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ABSTRACT  

 

Ions affect water’s self-diffusion and relaxation. Such ion-induced changes of water dynamics 

have long been rationalized in terms of the change of water structure around the ions. The aim of 

this paper is to establish a link between dynamics and the “water structure” on the basis of the 

extended jump (EJ) model for the reorientational motion of water, Eyring’s transition state theory 

of the self-diffusion of water, and the statistical thermodynamic preferential solvation theory 

developed from the Kirkwood-Buff (KB) theory. Through the synthesis of the above three, we 

formulate a scheme to correlate the ion-induced water dynamics changes to the water structure. 

With this new formulation, it is shown that chaotropic or negatively hydrated ions preferentially 

bind the transition state of water motion thereby stabilizing the transition state, whereas the 

exclusion of kosmotropes or positively hydrated ions suppresses the formation of the transition 

state. The ion effects on water dynamics are thus analyzed in a unified manner in terms of KB 

integrals, which represent the (averaged) “structures” of water.    
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1. Introduction 

 

The dynamics of water (such as self-diffusion, reorientational motion and viscosity) is affected 

strongly by the presence of ions.1–17 This observation has long been rationalized by the change in 

the hydrogen bond network of water (commonly referred to as “water structure”) induced by 

ions.1–17 However, this presumed link between the dynamics and structure of water has long 

remained intuitive and purely speculative;8,11 there was no consensus with regards to which 

distribution function or which of the well-defined quantities in statistical thermodynamics is 

referred to by this “water structure”.1–17 

 

Here we aim to fill this gap between the structure and dynamics of water by virtue of the 

following advancements: 

  

• The extended jump model (EJM) of water dynamics,18–22 which identified the structural 

basis of water dynamics as large-amplitude angular-jump that takes place when a water 

OH group trades HB acceptors.18–22 The presence of ions affect this extended jump (EJ) 

process.21,22 

• The transition state (TS) theory by Eyring and coworkers, which attributed the self-

diffusion of water, as well as the effect of ions thereupon, to the activation process 

connecting two basins.23,24 

•  The rigorous Kirkwood-Buff (KB) theory of preferential solvation,25–38 which has made 

it possible to evaluate solute-cosolvent and solute-solvent interactions from experimental 

data alone.25–38 
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Consequently, the effect of ions on water dynamics, through the transition state (TS) theory,23,24 

can be translated into the change of activation free energy in the presence of ions, which, in turn, 

be converted through the KB theory into the TS-water and TS-ion interactions.25–38 (Note that the 

TS here does not refer to any distinct chemical species. Rather it is an unstable state of a water 

molecule, which is identified by its mode of interaction with the surroundings.21–24) The 

combination of KB with EJM or Eyring’s classical treatment thus leads to the rationalisation of 

ion-induced water dynamics change based upon the ion-water and ion-TS interactions, which will 

be demonstrated in this paper.   

 

Based upon this theoretical approach, we will re-examine the following classical hypotheses on 

the effect of salts on the dynamics of water.  

(1) “Positive hydration” and “negative hydration” of Samoilov.4,6,7,11,12 Self-diffusion 

coefficient of water is reduced in the presence of ions by “positive hydration”, i.e., the 

reduced mobility of water around ions; self-diffusion is enhanced by “negative hydration”, 

i.e., enhanced mobility of water around ions.  

(2) “Kosmotropes” and “Chaotropes”.3,5–17 Kosmotropic ions enhance the water structure, 

namely the hydrogen bond network of water around them, making the water molecules less 

mobile, thereby reducing water dynamics;6,7,11,12 chaotropic ions break the water structure, 

i.e., the hydrogen bond network of water around them, increasing the mobility, hence 

dynamics, of water molecules.6,7,11,12 

 

In the present work, we express the water structure in terms of the KB integrals and correlate 

them to the ion-induced changes of water dynamics. Since the KB integral is defined as integrated 
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molecular distribution function over the whole space,25–38 it is accessible from molecular 

simulations, and serves further as a basis for bridging between the intermolecular interactions on 

a microscopic scale and observable effects on a laboratory scale. However, the chief aim of our 

theory is to explain and quantify, directly from experimental data, how ions affect the dynamics 

of water, rather than to help analyze molecular dynamics simulations. Through extensive 

molecular dynamics simulations, Laage, Hynes and coworkers have already provided a strong 

support for the applicability of the transition-state theory to the dynamics of water around ions.18–

22 Building on such support from simulation, our theory aims to clarify the structural basis of ion 

hydration dynamics, facing directly to experiments. 

 

 

2. A Kirkwood-Buff transition state theory  

 

Consider a solution which consists of water and solute molecules. Following our previous 

papers,26,27 we adopt the following indexing scheme: 𝑖 = 1 for water, 𝑖 = 2 for solute. Let us now 

focus on one water molecule, and consider its change from its equilibrium state (indexed as 𝑖 = 1) 

to the transition state (indexed as 𝑖 = 𝑡), just like a chemical reaction.18–24 Such a treatment of 

water dynamics, which was pioneered by Eyring,23 has been adopted by EJM.18–22 

 

Let Δ𝜇‡  be the activation free energy, namely the change of Gibbs free energy which 

accompanies the move of a water molecule from its equilibrium state to the transition state. Let us 

now apply the KB theory of preferential solvation,25–38 so that Δ𝜇‡ can be linked to the structure 

of aqueous solution. Δ𝜇‡ is in fact the difference in pseudo chemical potential between 𝑖 = 𝑡 and 
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𝑖 = 1. Consequently, the following relationship on the solute concentration (𝑛2) dependence arise 

from the KB theory:25–38 (𝜕Δ𝜇‡𝜕𝑛2 )𝑇,𝑃;𝑛2→0 =  −𝑅𝑇(ΔG2 − ΔG1)        (1) 

where 𝑅 is the gas constant, 𝑇 is the temperature, and  Δ𝐺𝑗 = 𝐺𝑡𝑗 − 𝐺1𝑗          (2) 

is the change of the KB integral, which accompanies the move of an equilibrium water molecule 

to the transition state. At each state (𝑖 = 1 or 𝑡), 𝐺𝑖𝑗 represents the KB integral between the species 𝑖 and 𝑗, defined as25–38 𝐺𝑖𝑗 = ∫ 𝑑𝑟 4𝜋𝑟2[𝑔𝑖𝑗(𝑟) − 1]         (3) 

where 𝑔𝑖𝑗(𝑟) is the radial distribution function between the 𝑖 and 𝑗 at the separation 𝑟. The KB 

integral, as is clear from Eq. (3), signifies the overall increment of the concentration of 𝑗 around 𝑖 
from its bulk value The change of solution structure that accompanies the reaction can therefore 

be captured quantitatively through the KB integrals. The classical concepts of kosmotropes, 

chaotropes, positive hydration, and negative hydration will then be founded on KB integrals.  

 

Kosmotropes are known to slow down the dynamics of water (positive hydration).6–11,39–43 This, 

according to the TS theory, is achieved by the increase of Δ𝜇‡ upon the addition of kosmotropes, 

i.e., (𝜕Δ𝜇‡𝜕𝑛2 )𝑇,𝑃;𝑛2→0 > 0 . This, according to Eq. (1), corresponds to ΔG2 < ΔG1 , and hence to 

Δ𝐺2 < 0  and 𝐺𝑡2 < 𝐺12   (because of |Δ𝐺1| ≪ |Δ𝐺2| as will be shown later in this paper; our 

argument will be done in terms of Δ𝐺2 and is valid within an allowance of Δ𝐺1). This means that 

the ions bind a water molecule at equilibrium more strongly than a water at the transition state. 

The unfavourable TS-ion interaction, i.e., the exclusion of ions from TS, is the cause of the 
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slowdown of water dynamics. Taking advantage of the symmetry (𝐺𝑖𝑗 = 𝐺𝑖𝑗 ), 𝐺2𝑡 < 𝐺21  also 

means that the equilibrium water molecules tend to accumulate around the ion more than the water 

at TS.  

 

Chaotropes,6–11,39–43  on the other hand, accelerate the dynamics of water (negative hydration) by 

lowering Δ𝜇‡, namely  (𝜕Δ𝜇‡𝜕𝑛2 )𝑇,𝑃;𝑛2→0 < 0. This, according to Eq. (1) and the small magnitude of 

Δ𝐺1 as will later be shown, means Δ𝐺2 > 0 and 𝐺2𝑡 > 𝐺21. Hence the ions bind the transition state 

water more strongly than the water at equilibrium state. The favourable TS-ion interaction is the 

cause of water dynamic acceleration. Using the symmetry of the KB parameters, 𝐺2𝑡 > 𝐺21 also 

signifies that TS-water tend to accumulate more around the ion than equilibrium water.  

 

What is useful here is that both Δ𝐺1 and Δ𝐺2 can be determined from experimental data, when 

Eq. (1) is supplemented by the activation volume Δ𝑉‡:25–38 

(∂Δ𝜇‡𝜕𝑃 )𝑇,𝑛2=0 = Δ𝑉‡ = −ΔG1         (4) 

Δ𝐺1 and Δ𝐺2 can thus be evaluated by solving simultaneous equations (Eqs. (1) and (4)).   

 

It should be emphasized that the “transition state” employed in the present work does not refer 

to any distinct, chemical species.18–22 Instead, it is an unstable state of a water molecule, which is 

identified by its mode of interaction with the surroundings.18–22 The corresponding statistical 

quantities, such as the KB integrals, should be understood to involve the “transition state” water 

molecule defined as above.  
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3. Water structure and extended jump motion 

 

3.1 A transition state theory approach to the extended jump motion of water  

 

According to EJM, ion-water hydrogen bonding is the crucial factor that affects the EJ time of 

water.21,22 This observation will be translated into the distribution of water and ions around the TS 

by the help of the KB theory.  

 

Here we focus on the reorientation correlation time, 𝜏2, determined from measurement of the 

NMR spin-lattice relaxation time 𝑇1 .18–22,39–43 For small molecules, 𝜏2  decreases when 𝑇1 

increases. The relationship between these two quantities are simple for D2O, unlike the case of 

H2O.39–43 While 𝑇1  of H2O reflects both the intra- and intermolecular effects in a rather 

complicated manner, the following relationship holds for D2O: 39–43 

1𝑇1 = 3𝜋22 (QCC)2𝜏2          (5) 

where QCC is the quadrupolar coupling constant, which can be considered invariant as far as 

aqueous solutions are concerned. Thus, in the following, we will focus on the 𝜏2 of D2O in a variety 

of aqueous electrolyte solutions, and analyse the NMR “B coefficient” introduced as18–22,39–43 𝜏2𝜏20 = 1 + 𝐵𝑁𝑀𝑅𝑛2          (6) 

where 𝜏20 is 𝜏2 in the absence of solutes (𝑛2 = 0). Note that 𝐵𝑁𝑀𝑅, i.e., the coefficients for the 

first-order dependence on the concentration, have been determined from 𝜏2 measurements over 

the dilute ionic concentration range and pertaining to the gradient at infinite dilution. This means 

that they do not contain the effect of ion-ion correlation, including the overlap of hydration shells 



 9 

that belong to different ions; the lack of the overlap has been the foundation for the calculation of 

the widely-available individual ionic 𝐵𝑁𝑀𝑅 parameters.8,11 

 

Let us now formulate a TST for the NMR B coefficient. Following Laage and Hynes,18–22 we 

apply TST to analyse the solute concentration dependence of the relaxation time. In the absence 

of solutes, 𝜏20 of D2O has the following TST expression:18–23 

1𝜏20 = 𝑘𝑇ℎ 𝑒−Δ𝜇‡0𝑘𝑇             (7)  

where 𝑘 is the Boltzmann constant and ℎ is the Planck constant. When the solute molecules are 

introduced into the system, it affects 𝜏2 not only though the change of activation free energy Δ𝜇‡ 

but also through the steric restriction on the jump direction. Hence Eq. (7) in the presence of the 

solute is expressed as18–22 

1𝜏2 = 𝑘𝑇ℎ 𝑓(𝑛2)𝑒−Δ𝜇‡𝑘𝑇            (8)  

where 𝑓(𝑛2) is the contribution of steric exclusion, whose mathematical form will be determined 

below. (Note, first of all, that  𝑓(𝑛2) = 1 at 𝑛2 = 0 so that Eq. (8) reduces to Eq. (7) at this limit.)    

 

An approximate expression for 𝑓(𝑛2) can be derived based upon a simple geometric argument 

on the restriction of possible jump direction in the vicinity of solute molecules (Appendix A). In 

the absence of the solute, there is no restriction to water’s possible jump direction; the solid angle 

available for the jump is therefore 4𝜋. When the water molecule is located in the first coordination 

shell of 𝑔21(𝑟), the possible jump direction is geometrically restricted. Since 𝑔21(𝑟) exhibits a 

sharp peak at the water-ion contact distance, here we consider that a solute affects the angular jump 

direction of  𝑁ℎ water molecules (=solute hydration number) at water-solute contact distance 𝑅21. 
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Appendix A shows that the solid angle available for hydrating water molecules is 2𝜋 (1 + 𝑅112𝑅21), 

where 𝑅11 is the nearest-neighbor distance between two water molecules. In this setup, 𝑓(𝑛2) can 

be approximated as the average solid angle fraction available for a water molecule and is given at 𝑛2 → 0 as  

𝑓(𝑛2) = (𝑛1−𝑛2𝑁ℎ)+𝑛2𝑁ℎ(12+ 𝑅114𝑅21)𝑛1 ≃ 1 + 𝑛2𝑁ℎ𝑉104 (𝑅11𝑅21 − 2)     (9) 

where n1 is the molar concentration of water and 𝑉10 is the partial molar volume of pure water. 

 

We emphasize here the geometrical restriction, quantified by Eq. (9), contributes to slow down 

the jump motion in an entropic manner by limiting the available space for the hydrogen bond jump 

motion due to the presence of the ion. This explains why there is EJ slow down for weakly-

hydrated ions. Eq. (9) is thus crucial for determining the free energy of activation Δ𝜇‡.  

 

3.2 KB theory of NMR B coefficient (extended jump motion)   

 

Here we aim is to evaluate the changes in the KB integrals that accompanies the formation of 

the extended-jump transition state. To this end, we apply Eqs. (1) and (4) to the extended jump 

model of water, as has been reformulated in the framework of the transition state theory (Section 

3.1).  

 𝒏𝟐 dependence.  NMR B coefficient can be linked to the KB theory (Eq. (2)). Combining Eqs. 

(1), (7), (8), and (9), we obtain  

 
1𝑅𝑇 (𝜕Δ𝜇‡𝜕𝑛2 )𝑇,𝑃;𝑛2→0 = −(ΔG2 − ΔG1) = 𝐵𝑁𝑀𝑅 + 𝑁ℎ𝑉104 (𝑅11𝑅21 − 2)     (10) 
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𝑷  dependence. In order to calculate Δ𝐺1 , we need the pressure-dependence of Δ𝜇‡  in the 

absence of solutes. A straightforward application of Eqs. (4) and (7) yields  

Δ𝐺1 = − (∂Δ𝜇‡𝜕𝑃 )𝑇,𝑁2=0 = 𝑅𝑇 (𝜕 ln 1𝜏20𝜕𝑃 )𝑇 = −𝑅𝑇 (𝜕 ln 1𝑇10𝜕𝑃 )𝑇     (11) 

Using the data of Jonas et al. at 30 ℃,we obtain 𝑅𝑇 (𝜕 ln 1𝑇10𝜕𝑃 )𝑇 ≃ 2.45 cm3 mol-1.40 As will be 

shown in the following, this value is much smaller than the NMR B coefficient, which should 

therefore be neglected.   

 

KB theory of the extended jump motion. KB integral changes that accompany the extended 

jump motion of water can be summarized in the following manner:  Δ𝐺1 ≃ 0           (12) ΔG2 = −𝐵𝑁𝑀𝑅 − 𝑁ℎ𝑉104 (𝑅11𝑅21 − 2)        (13)  

Here, as shown in Table 1, the second term of Eq. (13) can be evaluated for each ion through the 

ionic radius and the hydration number estimated from scattering experiments. 𝐵𝑁𝑀𝑅  has been 

calculated from the salt concentration dependence of 𝑇1  measured by Müller and Hertz.43 As 

shown in Table 2, 
𝑁ℎ𝑉104 (2 − 𝑅11𝑅21) for salts can be calculated from the sum of individual ionic 

values tabulated in Table 1.44–46 The resultant ΔG2 based upon such experimental data43–48 are 

summarized in Table 2.  

 

3.3 A KB perspective on the extended jump time and water-ion interaction 
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Here we aim to clarify how, on a molecular scale, ions affect the extended jump time. This can be 

achieved by translating the observation of Laage and Hynes,20,22 that there is a correlation between 

extended jump rate and ion-water interaction, into the language of the KB theory.25–38 

 

In the framework of KB-TST, the fundamental relationship for the solute-induced change of EJ 

rate is Eq. (1), which employs the activation free energy. Consequently, what we seek here is an 

expression analogous to Eq. (1), which involves the ion-water interaction. The following formula, 

derived in Appendix B, fits the bill:  (𝜕𝜇1∗𝜕𝑛2)𝑇,𝑃;𝑛2→0 = −𝑅𝑇(𝐺21 − 𝐺11)        (14) 

where 𝜇1∗ is the pseudo chemical potential of water, which expresses the binding free energy of 

water to the aqueous solution and can be obtained from the vapour pressure of water.  

 

Thus, KB-TST transforms the parallel between the EJ time and the ion-water binding proposed 

by EJM21,22 into the parallel between 𝜇1∗ (binding free energy of water) and  Δ𝜇1‡ (activation free 

energy). This, by virtue of Eqs. (10) and (14), can further be converted to a correlation between Δ𝐺2 − Δ𝐺1 ≈ Δ𝐺2 and 𝐺21 − 𝐺11. The former has been evaluated in Table 2; the latter can be 

obtained directly from partial molar volumes (𝑉𝑖, of species 𝑖) data45,47,48 thanks to the following 

rigorous relationship derived in Appendix B:  𝐺12 − 𝐺11 = 𝑉1 − 𝑉2         (15) 

In Table 2, 𝑉20 is the value of 𝑉2 at infinite dilution and its value for each solute has been taken 

from literatures and summarized.  Note that 𝑉10 is simply the molar volume of pure water and is 

independent of the solute species. 
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Figure 1 shows that there is a good correlation between 𝐺𝑡2 − 𝐺12 and 𝐺21 − 𝐺11. Moreover, the 

stronger the preferential ion-water interaction (i.e., 𝐺21 − 𝐺11 towards positive), the weaker TS-

ion interaction compared to water-ion interaction becomes (i.e 𝐺𝑡2 − 𝐺12  towards negative). 

Indeed, when 𝐺𝑡2 − 𝐺12 is large and negative, this is driven by a large negative 𝐺𝑡2, as is clear 

from the relatively small magnitude of 𝐺21 − 𝐺11. Hence the preferential ion-water interaction 

drives the exclusion of ions from TS water, suppressing the formation of TS via preferential 

exclusion, thereby slowing down the relaxation process of water.  

 

The opposite is true when ion-water interaction is weaker than water-water (i.e., 𝐺21 − 𝐺11 

towards negative), when TS-ion interaction is stronger compared to water-ion interaction (𝐺𝑡2 −𝐺12 towards positive). In this case, the ions bind stronger to TS water than to the bulk water, hence 

the presence of ions promote the formation of TS, thereby facilitating the relaxation of water.  

 𝐺21 − 𝐺11 corresponds to the ion-induced change of the fugacity of water at the equilibrium 

state, while 𝐺𝑡2 − 𝐺12 refers to the difference in the ion interaction between TS and equilibrium 

water. TS is involved only in the latter, and it is thus not assured a priori that 𝐺21 − 𝐺11 correlates 

to 𝐺𝑡2 − 𝐺12 and that one is zero when the other vanishes. What is noteworthy here is that the ion-

water hydrogen bonding, the driving force identified by EJM,21,22 has now been correlated through 

KB-TST with the preferential ion-water interaction in the language of statistical thermodynamics 

(Eq. (15)). We have thus shown that the preferential ion-water interaction is the major factor 

influencing the dynamics of water.    

 

4. Self-diffusion coefficients of water 
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4.1 The diffusion B coefficient and the transition state theory  

 

Here the importance of preferential ion-water interaction is underscored further by the ion-induced 

changes in the self-diffusion coefficients of water, 𝐷. The aim is to interpret on a microscopic scale 

the following ion concentration 𝑛2 dependence of 𝐷  

𝐷𝐷0 = 1 + 𝐵𝐷𝑛2          (16) 

where 𝐵𝐷 is referred to as the diffusion 𝐵 coefficient and 𝐷0 is 𝐷 at 𝑛2 = 0 (pure water).6–8,11  

 

Here we establish a relationship between 𝐵𝐷 and Eq. (1). To do so, let us employ the following 

TST-expression which links the self-diffusion coefficient of pure water 𝐷0 to the activation free 

energy Δ𝜇‡0:   

𝐷0 = 𝜆02 𝑘𝑇ℎ𝑁𝐴   𝑒−Δ𝜇‡0𝑅𝑇          (17) 

where 𝜆0  is the distance between two equilibrium positions of water and 𝑁𝐴  is the Avogadro 

constant.23 In the presence of dilute ions, this expression can be modified into the following form23  

𝐷 = 𝜆2 𝑘𝑇ℎ𝑁𝐴   𝑒−Δ𝜇‡𝑅𝑇           (18) 

where 𝜆 and Δ𝜇‡ are the values in the presence of salts.   

 

To obtain 𝐵𝐷, the following simple relationship between 𝜆 and 𝜆0, which has been derived by 

Eyring and coworkers (through a consideration of the volume change upon introducing a solute), 

will be crucial:23  
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( 𝜆𝜆0)2 =  (𝑉0+𝑁2𝑉2𝑉0 )23 = (1 + 𝑛2𝑉20)23 ≈ 1 + 23 𝑛2𝑉20      (19) 

where 𝑉20 is the partial molar volume of salt at infinite dilution and N2 is the number of solute 

molecules. Using Eqs. (16)-(19), we obtain the following classical relationship between the solute-

induced change of transition free energy and of the diffusion coefficient:  Δμ‡ − Δ𝜇‡0 ≈ −𝑅𝑇 ln 𝐷𝐷0 + 23 𝑅𝑇𝑛2𝑉20       (20)  

Eq. (19) can be rewritten in the following form analogous to Eq. (10):   (𝜕Δ𝜇‡𝜕𝑛2 )𝑇,𝑃;𝑛2→0 = −𝑅𝑇 (𝐵𝐷 − 23 𝑉20)        (21)  

 

4.2 Self-diffusion coefficient and the KB theory  

 

Here we obtain the KB integrals for the formation of the transition states, Δ𝐺𝑡1 and Δ𝐺𝑡2, based 

upon the transition state theory of diffusion developed in the previous subsection.  

 

As was the case in Section 3, as well as in our previous work,25–30 Eq. (21) can be closed with 

the pressure dependence of D. Let us express the hydrostatic pressure dependence of 𝐷 in the 

following simple manner:  

𝐷(𝑃)𝐷(𝑃0) = 1 + δP(𝑃 − 𝑃0)         (22) 

Under pressure, 𝜆 also changes with pressure, which, in the framework of TST, can be expressed 

in the following way:  

( 𝜆(𝑃)𝜆(𝑃0))2 = [𝑉(𝑃0)+(𝜕𝑉𝜕𝑃)𝑇(𝑃−𝑃0)𝑉(𝑃0) ]23 = [1 − 𝜅𝑇(𝑃 − 𝑃0)]23     (23) 
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where 𝜅𝑇 ≡ 1𝑉 (𝜕𝑉𝜕𝑃)𝑇 is the isothermal compressibility of water. Combining Eqs. (17), (18), (22) 

and (23), we obtain  (∂Δ𝜇‡𝜕𝑃 )𝑇,𝑁2→0 = 𝜕𝜕𝑃 [−𝑅𝑇 𝜕 ln[1+δP(𝑃−𝑃0)]𝜕𝑃 + 23 𝑅𝑇 𝜕 ln[1−𝜅𝑇(𝑃−𝑃0)]𝜕𝑃 ] ≃ −𝑅𝑇δP − 23 𝑅𝑇𝜅𝑇 (24) 

Using experimental data, 
23 𝑅𝑇𝜅𝑇 = 0.75 cm3 mol-1. 𝑅𝑇𝛿𝑃 term requires a little more justification. 

According to Krynicki et al.,49 𝐷  =2.30×10-9 m2s-1 at 𝑃 =1×106 Pa to 𝐷 =2.31×10-9 m2s-1 at 𝑃 =108 Pa. Hence 𝛿𝑃 =4.3×10-11 Pa-1, therefore 𝑅𝑇𝛿𝑃=0.11 cm3 mol-1. Hence G1 is negligibly 

small compared to Δ𝐺2, as is evident upon inspecting Table 2.  

  

From Eqs. (1), (4), (21), and (24), we obtain  Δ𝐺1 = 𝑅𝑇δP + 23 𝑅𝑇𝜅𝑇 ≈ 0         (25) ΔG2 ≈ 𝐵𝐷 − 23 𝑉20          (26) 

Here, as shown in Table 2, the second term of Eq. (26) can be evaluated from partial molar volumes 

of constituent ions.45,47,48 𝐵𝐷 has been calculated from NMR-based self-diffusion data by Müller 

and Hertz.40 The resultant ΔG2 based upon such experimental data are summarized in Table 2.  

 

4.3 Self-diffusion coefficients of water are affected via ion-water interaction  

 

KB-TST analysis presented in Figure 2 and Table 2 lead to the following clarification of how the 

self-diffusion of water is affected by ions.  

 

“Positive hydration” takes place when kosmotropic ions slow down the dynamics of water.4,6–

11,39–43 This is characterized by large negative diffusion 𝐵 coefficients, when 𝐵𝐷 − 23 𝑉2 < 0 is 
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satisfied. According to Eq. (26), this leads to Δ𝐺2 < 0; from its definition (Eq. (2)), this means 

that the ions are more excluded from the transition state of water than from the equilibrium 

position. As shown in Figure 2, the more negative Δ𝐺2, the more positive 𝐺12 − 𝐺11. According 

to Eqs. (14) and (15), a positive 𝐺12 − 𝐺11 signifies a strong ion-water interaction. Thus we arrive 

at a molecular basis of positive hydration; a strong ion-water interaction makes the transition state 

more excluded from ions than from equilibrium water. Thus the exclusion of TS from ions is the 

key for positive hydration.   

 

“Negative hydration” is when the dynamics of water is accelerated by chaotropic ions, which 

is characterized by the large positive diffusion B coefficient;4,6–11,39–43 𝐵𝐷 − 23 𝑉2 > 0 , which, 

according to Eq. (26), means that Δ𝐺2 > 0. This means that the ions interact more preferentially 

with the transition state than with water at equilibrium. As seen again in Figure 2, the more positive Δ𝐺2 , the more negative 𝐺12 − 𝐺11 . According to Eqs. (14) and (15), the negative 𝐺12 − 𝐺11 

signifies a weak ion-water interaction. Thus the molecular basis of negative hydration is a stronger 

interaction between the transition state and ion, as compared to ion-water interaction. The 

formation of transition state is favoured through a preferential interaction with ions.  

 

 

5. Conclusion  

 

How ion affects the dynamics of water has long been attributed to the change of water structure.1–

17,39–45 Yet due to the lack of a theoretical foundation, the definition of the “water structure” in this 

context has remained unclear. Here we have shown that statistical thermodynamics can provide a 
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link between water structure and dynamics. In doing so, the crucial step was the incorporation of 

the extended jump model (EJM) of water reorientation and Eyring’s classical treatment,18–22 which 

identified the structural elements of the transition state (TS) of water dynamics, which is affected 

by ion-water binding. The TS here refers to the unstable state of a water molecule specified by its 

mode of interaction, rather than a distinct chemical species.18–24 Formulated statistical 

thermodynamically, a clear correlation was observed between ion-water preferential interaction 

and the ion effect on the activation free energy.18–22   

 

With the help of TST, we have now established a statistical thermodynamic theory based upon 

the Kirkwood-Buff (KB) theory of solutions,25–38 which attributes the sign and the magnitude of 

the ion effect on the activation free energy to ion-TS water interaction. We have thus provided a 

clear molecular meaning of the B coefficients: preferential TS-ion binding compared to water-ion 

binding. Therefore the microscopic interpretation of structure making and breaking4,6–11,39–43 has 

been established in terms of the preferential interaction between ions and TS water. The difference 

between chaotropes and kosmotropes,4,6–11,39–43as well as positive and negative hydration,4,6–11,39–

43 have now been clarified; chaotrope ions tend to bind preferentially to the TS, whereas 

kosmotropes are excluded from the TS.  

 

Here a comment on the validity of our approach is in place. The applicability of the preferential 

binding concept is guaranteed automatically when TST is valid for the extended jump dynamics, 

namely the quasi-equilibrium treatment of the transition state.23,50 The KB theory, being a rigorous 

and exact theory, needs no further assumptions for the calculation of preferential binding – all it 

requires are the pressure- and ion concentration-dependence of the chemical potential,25 both of 
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which comes from TST. The applicability of TST to EJ dynamics, in turn, comes from extensive 

molecular dynamics simulations by Laage, Hynes and coworkers, who have successfully 

demonstrated that the geometrical restriction due to the presence of ions on the jump motion can 

be decoupled from EJ dynamics.18–22 These previous achievements have afforded us to focus on 

linking dynamics to water structure.   

 

Application of our theory to viscosity B coefficient requires further clarifications on the nature 

of viscosity transition state, as well as the physical meaning of the viscosity B coefficient.4,6–11,39–

43 This problem will be addressed in a forthcoming publication.  
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Appendix A 

 

 

Here we provide necessary geometric information for the derivation of Eq. (9).  

 

Consider an extended jump transition of a water molecule from position A in Figure 3. As we 

discussed in Section 3, we attribute the solute effect on water dynamics exclusively to the water 

molecules coordinating the solute. Due to the presence of the solute molecule, and its steric 

exclusion, there is a limit imposed upon the possible direction of the jump. Let us quantify the 

prohibited jump by the use of the solid angle. In Figure 3, 𝜃 defined therein is the maximum angle 

of geometrically prohibited jump, which can be expressed as cos 𝜃 = 𝑅1122𝑅21𝑅11 = 𝑅112𝑅21         (A1)  

Hence the solid angle Ω for the available jumps are  Ω = 4𝜋 − 2𝜋(1 − cos 𝜃) = 2𝜋 (1 + 𝑅112𝑅21)        (A2)  

 

Because of steric exclusion, Ω is smaller than 4𝜋. The fraction of possible jumps in the presence 

of a solute can therefore be given as 

2𝜋(1+ 𝑅112𝑅21)4𝜋 = 12 (1 + 𝑅112𝑅21)          (A3)  

Eq. (A3) has been used in defining 𝑓(𝑛2) for Eq. (9).  

 

Note that the condition implicit in Eq. (A2), namely, cos 𝜃 = 𝑅112𝑅21 ≤ 1  does not pose any 

restrictions on the applicability of Eq. (A3). To see this clearly, let 𝑟2 and 𝑟1 be the radius of ion 
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and water, respectively. Since 𝑅11 = 2𝑟1  and 𝑅21 = 𝑟1 + 𝑟2 , 
𝑅112𝑅21 ≤ 1  is equivalent to 𝑟2 ≥ 0 . 

Hence there is no size restrictions on the validity of Eq. (A3).   

 

 

Appendix B 

 

 

Here we derive Eq. (15) using the KB theory. Our goal is to obtain the 𝑛2-coefficient of hydration 

free energy (pseudochemical potential, 𝜇1∗),34 parallel to that for the activation free energy. To do 

so, let us start from a relationship between 𝜇1 and 𝜇1∗,34  

 𝑑𝜇1 = 𝑑𝜇1∗ + 𝑘𝑇𝑑 ln 𝑛1,         (B1) 

as well as a result of KB theory,25–38 (𝜕𝜇1𝜕𝑛2)𝑇,𝑃 = − 𝑅𝑇𝑛1 11+𝑛2(𝐺22−𝐺21)         (B2) 

 

At 𝑛2 → 0, Eq. (B2) becomes:  (𝜕𝜇1𝜕𝑛2)𝑇,𝑃;𝑛2→0 ≈ −𝑅𝑇𝑉10         (B3) 

where 𝑉10 is the partial molar volume of pure water. Combining (B1) and (B3),  

Eq. (B1) can be rewritten as:  (𝜕𝜇1∗𝜕𝑛2)𝑇,𝑃;𝑛2→0 = (𝜕𝜇1𝜕𝑛2)𝑇,𝑃;𝑛2→0 − 𝑅𝑇𝑉10 (𝜕𝑛1𝜕𝑛2)𝑇,𝑃;𝑛2→0 = −𝑅𝑇𝑉10 − 𝑅𝑇𝑉10 (𝜕𝑛1𝜕𝑛2)𝑇,𝑃  (B4) 

Deriving Eq. (15) from Eq. (B4) requires the use of the following equation:     (𝜕𝑛1𝜕𝑛2)𝑇,𝑃 = − 𝑉2𝑉1          (B5) 
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Eq. (B5) can be derived straightforwardly from the following relationship under constant 𝑇 and 𝑃:  𝑉1𝑑𝑛1 + 𝑉2𝑑𝑛2 = 0         (B6)  

To prove Eq. (B6), let 𝑁𝑖 and 𝑉 be the number of species 𝑖 molecules and the volume of the system, 

respectively, such that 𝑛𝑖 = 𝑁𝑖/𝑉. Using 𝑁𝑖 and 𝑉 explicitly, we can easily show that the l.h.s. of 

Eq. (B6) can be transformed into the following form:    

 𝑉1𝑑 (𝑁1𝑉 ) + 𝑉2𝑑 (𝑁2𝑉 ) = 𝑉1𝑑𝑁1+𝑉2𝑑𝑁2𝑉 − (𝑁1𝑉1+𝑁2𝑉2)𝑑𝑉𝑉2       (B7)   

Eq. (B7) can then be shown to be zero using the Gibbs-Duhem equation (𝑉 = 𝑁1𝑉1 + 𝑁2𝑉2), as 

well as the definition of partial molar volumes (𝑑𝑉 = 𝑉1𝑑𝑁1 + 𝑉2𝑑𝑁2). An alternative derivation 

of Eq. (B5) based on the KB theory has also been reported in the literature.34   
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Figure 1 

 
 

Figure 1. KB integral changes for NMR B coefficient (Δ𝐺2 = 𝐺𝑡2 − 𝐺12) against preferential 

ion-water interaction (𝐺21 − 𝐺11). The stronger the ion-water interaction, the more excluded the 

ion becomes from the transition state, thereby slowing down relaxation. Calculated from 

experimental data; for procedure, see Tables 1 and 2.  
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Figure 2 

 

 
 

Figure 2. KB integral changes for the self-diffusion coefficient of water (Δ𝐺2 = 𝐺𝑡2 − 𝐺12) 

against preferential ion-water interaction (𝐺21 − 𝐺11). The stronger the ion-water interaction, the 

more excluded the ion becomes from the transition state, thereby slowing down the diffusion 

process. Calculated from experimental data; for procedure, see Table 3.   
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Figure 3 

 

 

 
 

 

 

Figure 3. Schematic figure for the estimation of geometrical restriction on extended jump 

transition of water. (A: original position of water; Blue dotted circles: water molecules; brown 

dotted circle: ion; 𝜃: maximum angle of geometrically prohibited jump). See Appendix A for 

discussion.  
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Tables 

Table 1. Literature data on hydration number 𝑁ℎ and ionic radii 𝑟2, derived from diffraction and 

scattering experiments, for the evaluation of Eq. (13). The radius of the water molecules was set 

to 0.138 nm.44 

 

 

aFrom Marcus;44,45 bFrom Mähler and Persson.46  

  

 𝑁ℎ 𝑟2  

nm 

𝑁ℎ𝑉104 (2 − 𝑅11𝑅21 ) 

cm3 mol-1 

Li+ 6a 0.071a 18.3 

Na+ 6a 0.097a 22.3 

K+ 6a 0.141a 27.3 

Cs+ 7a 0.173a 35.0 

Rb+ 8b 0.15b 37.5 

Be2+ 4a 0.031a 6.60 

Mg2+ 6a 0.07a 18.2 

Ca2+ 6a 0.103a 23.1 

Cd2+ 6a 0.091a 21.5 

Al3+ 6a 0.05a 14.4 

Th4+ 9a 0.014a 7.46 

F- 6a 0.124a 25.6 

Cl- 6a 0.18a 30.6 

Br- 6a 0.198a 31.8 

I- 6a 0.225a 33.5 
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Table 2. Calculation of KB integrals for the relaxation dynamics of water in the presence of 

salts. Unit: cm3 mol-1 

 
  

NMR B coefficient Self-diffusion   

salts V20a G21-G11 BNMRb NhV104 (R11R21 -2)c ΔG2 BDb ΔG2 

 

KCl 26.8 9.2 -41.8 -57.9 99.7 35.0 17.1 

KBr 33.7 2.3 -81.6 -59.1 140.7 57.2 34.7 

KI 45.2 -9.2 -98.3 -60.8 159.1 108.9 78.7 

RbCl 31.9 4.1 -46.4 -58.7 105.1 56.5 35.2 

RbBr 38.8 -2.8 -76.9 -59.9 136.8 76.6 50.8 

RbI 50.3 -14.3 -96.6 -61.6 158.2 95.5 62.0 

CsCl 39.1 -3.1 -58.8 -65.6 124.4 64.4 38.4 

CsBr 46 -10 -79.6 -66.9 146.5 84.6 54.0 

CsI 57.5 -21.5 -92.2 -68.5 160.7 112.5 74.2 

NaCl 16.6 19.4 30.5 -52.9 22.4 -57.4 -68.4 

NaBr 23.5 12.5 0.0 -54.1 54.1 -44.0 -59.6 

NaI 35 1.0 -33.6 -55.8 89.4 18.0 -5.4 

NaF -2.4 38.4 94.9 -47.8 -47.0 
  

LiCl 16.9 19.1 107.0 -48.9 -58.0 -92.7 -103.9 

LiBr 23.8 12.2 75.0 -50.2 -24.8 -83.1 -98.9 

KF 7.8 28.2 62.4 -52.8 -9.6 -135.6 -140.8 

RbF 12.9 23.1 46.9 -53.7 6.8 -113.8 -122.4 

CsF 20.1 15.9 48.3 -60.6 12.3 -116.5 -129.9 

CaCl2 17.7 36.3 157.7 -84.2 -73.5 -185.5 -197.3 

MgCl2 14.4 39.6 350.3 -79.3 -271.0 -352.6 -362.2 

CdCl2 15.6 38.4 155.1 -82.6 -72.5 -180.7 -191.1 

CdI2 52.4 1.6 151.9 -88.4 -63.5 -164.4 -199.4 

ZnCl2 14 40 222.1 -79.3 -142.8 -220.3 -229.6 

 
aCalculated from the individual ionic data compiled by Marcus;44 bCalculated from the 

experimental data reported by Muller and Hertz;43 cCalculated from the individual ionic values 

presented in Table 1. 
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