following on behind.
In this case, the ZEUS solution has an error of 22% in the
density behind the slow shock traveling to the right. This is
not caused by smallb since behind the fast shock,b p 0.16

behind the slow shock, and the error in the gas pressureb p 6.1
is much smaller than in the density.

Like Balsara (2001), we find that ZEUS produces large
postshock oscillations for strong MHD shocks but that these
can be reduced substantially by adding the same linear artificial

viscosity that removes gasdynamic rarefaction shocks. This is
presumably because a quadratic viscosity leads to algebraic
decay of these oscillations, whereas a linear viscosity gives
exponential decay. The calculation shown in Figure 6 used this
value of the linear artificial viscosity, and it can be seen that
the amplitude of the postshock oscillations is quite small.

The calculations presented are all coplanar ( ),v p B p 0zz

but we have also looked at some noncoplanar problems in order
to see whether the presence of Alfvén waves causes any ad-
ditional difficulties for ZEUS. This is not the case, at least for
the problems that we have considered.

4. CONCLUSION

It is evident from these results that ZEUS can be made just
about acceptable for pure gasdynamics if the linear artificial
viscosity is multiplied by the smallest local Courant number
since the shock errors are small in this case. However, it is not
satisfactory for adiabatic MHD, at least in its present form.
The shock errors do not occur for an isothermal equation of
state, but, since the rarefaction shocks do, ZEUS is also not
reliable for isothermal MHD. It is possible that the rarefaction
shocks in MHD waves can be removed without using an ex-
cessive linear artificial viscosity by the addition of an appro-
priate linear artificial resistivity. The shock errors might also
be reduced by advecting the total energy rather than the internal
energy. However, even with such improvements, the low order
of accuracy makes ZEUS very inefficient compared with a
modern upwind scheme.

This should not be taken to mean that conservative upwind
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Fig. 3.—Smooth gas rarefaction at . At ,t p 50 t p 0 v p 0.5{1 �x

, , as . The ZEUS calculation is withtanh [0.1(x � 400)]} r r 1 p r 1 x r ��g

.qlin p 0.25

Fig. 5.—Gas pressure in a stationary fast shock.Left state: ,r p 1 p pg

, , , , . Right state: ,�610 v p 1.5 v p 0.0 B p 0.1 B p 1.0 r p 1.6111 p px y gx y

, , , , .0.04847 v p 0.9310 v p 0.04104 B p 0.1 B p 1.6156x yx y

Fig. 4.—Convergence rates:e is the norm of the error in the density forL1

the smooth rarefaction in . Lines with slopes 1 and 2 are also200≤ x ≤ 700
shown.

Fig. 6.—Density in a Riemann problem at .Left state: ,t p 30 r p 0.5
, , , , . Right state: , ,p p 10 v p 0 v p 2 B p 2 B p 2.5 r p 0.1 p p 0.1g x y gx y

, , , . The exact solution was calculated usingv p �10 v p 0 B p 2 B p 2x yx y

the Riemann solver described in Falle et al. (1998)

codes are in any sense perfect. For example, it is necessary to
introduce some extra dissipation in the Riemann solver to re-
move the serious errors discussed by Quirk (1994), and some
desirable properties, such as strict conservation, may have to
be sacrificed in order to satisfy the constraint in� · B p 0
multidimensional MHD (see, e.g., Powell et al. 1999; Balsara
2001).

These results obviously have implications for the reliability
of the numerous calculations in the literature that have used
ZEUS. Although these effects are likely to be present in many
cases, the associated errors are not necessarily so serious as to

completely invalidate the calculations. Whether or not they
make any qualitative difference in any particular case can only
be decided either by a thorough examination of the results to
see whether any of these errors are present or by repeating the
calculations using a modern code.

These calculations were performed with the version of
ZEUS-2D available from the National Center for Supercom-
puting Applications Web site, but, since all versions of ZEUS
appear to use the same algorithms, the results should not depend
on the particular version. It is also worth pointing out that
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although we used the scheme described by Falle et al. (1998),
similar results would probably have been obtained with any
modern upwind code.

The author would like to thank both the editor and an anon-
ymous referee for a number of helpful comments on the original
version.
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