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1.   Introduction  
The main feature of recent national freight transport models in Europe is the incorporation of a 

logistic component (module) in the traditional freight demand-modelling framework (de Jong et al. 

2013). Logistics decisions of firms are incorporated in the modelling process often based on 

shipment size optimization theory.1 According to this theory, firms are assumed to minimize total 

annual logistics costs by trading-off inventory holding costs, order costs and transport costs. The 

logistics module estimates frequency/shipment size choice and transport chain choice (i.e. transport 

mode choices and use of trans-shipment)2 based on a cost minimization model where firms are 

assumed to minimize annual total logistics costs.    

Such logistics modules have been developed for the national freight models of Norway, Sweden 

(SAMGODS model)3, Denmark and Flanders (see Ben-Akiva and de Jong, 2013), within the 

overall framework of the aggregate-disaggregate-aggregate (ADA) freight transport model.4  The 

current logistic modules in these countries, however, lack two main elements. First, they do not 

account for the main determinants of shipment size and transport chain choices other than cost, i.e. 

decisions are mainly based on cost considerations (and to some extent on factors such as access to 

road and rail and value densities). Second, these models are deterministic and lack a stochastic 

component5. A deterministic model has a weak empirical foundation: the way transport agents (i.e. 

shippers, forwarders and carriers) behave in the model is not based on observed behavioural data 

but on the assumption that they will choose the shipment size and transport chain that has minimum 

costs, (and on data relating to transport networks, possible transhipment locations and expert 

knowledge of cost functions) with some model calibration at a highly aggregate level. Instead of 

observed behaviour, such a model represents normative behaviour. To improve the predictions of 

                                                           
1 See Chow et al. (2010) for a comprehensive review of freight forecast models elsewhere.  
2 A transport chain is defined here as a series of modes that are all used to transport a shipment from the sender to the receiver (e.g. 
road-sea-road). 
3 Section 3.1 gives a brief overview of the national freight transport model for Sweden, SAMGODS. At the core of this model is 
the ADA model framework first suggested by de Jong and Ben-Akiva (2007). It starts with an aggregate model for the determination 
of flows of goods between production (P) zones and consumption (C) zones. After this comes a disaggregate “logistics” model, that 
based on PC flows produces OD (origin-destination) flows for the network assignment which is the third phase (aggregate again). 
For example, A PC flow that uses the transport chain road-sea-road between the production and consumption locations contributes 
to three OD flows (one for each of the modes in the chain). 
4 Moreover, models for shipment size and mode choice have been developed based on the French ECHO dataset at the shipment 
level (Combes, 2010).  
5
 A partial exception is that the Danish national freight model contains a module for the choice of mode to cross the Fehmarn Belt 

screenline that uses a random utility model estimated on disaggregate data (including stated preference SP surveys in the Fehmarn 
Belt corridor). Other transport chains, however, for example in Denmark, are handled by a deterministic logistics model (Ben-
Akiva and de Jong, 2013, section 4.6). 
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current models and allow richer and more realistic policy analyses, logistics decisions should be 

modeled taking into account these two elements.  

The main objective of this paper is estimating and implementing a full randomdisaggregate 

stochastic (logit-type) utility logistics model, i.e. stochastic model, for Sweden, which overcomes 

the aforementioned shortcomings of deterministic models. Stochastic models of mode (or transport 

chain) and shipment size choice have been estimated before (e.g. McFadden et al. 1985; Inabe and 

Wallace, 1989; Windisch et al., 2010; Combes, 2010; Lloret-Batlle and Combes, 2013; Combes 

and Tavasszy, 2016; Caspersen et al., 2016see Section 3).  Their estimation is, however, not byfor 

all commodity types together, or for a few selected commodities, whereas we have estimated 

models for many different commodity types. A systematic comparison between stochastic and 

deterministic models in an implementation context (e.g. in terms of elasticities calculated from runs 

with the actually used models) is also usually usually missing.6 While estimation and 

implemeantation of aggregate stochastic models were done before, in the context of a national 

freight transport forecasting model (e.g. Bovenkerk, 2005; Tavasszy et al., 1998; Rich et al, 2009; 

Jourquin et al., 2014), we think this paper is the first implementation, in the framework of a national 

model, of a disaggregate freight transport chain and shipment size models estimated on CFS-type 

choice data containing observed choices for individual shipments, certainly in Europe. 

A deterministic model effectively assumes that the stochastic component can be ignored – in other 

words, that the researcher has full knowledge of all the drivers of behaviour and that there is no 

randomness in actual behaviour. As a result of adding a this stochastic component in the 

utilitylogistics model, the response functions (now expressed in the form of probabilities) become 

smooth instead of lumped at 0 and 1 as in athe deterministic model. This in turn addresses the 

problem of “overshooting” that is prevalent in a deterministic model when testing different policies. 

Overshooting happens when the relevant part of the logistics costs function is rather flat and a small 

change in logistics costs can lead to a shift to a completely different optimum shipment size and 

transport chain (Abate et al. 2014). On the other hand, there could also be “sticky” choices in a 

deterministic (all-or-nothing) model when one alternative is clearly cheaper than the other 

alternatives. Improving the other alternatives will then not lead to any change in market shares until 

                                                           

6 We are not comparing different network assignment techniques in this paper (both methods rely on the same skims from unimodal 
networks which yield input variables for the allocation to transport chain and shipment size that is being studied here). 
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one of these other alternatives becomes the cheapest and then the deterministic choice is suddenly 

completely altered. In this paper, we investigate the elasticities for changes in transport costs of 

different sign and size for both the deterministic and the disaggregate stochastic model, calculated 

in both cases from the implemented model in the framework of the Swedish national freight model. 

This allows us to analyze the relation between the elasticity and the magnitude of the cost change, 

whether the deterministic model indeed suffers from the problems mentioned and whether the 

stochastic model improves this.  

The research gaps that we are addressing in this paper therefore are the following: 

 Estimation results for transport disaggregate transport chain and shipment size choice 

models for a wide range of different commodity types; 

 Implementation of disaggregate logistics models in the context of a national freight model 

system; 

 An empirical investigation into the differences between implemented stochastic and 

deterministic models: do stochastic models lead to smaller sensitivities for time and cost 

changes? 

The empirical analysis in this paper involved two steps. As a first step, we estimated econometric 

models that describe the determinants of transport chains and shipment size choices. We used the 

2004/2005 Swedish Commodity Flow Survey (CFS)7 and inputs from the SAMGODS model for 

estimation of multinomial logit models (MNL) for 16 different commodity groups. Note that by 

their very nature the MNL models are probabilistic models because they include a stochastic 

component to account for the influence of omitted factors (there is no other randomness in the 

stochastic models in this paper than this component; estimating and applying the disaggregate 

model does not involve draws from some statistical distribution). The main results from estimation 

of the MNL models show that variables such as transport cost and time, having access to rail or 

quay at origin and distance are important determinants of shippers’ mode and shipment size 

choices.  

As a second step, based on the MNL estimation results, we implemented (i.e. program in the 

application context) the disaggregate stochastic logistics model for two commodity groups, metal 

                                                           
7 See http://www.trafikverket.se/contentassets/23a269d514d24920ad445881d724811f/filer/vfu_2004_2005.pdf for details.  

http://www.trafikverket.se/contentassets/23a269d514d24920ad445881d724811f/filer/vfu_2004_2005.pdf


5 

 

products and chemical products within the framework of SAMGODS. Using this model, we 

compared transport cost and time elasticities for tonne-km between the stochastic and deterministic 

models for the two commodities. In earlier applications of the deterministic model we have seen 

examples of overshooting and we expect that the elasticities from the stochastic model will be 

smaller (in absolute levels), showing less tendency towards overshooting. 

The remaining part of this paper is organized as follows. Section 2 presents the econometric model 

set up and results from estimation; Section 3 describes the stochastic model setup based on the 

inputs from Section 2; Section 4 compares model outputs from the stochastic and deterministic 

models; finally, Section 5 presents our main conclusions and suggestions for future work.   

2. Econometric framework  
Econometric studies of freight mode/vehicle choice are based on the key insight that 

mode/vehicle/cargo unit choice entails simultaneous decisions on how much to ship (see, for 

example, Abate and de Jong, 2014; Johnson and de Jong, 2011; Holguin-Veras, 2002; Abdelwahab 

and Sargious, 1992; Inaba and Wallace, 1989; McFadden et al., 1985). This simultaneity in 

decisions requires the use of joint econometric techniques such as discrete-continuous models. An 

alternative is sometimes discrete-discrete (by classifying shipment sizes to a number of size 

classes), as in Johnson and de Jong and (2011) and Windisch et al. (2010). In addition to 

recognizing this simultaneous decision process, these studies show that various haul, carrier, and 

commodity characteristics affect the decisions regarding the optimal shipment size choice and 

choice of transport mode.8 The discrete choice is usually mode choice, but can also be the choice 

of transport chain (e.g. Windisch et al., 2010).  

McFadden et al. (1985) and Abdelwahab and Sargious (1992) provide the most complete 

formulation of the firm’s simultaneous choice of mode and shipment size. However, the 

applicability of their models is rather limited when decision makers have to choose from more than 

two mode alternatives. Holguin-Veras (2002) and Johnson and de Jong (2011) used an indirect 

approach to address the simultaneity problem. They model the discrete choice component (vehicle 

class choice in Holguin-Veras and mode choice in Johnson and de Jong) as the main equation, 

                                                           
8 In this study, as in most previous studies, we consider the weight of shipment size as an endogenous variable. However, we note 
that shipment volume (in m3) is also an important factor, which shippers consider jointly with mode choice decisions. We cannot 
model shipment volume because our data set, the Swedish CFS, does not contain this information.  
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replacing actual shipment with prediction from a shipment size auxiliary regression. This approach 

is an interesting one when the main focus is the vehicle/mode choice because it is possible to apply 

advanced discrete choice models that overcome the independence of irrelevant alternatives (IIA) 

problem. But, unlike McFadden et al. (1985), this approach does not allow for testing for 

simultaneity bias. 

Due to the above technical complexities, mode choice in freight transport is usually studied in 

isolation (or in combination with network assignment, as multi-modal assignment). However, as 

pointed out by Johnson and de Jong (2011), mode and shipment size are closely linked choices. 

Econometric studies of freight mode/vehicle choice are based on the key insight that 

mode/vehicle/cargo unit choice entails simultaneous decisions on how much to ship (see, for 

example, Abate and de Jong, 2014; Johnson and de Jong, 2011; Holguin-Veras, 2002; Abdelwahab 

and Sargious, 1992; Inaba and Wallace, 1989; McFadden et al., 1985). Large shipment sizes usually 

coincide with higher market shares for non-road transport, whereas there is a high correlation 

between road transport and small shipment sizes. Such a correlation calls for a joint econometric 

model. Abate et al. (2014) tested two types of joint econometric models, namely: a discrete-discrete 

(DD) model where the dependent variable is a discrete combination of shipment size categories 

and mode choice alternatives, and a discrete-continuous (DC) model which treats transport mode 

chain choice as a discrete variable and shipment sizes as continuous variable. Although DC models 

were found to be theoretically sound, given the size of the CFS data and the number of commodity 

groups involved, a pragmatic alternative is a DD model. In this paper, we estimate a DD which is 

specified as follows: 

௜ܷ ൌ ௜ܥଵܶߚ ൅ ଶܶߚ ௜ܶ ൅ ௜ܦଷܸߚ ൅ ௜ܺߠ ൅  ௜                                          ሺͳሻߝ

Where Ui is the utility derived from choosing a discrete combination of transport chain and a 

shipment size category i, the s and ߠ are parameters to be estimated and i  is an error term.9 Since 

Ui is a joint variable, the model setup allows for simultaneous consideration of transport chain and 

shipment size decisions. The main explanatory variables are transport cost (TC), transport time 

                                                           

9
 In this study, as in most previous studies, we consider the weight of shipment size as an endogenous variable. However, we note 

that shipment volume (in m3) is also an important factor, which shippers consider jointly with mode choice decisions. We cannot 
model shipment volume because our data set, the Swedish CFS, does not contain this information. 
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(TT) and value density (VD). X includes other control variables such as infrastructure access 

indicators, shipment type (domestic/international) indicators and alternative-specific constants.  

We estimate Equation 1 using a multinomial Logit model (MNL). We tested various discrete-

continuous models in an earlier paper (see Abate et al., 2014) and concluded this approach is 

appropriate for our sample. A study by Windisch et al. (2010), who also used the 2004/5 Swedish 

CFS to estimate DD models, applied a Nested Logit (NL) models, found that there is more 

substitution between shipment sizes classes than between transport chain types. However, unlike 

our approach of commodity by commodity estimation, they estimate their NL model using all 

commodity groups in the CFS together. We tested the coefficient of the logsum coefficient to check 

which model is appropriate for each commodity group we presented in Table 3 in our sample. We 

set up the NL model by classifying nests based on the main mode used, thus our classification 

assumes that transport chains defined by alternatives using the same main mode have the same nest 

coefficients. We found out that for most commodity groups (including metal and chemical products 

which we study in detail in the paper), the nest coefficient is not significantly different from one, 

implying zero correlation among shipment size categories in the nest, so the NL model collapses 

to the MNL model.10  

2.1. Data  
The main data source for this paper is the 2004/2005 Swedish Commodity Flow Survey (CFS). 

The data has 2,986,259 records. Each record is a shipment to/from a company in Sweden, with 

information on origin, destination, modes, weight and value of the shipment, sector of the sending 

firm, commodity type, access to rail tracks and quays, etc.11 From this we selected a file of around 

2,897,010 outgoing shipments (domestic transport and export, no import) for which we have 

complete information on all the endogenous and exogenous variables.  

Although the CFS data is extensive, it does not contain information on transport costs and transport 

time variables. Given the importance of these variables in mode/shipment size choice analysis, the 

existing logistic module of the deterministic model was used to generate them for each shipment 

                                                           

10 We note that there could be correlations between alternatives, especially given that there are alternatives that have a transport 
chain (or a shipment size) in common. More complicated nesting structures can be tried in mixed logit and multivariate probit 
models, but these model types have very long run times, especially on large data sets as we have here. 

11 In the CFS a shipment is defined as a unique delivery of goods with the same commodity code to/from the local unit or to/from 
a particular recipient/supplier (SIKA, 2004).  
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in the CFS. They were generated both for the chosen mode-shipment alternatives in the CFS and 

for potential non-chosen alternatives tailored to each shipper based on the transport network of the 

origin and destination of their shipment.  

The CFS classifies transport mode chains to chains inside Sweden and chains outside Sweden. In 

domestic shipments, trucking accounts for the overwhelming majority of the shipment frequency 

(95.79%), followed by chains which involve waterborne transport modes (a ship vessel and ferry).12 

The high share of trucking is also evident in its percentage share in weight and value in domestic 

freight transport. For international shipments, vessel (maritime) transport accounts for the highest 

share both in shipment weight and value.  

To see the distribution of shipment sizes we classified the weight variable in the CFS into 16 

categories13, as shown in Table 1. A quarter of the total shipments fall in the first category (0-50 

kg). The prevalence of small shipments reflects the dominance of trucking which is usually 

preferred for its flexibility and reliability. Categories 10 and 11, ranging from 35 to 45 tonnes (well 

within a full truckload range), account for 23.71 %, again showing the dominant role of trucking.14  

Figure 1 presents the cumulative density distribution of shipment weight for metal products and 

chemical products and for all commodities in the CFS. Shipments weighing 10 tonnes or less 

account for about 90% of the shipments for the two product groups. This distribution is somewhat 

different from what is observed for all commodities which also have concentration of larger 

shipment sizes.   

There are 24 commodity groups in the CFS. In this paper, however, we found it to be more 

instructive to analyze selected commodities than all commodities identified in the CFS. This is due 

to the dominance of trucking for most shipments. In fact, for ten commodity groups the share of 

trucking is more than 98 %. Clearly, there is little to learn about the determinants of mode choice 

decisions of shippers when there is such overwhelming dominance of one mode of transport. For 

the remaining 16 commodity groups, including metal products and chemical products for which 

                                                           
12 We defined transport chain alternatives based on their frequency in the CFS. Transport chains that occurred with a frequency of 
96 or higher were considered as possible choice options.   
13 The dependent (choice) variable (Ui ) in Equation 1 is defined based on the classification on Table 1 

14 The maximum gross weight of the trucks is 60 tonnes in Sweden and Finland compared to 40 tonnes in most other European 
countries  
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we implemented a stochastic module, there is relatively less dominance of trucking.15 The road 

share, measured in tonne-km, is about 38% for all commodities and differs a lot between the 

commodities (See Table 5 in: Vierth et al., 2014). The share is 17% for metal products and 41% 

for chemical products.   

 

Descriptive statistics are presented in Table 2. On average, 2 % of all shippers had access to rail at 

origin and 0.4 % had access to quay at origin. The equivalent figures for metal products and 

chemical products are 57 and 0.03 % for rail access, and 0.5 and 0.03 % for quay access, 

respectively. Much to the benefit of the econometric analysis, the CFS has an extensive variation 

in terms of average shipment values, shipment weights, and transport cost and time.  

2.2.  Econometric results  
Table 3 presents estimation results from the MNL model presented in Equation 1 for 16 commodity 

groups. The choice alternatives in each model are a discrete combination of a transport chain and 

shipment size. By and large, the results reported in Table 3 are plausible and are in line with 

expectations. Transport cost has a negative effect on the utility of a choice alternative. This is in 

line with theory which predicts that higher delivery costs make a choice alternative less attractive.  

We used a single cost coefficient for all alternatives, building on the idea that 1 SEK is 1 SEK, 

whatever the alternative it is spent on. Other forms than linear could be tried for the cost 

specification (such as logarithmic, spline or a combination of linear and logarithmic), but to 

compare the deterministic model version of the SAMGODS with the stochastic model presented in 

this paper, it is best to use a linear cost specification, since the former uses linear costs.  

The variable for inventory costs during road transport (transport time multiplied by value of the 

shipment) has the expected (negative) sign and is highly significant for most commodity groups. 

This variable captures time costs related to the capital cost of the inventory in transit and maybe 

also those related to deterioration and safety stock considerations. The time-dependent link-based 

transport costs (labour and vehicle costs) have already been taken into account in the transport 

costs. Estimation of the inventory cost variable for chains involving rail and sea did not lead to 

                                                           
15 In terms of shipment frequency, trucking has 81% and 94% share for chemical and metal products, respectively. Its 
share of shipment weight is even less, constituting 23% for metal products, and 47 % for chemical products.  
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significant coefficients. This is probably due to the possibility that capital costs of an inventory in 

transit are most relevant for truck transport. Also, the shipment size structure may be providing 

such a self-selection that for these goods, choice happens on other grounds, as value densities are 

low. 

The access to rail/quay dummy variables was included in the utility functions of choice alternatives 

where rail/quay was used as the first or second mode in the chosen transport chain. The 

interpretation of the parameter values is that shippers located in the proximity of or access to rail 

track or quay yard are more likely to choose chains that start with a rail/quay leg (or use these 

modes on the second leg of the chain). The two dummies are, however, not significant for most 

commodity groups.  

For most commodity groups, we find significant positive effects for the value density (the value of 

the shipment divided by its weight) variable. The relevant alternatives for this variable are transport 

chain alternatives involving the two smallest shipment size categories (0-50 kg and 51-200 kg). 

The positive sign, therefore, implies that high value products correlate with smaller shipment sizes, 

which might also imply frequent shipments. We also find that international shipments tend to be 

shipped more using chains that use rail, ferry or vessel. The transport chain-specific constants 

(which are estimated system-wide, not zone-specifically) mostly have negative signs and are 

significant. This is expected given that trucking, the reference chain type, is preferred to the other 

modes for its flexibility and ease of access (which are not included as explanatory factors in the 

models since they are not measured in the CFS).  

3. From Deterministic to Stochastic Logistics model  
3.1. SAMGODS review  

The Swedish national freight transport model-  SAMGODS- is one of the models that applies the 

aggregate-disaggregate-aggregate (ADA) framework (see: de Jong and Ben-Akiva, 2007; Ben-

Akiva and de Jong, 2013).16  This framework is also used in the national freight transport models 

of Norway and Denmark and the model for the Flanders Mobility Masterplan (Belgium). 

                                                           
16 Akin to de Jong and Ben-Akiva (2007) a recent study by Zhao et al (2015) developed a freight temporal assignment 
model where disaggregate methods are used to assign aggregate annual flows to aggregate daily flows. We note there 
are other approaches to simulating freight flows at the national or broad regional levels using different cost functions, 
micro-simulation and agent-based approaches or direct-demand modeling in various countries, which are reviewed by 
Chow et al. (2010) (especially US studies) and de Jong et al. (2013) and Liedtke (2009) (especially European studies). 
Wisetjindawat et al. (2007) also developed a micro-based freight model for the Tokyo Metropolitan area.   
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Furthermore, its logistics costs function has also been used in US freight models (e.g. in RSG, 

2015). The ADA model framework (see Figure 2) starts with an aggregate model for the 

determination of flows of goods between production (P) zones and consumption (C) zones (being 

retail for final consumption; and further processing of goods for intermediate consumption). The 

PC flows are derived from a gravity-type model. After the determination of these PC flows, comes 

a disaggregate “logistics” model, that on the basis of PC flows produces OD (origin-destination) 

flows for network assignment. A PC flow that uses the transport chain road-sea-road between the 

production and consumption locations contributes to three OD flows (one for each of the modes in 

the chain). 

The logistics model in turn consists of three steps (see Figure 2): 

A. Disaggregation of zone-to-zone flows to individual firms at the P and C end; 

B. Models for the logistics decisions by the firms (shipment size, trans-shipment locations and 

modes in a transport chain); This gives OD flows at the level of the annual firm-to-firm 

flows; 

C. Aggregation of the information per shipment to zone-to-zone OD flows for network 

assignment. 

 

This model structure allows for logistics choices to be modelled at the level of the decision-maker. 

The network assignment is an aggregate model and is represented by the last A in ADA.  

When the logistics model within the ADA-framework for Sweden (and Norway) was first 

conceived, the idea was that the logistics model would be estimated on data at individual shipment 

level from the Swedish CFS (see de Jong and Ben-Akiva, 2007, section 7). Since the deterministic 

logistics module as such is complex and the estimation of disaggregate models would take a 

significant amount of time, a ‘preliminary’ or ‘prototype’ version of the logistics model was 

developed in both Sweden and Norway (see de Jong and Ben-Akiva, 2007, section 8) in 2005/2006. 

This version did not require disaggregate estimation. Instead it relied on a cost minimisation per 

firm-to-firm (f2f) flow, where for each f2f flow only one alternative (namely the one with the lowest 

total logistics cost) is chosen. Because it uses different transport solutions for different firm sizes 

and shipment sizes, the all-or-nothing character of the deterministic model is reduced.  
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After the prototype had been developed, it has been improved in a number of rounds and also 

calibrated to aggregate data for a base year, but the current official version of the SAMGODS 

logistics model still uses a deterministic logistics model. The same holds for the other ADA models 

developed so far. A partial exception is that the Danish national freight model contains a module 

for the choice of mode to cross the Fehmarn Belt screenline that uses a random utility model 

estimated on disaggregate data (including stated preference SP surveys in the Fehmarn Belt 

corridor). Other transport chains, however, for example in Denmark, are handled by a deterministic 

logistics model (Ben-Akiva and de Jong, 2013, section 4.6). And also in Norway estimations have 

taken place recently on disaggregate data for the flows between Norway and Sweden from the 

Swedish CFS. 

3.2. Stochastic Model procedure  
We programmed a prototype stochastic logistics model for Sweden based on the estimated transport 

chain and shipment size models for two commodities: metal products and chemical products. The 

stochastic logistics model was estimated on shipments from the CFS 2004-2005. In the 

implementation, we do not use the CFS records directly, but we apply the estimated transport chain 

and shipment size models from Section 2 to the annual firm-to-firm (f2f) flows that are also used 

in the current deterministic logistics model. These f2f flows are taken from the first step of the 

logistics model (step A: disaggregation; see Section 3.1), which remained the same in this 

prototype. For every f2f flow within a commodity group, the new prototype stochastic logistics 

model now predicts the choice of transport chain and shipment size and it does so by producing 

choice probabilities for every available alternative.  

During the application of the stochastic logistics model the following steps are performed: 

a) Determine the longlist of transport chains. This step fully corresponds to the corresponding 

step in the deterministic model. Transport chains with optimal transshipment locations are 

determined for each of the chain types distinguished within the deterministic model. For 

these chains, transport distance and time are calculated. Unimodal Level of Service matrices 

are read in for all possible chain leg modes. Then optimal chains are constructed using a 

one-to-many algorithm that follows a stepwise approach in adding extra legs to chains and 

determining the optimal transfer locations (Significance, 2015). Since we do not observe 

the transhipment locations in the CFS, we could not include this choice in estimation. 
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Therefore, in the stochastic prototype, the determination of the optimal transhipment 

locations for each available chain type from the set of available locations is still done 

deterministically.  

 

b) Reduce the number of chain types to the more limited set (shortlist) distinguished in the 

stochastic model by a deterministic choice amongst similar chain types. Within the 

deterministic model several rail modes (container train, feeder train, wagonload train, 

system train) and sea modes (direct sea, feeder vessel, long-haul vessel) are available. On 

the other hand, within the stochastic model only one rail and one sea mode are distinguished 

(due to the classification used in the CFS). To select the rail and sea modes to be used in 

the stochastic model, as well as to determine the vehicle types to be used on each leg, we 

still apply the deterministic model. This has to be done for all of the available weight class 

(as shown in Table 1) choice options separately. After step (b) the best chains and vehicle 

types are available for the choice set of chain types and weight classes used within in the 

stochastic model: 

Chain types: 

Truck 

Vessel 

Rail  

Truck-Vessel 

Rail-Vessel 

Truck-Truck-Truck 

Truck-Rail-Truck 

Truck-Ferry-Truck 

Truck-Vessel-Truck 

Truck-Air-Truck 

Truck-Ferry-Rail-Truck 

Truck-Rail-Ferry-truck 

Truck-Vessel-Rail-Truck 

Truck-Rail-Vessel-Truck 
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However, not all the above choice options will be available for each commodity. As an 

example, Figure 3 shows the combinations of transport chain type and weight class that are 

available in the stochastic model for commodity metal products (based on the actual 

frequencies in the CFS 2004-2005). 

 
c) Calculate the utilities for each of the choice options in the stochastic model. In step (b) the 

number of available chain types has been reduced to at most 14 the maximum number of 

chain types distinguished within the stochastic model. Within the third step the utility 

functions are calculated for each of the available choice options (combinations of transport 

chain and shipment size) given above. The estimated coefficients are multiplied with the 

relevant chain input values obtained from the chains determined in step (b). In this step 

there is no information available on the value of goods (expressed in SEK) or the value 

density (expressed in SEK/kg) on specific firm-to-firm relations. Therefore, the average 

commodity value is used in application of the model. The dummy coefficient for direct rail 

access is always applied to PC chains consisting of a single rail leg and never for the other 

chains. Quay access is not used in the implemented models for metal and chemical products. 

d)  Calculation of the choice probabilities. When the utilities have been calculated for all 

available transport chain types and weight classes, the probability for each choice option 

can be calculated in the usual way for multinomial logit models. 

e) Aggregation of flows. Like the deterministic model, all firm to firm flows are aggregated to 

obtain OD-flows. However, instead of the single best chain generated by the deterministic 

model, we now aggregate over all choice options and weight each choice option with the 

probability calculated in step (d). 

3.3. Calibration procedure for the stochastic model 
The stochastic logistics model described above includes alternative-specific constants for all 

transport chain alternatives (minus one). This means that the model will reproduce the market 

shares (in terms of the number of shipments) for the chains as they are in the estimation data (which 

is based on the CFS, but also depends on the question whether we have level-of-service data for a 

particular transport chain and PC relation) in the current deterministic logistics model. This is not 

necessarily a good reflection of the actual importance of the various modes for the commodity 

involved. We also have observed aggregate data on the tonne-kilometers by mode from transport 
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statistics). For metal products and chemical products these numbers for the year 2006 are in the 

columns labelled ‘statistics’ in Table 4.  

When we compare the tonne-km by mode (by OD-leg, so also access/egress tonne-km are counted) 

from the uncalibrated stochastic model at the overall system level to these observations, we see that 

it overestimates the road and the sea tonne-km for both products. For metal products there is some 

underestimation of rail, and for chemical products the stochastic model predicts a very limited (less 

than one million tonne-km) use of rail transport. This is in line with the CFS, but not with the 

calibration data (where rail has a market share of more than 10% for chemical products).  The 

deterministic logistics model (without the rail capacity module) on the other hand overestimates 

the observed rail tonne-km. 

To calibrate the stochastic logistics model, we use the observed tonne-km shares as targets and add 

to each transport chain alternative constant in the utility functions of the stochastic model:  

Ln (Oj/M j)                                                                                                                  (2) 

In which: 

Oj: observed share of mode j 

M j: Modelled share of mode j 

This makes under-predicted modes more attractive and over-predicted ones less attractive. To reach 

the observed targets, this procedure needs to be repeated several times; it is an iterative calibration 

procedure (see Figure 4 for details). For the comparison of elasticities in this report we performed 

a limited number of iterations with the stochastic model for both metal products and chemical 

products, which brought us much closer to the observed targets, but still not very near. 

4. Deterministic vs. Stochastic, a comparison using two commodity 
groups  

4.1 Method 
The stochastic approach applied in this paper is intended to be a substitute or complement to the 

deterministic model, which currently constitutes the very heart of the logistics model in the 

SAMGODS model system. For metal products and chemical products, both the deterministic and 

the stochastic model have been implemented into an executable. By switching these executables 
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when running the SAMGODS model system, we may conveniently switch between the 

deterministic and the stochastic models. Both models operate on the same set of input data when it 

comes to demand matrices and costs for 2006.  

All results in this section have been obtained using the base scenario of the SAMGODS version 

1.0 (April 2015). This scenario has been run without taking into account railway capacity 

restrictions. Since the scenario was originally calibrated using the Rail Capacity Management 

module, model output may significantly deviate from statistics. For example, the total rail tonne-

km is much larger in model output than in transport statistics.  

The results in terms of tonne-km per mode are derived from the direct output from the deterministic 

and stochastic logistics model. These are less precise than those from the corresponding assigned 

quantities, and introduces extra uncertainty in the results, in particular when it comes to computed 

tonne-km within Swedish territory.  

In the first step, we check the outcome of the model runs against statistics. Table 4 shows that both 

the deterministic and the stochastic model substantially overestimate the tonne-km performed in 

Sweden.  Another observation that can be made is that the deterministic model calculates relatively 

high shares for rail while the stochastic model calculates relatively high shares for road and sea. 

Both the overestimation of the total tonne-km and the deviation from the modal split in the statistics 

will have consequences for the calculation of the elasticities.  

In the next step, we compare the models’ responses to perturbations in input data. We express the 

sensitivity of the models with help of elasticities, which we define as the ratio of the change in an 

output variable to the change in an input variable, both measured in percentages. The model 

comprises large sets of both input and output data. Only a few elasticities are presented here. One 

should also note that the total demand per commodity is constant. Our choice has been to vary, on 

the input side, the link costs that includes the distance and time-based costs for all vehicle types 

within road, rail and sea and on the output side, tonne-km in Sweden.17 In Table 5 we summarize 

the investigated scenarios. 

 

                                                           
17 Tonne-km in Sweden is the sum of the domestic transports and the domestic parts of international transports that are 
carried out in Sweden.  
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4.2 Comparison of elasticities  

Results for metal products 
In Table 6, results for change in tonne-km in Sweden are shown for the different scenarios, 

computed with the deterministic and the stochastic model. We make the following observations: 

- All own price elasticities have the expected sign. 
- The own price elasticities for changes in road and rail cost are in all cases much smaller in 

the stochastic model than in the deterministic model. This is in line with our expectations: 

we expected that the inclusion of other factors than costs (i.e. value density and the 

alternative specific constants) directly in the utility function of the stochastic model and the 

move away from the all-or-nothing choice in the deterministic model would reduce the 

modal shifts (that are calculated for the deterministic model).  Especially for road cost 

changes, the own elasticities calculated with the stochastic model are more plausible (e.g. 

they do not become as strong as -2.87 as in the deterministic model). For changes in the sea 

transport cost, some own price elasticities are stronger in the deterministic model and some 

in the stochastic model. The own price elasticities can differ substantially between cost 

increases and decreases (in a logit model elasticities for increases and decreases do not have 

to be the same, this depends on where the starting point is located on the S-shaped logit 

curve). The own price elasticities can also differ between small and large cost changes, but 

for the deterministic model for metal products we do not see clear thresholds below which 

the effects are small and above large. Overshooting seems to be more of a problem than 

stickiness, also for the smallest changes that were tested. 

- In most cases the cross-price elasticities have the opposite sign of the own price elasticity, 

which is what one should expect from a model in which the modes would be mutually 

exclusive (‘competing’) alternatives. However, there are some exceptions both in the 

deterministic and the stochastic model. The reason is that transport chains in which several 

modes are combined (e.g. with rail as main haul mode and road for access and egress). As 

a result, increasing the cost of rail transport could lead not only to an increased share of the 

road only chain (competition), but also to a reduced road use in the road-rail-road chain 
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(complementarity)18. This usually refers to rather short road access and egress distances, 

but still it reduces the elasticities (in absolute values) and can even lead to cross-price 

elasticities with the same sign as the own price-price elasticities.  

- The cross-price elasticities differ substantially between the different modes. Transfers 

to/from rail are very small in the stochastic model or nearly all cost increases and decreases.  

This could imply that current rail shippers are captive to the mode to some extent (note that 

metal products are characterized by the dominance of one big shipper). On the other hand, 

it could also imply that other modes are competitively priced to rail, implying that larger 

price incentive or availability of infrastructure is needed to attract more shippers to rail. 

Results for chemical products 
In Table 7, results for change in tonne-km in Sweden are shown for the different scenarios, 

computed with the deterministic and stochastic model. The following conclusions can be drawn 

from this:     

- In all cases, the own price-price elasticities have the expected sign.  

- As expected, all own price elasticities for changes in road, rail and sea transport cost are 

smaller in the stochastic model than in the deterministic model. For all modes, the own price 

elasticities of the stochastic model seem more plausible than the own price elasticities of 

the deterministic model. The deterministic model has own price elasticities that go beyond 

-6. Again, there are substantial differences between cost increases and decreases. Also for 

chemical products, overshooting seems to be more of a problem for the deterministic model 

than stickiness. 

- The own price elasticity of rail costs is in most cases stronger for chemical products than 

for metal products.  This is all probably due to the lower share of rail transport for chemical 

products compared to metal products. The low rail share for chemical products implies a 

high sensitivity.  

- In most cases the cross-price elasticities have also the opposite sign as the own price 

elasticities. For the stochastic model, this is almost always the case. For the deterministic 

model, there are more exceptions which can be explained by stronger complementarities 

between modes.  

                                                           
18 Furthermore, there can also be changes in shipment size in both models as a result of cost changes. 
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4.3 General results  

The own price elasticities for changes in transport cost are in nearly all cases much smaller in the 

stochastic model than in the deterministic model.  

Large differences in modal split in the base (see Table 4) lead to different elasticities.  

Elasticities differ according to commodities, regions, distance class, modelling approaches and 

measures (tonne, tonne-km, vehicle-km), see e.g. de Jong et al. (2010). This source does not contain 

recommendations per commodity type. For all commodities, the recommended road tonne-km own 

price elasticity on the number of tonne-km by road through mode choice in de Jong et al. (2010) is 

-0.4 and the lower bound provided is -1.3. Some of the road costs elasticities of the deterministic 

model for metal and chemical products are clearly beyond this lower bound. The own elasticities, 

measured in tonnes, calculated using a weighted logit mode-choice model for the Öresund region 

(Rich et al., 2009) are in about the same range as the own elasticities measured in tonne-km from 

the stochastic logistics model calculated in this paper. 

Table 8 contains some other elasticity values from the literature that are more recent than the review 

of de Jong et al. (2010). The bottom two references come from models that include multimodal or 

intermodal transport chains where modes not only compete, but can also be complementary. This 

reduces the elasticities (in absolute size). The model implemented in this paper also works with 

transport chains. Generally, tThe recent elasticities are often lower than the recommended value of 

-0.4. Taking this new evidence into account, the recommended value would rather be -0.3. This is 

in line with the stochastic model but not with the deterministic model for metal and chemical 

products. 

Generally, the elasticities are lower in the stochastic model than in the deterministic model. This is 

especially true for the rail mode, where the own price and cross price elasticities of increased and 

decreased rail costs are much lower in the stochastic model. The same, but to a lesser degree, is 

true for the cross price elasticities for road and sea.  This is a major improvement compared to the 

deterministic model that often overestimates shifts to/from rail. The elasticities indicate that the 

problem of overshooting - that is prevalent in a deterministic model when testing different policies 

– can be solved by moving to a disaggregate stochastic model. 
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The pattern for increases versus decreases and for scale/non-linear effects is not so clear, though 

we do observe different elasticity values for cost increases and reductions and for different levels 

of the costs change. 

5. Conclusions and ideas for further research 
This paper has presented new estimation results for a a newdisaggregate stochastic model of 

transport chain and shipment size choice for many different commodities and implementation 

results (elasticities) for two of those commodities in the context of the Swedish national freight 

transport model. which overcomes a well-known disadvantage of deterministic models that lead to 

implausibly large responses as a result of changes in scenario variables. For the estimation of choice 

models, we used the Swedish Commodity Flow Survey (CFS) from 2004/2005. Parameter 

estimates from theise models were then used for estimationimplementing of a full random utility, 

i.e. stochastic, logistics model, replacing existing deterministic components in the Swedish model 

system..  

We have setup a stochastic logistic model for two commodity groups, metal products and chemical 

products. Although the stochastic model is implemented for the two commodities, we have 

estimated multinomial logit models for 14 commodities for which a stochastic model could be 

implemented in the future. We compared own price and cross-price elasticities with respect to link 

costs road, rail and sea for tonne-km between the stochastic and deterministic models for the two 

commodities, which has not been done before for such models. These elasticities differ between 

the two models, they are usually smaller (in absolute values) in the stochastic model, confirming 

that the problem of potentially large demand responses (overshooting) is solved or at least reduced 

in the stochastic logistics model. The road tonne-km own price elasticities calculated in the 

stochastic model are in line with recently published elasticities and recommend as these lower 

values (-0.3) than earlier studies (-0.4)  

In future endeavors, the difference between the two models could be further studied by looking at 

elasticities on other output measures such as vehicle-kilometers, number of vehicles crossing a 

screenline, etc. Similar models can be estimated on the Swedish CFS 2009, the CFS 2016, the 

French ECHO data, the US CFS and hopefully also on future surveys of this kind in other countries. 

In estimating such models, other costs specifications (logarithmic, linear and logarithmic, splines) 
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as well as more flexible substitution patterns between alternatives (e.g. nested logit, mixed logit) 

could be tested. 
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