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ABSTRACT 

Environmental degradation has become one of the major obstacles to sustainable 

development and human well-being internationally. Scientific efforts are being made to 

understand the mechanism of environmental degradation and sustainability. Critical Zone (CZ) 

science and research on the multi-functional landscape are emerging fields in earth science that 

can contribute to such scientific efforts. This paper reviews the progress, similarities and current 
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status of these two scientific research fields, and identifies a number of opportunities for their 

synergistic integration through functional and multi-functional approaches, process-based 

monitoring, mechanistic analyses, and dynamic modelling, global long term and networked 

monitoring, and systematic modeling supported by scaling and deep coupling. These approaches 

proposed in this paper have the potential to support sustainable human well-being by 

strengthening a functional orientation that consolidates multi-functional landscape research and 

CZ science. This is a key challenge for sustainable development and human well-being in the 21st 

century. 

Keywords: multi-functional landscapes, Critical Zone, ecosystem services, sustainable 

development, human well-being 

 

INTRODUCTION 

In 2001, the concept of the Critical Zone (CZ) was defined by the United States National 

Research Council (NRC) as a heterogeneous near earth surface environment from the top of the 

vegetation canopy to the bottom of the aquifer that incorporates the near-surface biosphere and 

atmosphere, the entire pedosphere and the surface and near surface portion of the hydrosphere and 

lithosphere [1]. CZ science and theory also encompasses the impacts of anthropogenic activity on 

earth surface systems with important implications for sustainable development [2]. By definition, 

therefore, a comprehensive CZ approach is multi-functional and integrates earth surface processes 

at multiple spatial and temporal scales as well as across different gradients (climate, 

environmental, topographic, and anthropogenic) [3]. The cumulative effect of these processes 
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impact on the mass and energy exchange necessary for biomass productivity, biogeochemical 

cycling and water storage [4]. 

CZs have some common characteristics with ecosystem and landscape. An ecosystem is 

composed of all living things interacting with each other and their non-living environments - from 

the local system to the potential dispersal range of all species within this system [5]. Tansley’s 

classical definition of “ecosystem” as “one physical system” is similar to the CZ concept in 

respect of considering spatio-temporal scales, with most differences in the vertical dimension [6]. 

Landscape is composed of different types of ecosystems that represent comprehensively dynamic 

and heterogeneous earth surface processes. Landscapes may represent a synthesis of natural, 

semi-natural and artificial ecosystems and processes on the earth’s surface, each containing a 

particular mix of structures and functions [7-12], that may simultaneously support different 

ecological, economic, social, cultural and aesthetic values [7, 13]. Conceptually, “ecosystem” and 

“landscape” emphasize the horizontal dimension of the earth’s surface, as well as the syntheses of 

structures, processes, and functions. However, CZ science (currently) emphasizes deep depth, 

deep time, and deep coupling [14], the first two of which are beyond the scope of consideration by 

the discipline of ecology in ecosystem and landscape research. The concept of deep coupling 

provides an opportunity to integrate landscape research and CZ science as both disciplines are 

interested in consideration of the functional aspects of landscape and the ability to support human 

society.  

Landscape function is the capacity of a landscape to sustain energy flows, material cycling 

and information exchanges. It is regulated by the interactions between landscape pattern and 

ecological processes among landscape units [15-17], which change across temporal and spatial 
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scales [18, 19]. The concept of landscape function is similar to ecosystem service from a 

socioeconomic perspective in that it seeks to characterize the capacity of a landscape to provide 

goods and services for human well-being directly or indirectly [15, 20]. In this context, the 

diversity of landscape functions (i.e. landscape multi-functionality) has gathered recent attention 

for multi-disciplinary research [8, 21, 22]. Currently, research on landscape multi-functionality is 

widely recognized as a significant basis for sustainable land development [7, 23, 24]. 

Multi-functional landscape research and CZ science share common characteristics in their 

consideration of multiple, coincident and simultaneous functionalities on provisioning, regulating, 

and supporting environmental goods and services. But contemporary multi-functional landscape 

research has in many cases failed to consider the underlying mechanisms of multi-functionality, 

such as driving forces and processes. While CZ science places much attention on structures, 

processes and mechanisms, no significant progress has been made on functions [14]. Therefore, 

the integration of multi-functional landscape research and CZ science can build a bridge for 

advancing both functional oriented earth science disciplines so that the challenges of sustainable 

development from local to global scales are met. The aim of multi-disciplinary integration is not to 

create new knowledge per se, but rather to solve complex problems that already exist, and thus 

create a new knowledge space for scientific progress [25]. This integration promotes the 

multi-disciplinarity of surface earth system science as one of the key pillars for supporting 

sustainable development strategies [26]. 

This paper reviews scientific progress in these areas and discusses the emerging opportunities 

for synergistically advancing multi-functional landscape research and CZ science along a common 

functional perspective. The objectives of this paper are to: (1) review recent research on 
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multi-functional landscapes and CZ science; (2) identifying similarities, gaps and challenges of 

these two scientific disciplines; and (3) propose strategies for multi-disciplinary and 

function-oriented research in support of sustainable CZs and landscapes. 

RESEARCH STATUS OF LANDSCAPE MULTI-FUNCTIONALITY AND CZ SCIENCE 

Multi-functional landscape 

The concept of multi-functional landscape was first proposed at the International Conference 

of Multi-functional Landscapes in Roskilde, Denmark in October 2000 [27]. In recent years, 

multi-functional landscape research has developed into an important field of landscape science, 

from theory and quantitative assessment to strategies in support of planning and management [7, 

11, 15, 22, 28]. Conceptually, self-organization, non-equilibrium, dynamic evolution and 

hierarchy have all been identified as providing an important theoretical grounding for 

multi-dimensional and integrative landscape studies from functional perspective [21]. To 

accurately define multi-functional landscapes, three criteria have been established [29]: 1) spatial 

independence – the spatial combination of functions associated with independent land units; 2) 

periods of temporal independence – with respect to the plural, alternative and coincident 

multi-functionality of the same land unit at different times; and 3) the spatial integration of 

functions – at the same or different periods, on the same or different land unit. Research has 

ranged from initial multi-functional agroecosystems, to forest and urban landscapes on topics 

considering the effects of the changing agricultural landscape structure on decision-making and 

the generation of public goods and services [15, 30], forest landscape management and 
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optimization [31, 32], and the functionalities of green infrastructure, its planning and management 

[33-36]. 

In multi-functional landscape research, ecosystem services and landscape indices are 

generally used as substitute or proxy indicators of landscape functions supported by spatial and 

temporal statistical analyses. For example̍timber production, carbon sequestration, landslides 

and erosion control have been used as indicators to compare the impacts of managed and 

unmanaged forest management regimes  on forest landscape multi-functionality [31]. Methods 

based on landscape indices have also been proposed for multi-functional agroecosystems planning 

and design [37]. Other work has proposed the use of multiple ecosystem services landscape 

indices as tools to identify the drivers of functional landscape change and to quantify the 

conservation of landscapes multi-functionality [38]. However, because of the lack of mechanisms 

to support index-based methods, together with an insufficient consideration of spatial 

heterogeneity and flows of ecosystem services, these methods are often difficult to apply in 

practice, for example to support landscape management, due to the large inferential uncertainties 

associated with measurement, metrics and the generalizability of the methods. 

To quantify multiple landscape functions and their interactions, complex simulation models 

based on ecosystem services can be used. The InVEST (Integrated Valuation of Ecosystem 

Services and Trade-offs) model, based on a GIS platform, is a multi-module, multi-level, 

multi-scale and multi-scene analysis tool that allows ecosystem services to be quantified and 

mapped [39-41]. InVEST is widely used all over the world [42]. Other models have been 

developed for different purposes and approaches. For example, ARIES (ARtificial Intelligence 

for Ecosystem Services) emphasizes the actual physical flows of ecosystem services by networked 
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models of provision, source and sink [40]. SolVES (Social Values for Ecosystem Services) 

focuses on biodiversity, aesthetic, cultural and economic values [43]. MIMES (Multi-scale 

Integrated Model of Ecosystem Services) simulates interactions of the natural and the human 

system [44], based on GUMBO (Global Unified Meta-model of the Biosphere) [42]. Of these 

models, the most widely applied is InVEST. In general, however contemporary simulation 

models are loosely connected rather than closely coupled, which remains a methodological 

challenge for advancing quantitative multi-functional landscape research. 

CZ science 

By definition a CZ is a structured earth surface entity that extends from the top of the 

vegetation canopy to the bottom of the groundwater aquifer and accommodates various biological, 

hydrological, and geochemical processes. The CZ can be conceptualized as an open 

thermodynamic system through which the flux of energy and mass flow [45]. Quantifying the 

relevant influx of energy and mass under a theoretical framework of Environmental Energy and 

Mass Transfer (EEMT) provides a quantitative context for testing hypotheses about process 

coupling in the CZ across temporal and spatial scales [46, 47]. Such frameworks have been used 

to quantify the relevant flux-gradient relations and the simulation of CZ evolution [48]. Research 

has suggested that EEMT is effective in predicting water transit times, solution concentrations, 

and mineral weathering processes [49]. Advances to this framework have a great potential to 

support the robust analysis and quantification of CZ functions and services. 

The criticality of CZ science ultimately lies in its consideration of the inter-linked 

functionality that sustains human society. Therefore, CZ science requires an integrative orientation 
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towards process and function beyond basic structural dimensions [50]. Process orientation 

emphasizes the complex dynamic processes and mechanisms of multi-element, multi-sphere and 

multi-scale research in CZ environments [51-53]. Functional orientation emphasizes important 

functions of CZs (e.g. environmental regulation, life support, and resource supply) that are 

indispensable for the sustainable development of our human society. Studies that are functionally 

orientated are less common than those that are process orientated. 

The establishment of a series of CZ observatories has been the most significant achievement 

of CZ science since its inception [54-56]. To date, 62 CZ or CZ-like observatories have been 

established globally, with the majority in North America and Europe 

(http://wiki.seg.org/wiki/Critical_zone accessed on 29 June, 2017). Much of the work of CZOs has 

considered the biological and geophysical structural aspects of the CZ [46-48]. Some recent 

research has focused on the fundamental laws of the formation and evolution of CZs and 

observations of their complex structures and processes [57]. CZ process oriented studies have 

examined water cycling, nutrient and material transports represented mainly by land-atmospheric 

conversion of carbon and water, soil moisture content, pore water chemistry, transformation of 

surface water, soil water and groundwater, soil long-term evolution and other processes [49, 

56-61].  

Research on the functions and services associated with the CZ are still at the theoretical 

stage. Improving the understanding on CZ functions is important for predicting their sensitivity to 

complex environmental changes and for devising adaptive management responses in the earth 

surface system [14]. Theoretically, research on and consideration of CZ services (i.e. the subset of 

CZ functions that are recognized as beneficial to human society) are able to provide context, 
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constraints and a currency for understanding and quantifying ecosystem services, thus providing 

valuable support for decision making [2]. Measurement and mathematical modeling have also 

been advocated to advance integrative knowledge, particularly to link soil structure to soil 

processes [62] and CZ services [63]. Despite these initiatives, ecosystem service as a scientific 

pursuit is somewhat primitive, both conceptually and a methodologically and integrative 

methodologies that combine ecosystem service concepts and methodologies with CZ science are 

only just emerging. 

COMMON PROPERTIES OF MULTI-FUNCTIONAL LANDSCAPE RESEARCH AND CZ SCIENCE AS A 

BASIS FOR INTEGRATION 

Spatial heterogeneity 

Landscape heterogeneity in the horizontal dimension reflects the inherent spatial complexity 

of landscape structure, which in turn, presents a significant difficulty in understanding landscape 

processes. For example, landscape heterogeneity affects the flow and spread of resources, species 

and disturbances, which has important implications on the regulation of landscape functions [17]. 

Horizontally, landscape functions are dependent on geographical location and scale, whilst 

simultaneously, the dynamics of landscape function can vary along temporal scales - from years to 

decades to centuries. These spatiotemporal features need to be fully considered for the robust 

assessment, planning and management of multi-functional landscapes. Understanding and 

quantifying landscape heterogeneity supports reliable assessments of natural and social landscape 

characteristics for predicting biodiversity [64], increasing ecosystem function and resilience [65], 

and implementing landscape planning [34].  
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The CZ is also a spatially heterogeneous entity [57, 66] whose horizontal heterogeneities 

can be summarized via three aspects [57, 67]: a) internal factors related to geology and hydrology; 

b) external factors related to climate and natural fires; and c) human factors related to land use, 

urbanization and other activities. CZ horizontal heterogeneities influence surface processes and 

functions [48], in a similar way to landscapes. However, vertical heterogeneity along the deep 

depth of a CZ profile has been considered to be of greater importance than horizontal 

heterogeneity [14], providing a clear point of difference with respect to spatial heterogeneity 

between CZ science and landscape research.  

Continuous evolution 

The impacts of human forcing are increasingly recognized alongside the forcing of tectonics, 

weathering, fluid transport and biological activities, as highlighted by the NRC (2001) [1]. Land 

use changes are anthropogenically driven by change in societal need, which in turn drive changes 

in the CZ and the landscape [28] and critically changes the nature and importance of landscape 

multi-functionality. Changes in the CZ are generally irreversible and cumulative, where human 

alterations to the CZ have also become pervasive and long-lasting [1]. This is because of the 

coupling of complex physical, chemical and biological processes that drive the dynamics of the 

CZ [1, 57]. For example, soil thickness in the CZ is gradually reducing, and the reduction rate is 

several times that of soil formation [55]. Actual soil erosion rates could be accelerated 

significantly by human disturbances (e.g. via deforestation and hill slope farming) compared to 

natural soil loss rates that may lead to environmental problems such as land degradation and 

diffuse pollution. This continuous, inseparable and constantly changing system has a number of 

common features at both landscape and CZ scales. 
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Close relationships with ecosystem services 

Ecosystem services are the benefits that humans acquire from ecosystems. These have 

classified into four general categories: i) provisioning services, ii ) regulating services, iii) 

supporting services, and iv) cultural services [68]. The categories emphasize the importance of 

ecosystems in supporting human social systems, provide a theoretical basis for understanding 

ecosystem function and value that promote the protection of ecosystems, and implementing 

strategies for their restoration and sustainable development.  

Landscape functions are embodied in landscape structures as well as the mosaic of ecosystem 

processes and functions. The identification and quantification of landscape multi-functionality is 

often associated with trade-off, synergies, and the integration of ecosystem services [38]. 

Ecosystem services are thus often regarded as the key component of representing the landscape 

functions in the conceptualization of multi-functional landscapes [38]. Landscape functions are 

frequently divided into four types [7, 23] relating to: a) production functions, b) regulating 

function, c) habitat function, and d) information functions. Ecosystem services provide the basic 

elements for quantifying landscape multi-functionality and for describing the hierarchical 

relationships between ecosystems and landscapes.  

CZ services and associated processes are conceptually correlated with the demand of human 

society from a functional perspective, in which ecosystem services constitute an important part, 

and simultaneously research into an ecosystem service can be supported by considering the 

context-constant-currency CZ service framework [2]. Therefore, sustainable management of the 

CZ for human society in the face of environmental stress requires a holistic understanding of CZ 

services. As a practical example, the SoilTrEC project quantified ecosystem services in the CZ 
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and the effects of environmental change on key soil functions, together with provisioning 

decision-support tools based on research results integration [55, 63, 69].  

The above three themes and properties relating to spatial heterogeneity, continuous evolution, 

and ecosystem service are disciplinary considerations common to landscapes and CZs. These 

themes provide a basis for integrative research to improve the scientific understanding of both 

landscapes and CZs as multi-functional earth surface systems. 

ADVANCING CZ SCIENCE AND MULTI-FUNCTIONAL LANDSCAPE RESEARCH BY INTEGRATION 

Strengthening function oriented CZ science 

The importance of the CZ is reflected through both its natural and socio-economic 

functionality and would be strengthened through the integrative study of the functionality and 

multi-functionality of CZs at different spatio-temporal scales. Such function-oriented approaches 

can be promoted according to different categories of CZs as defined on their biophysical or 

management heterogeneities (e.g. agricultural CZs, urban CZs, conservation areas as CZs). 

Relevant research themes range from simple function identification and assessment, to the 

consideration of the dynamics of CZ functions and associated driving forces, and then to strategies 

and models to optimize the sustainable management of CZ functions. Integrated methods for 

multi-functional quantitative landscape assessment, planning, and management could be derived 

from an increased focus on function oriented CZ science with appropriate considerations of deep 

depth, deep time, and deep coupling [14], related to decision-making processes. 
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Consolidating multi-functional landscape and CZ researches by process-based mechanistic 

analyses 

Contemporary CZ science has found strong support from both structural, processes, and from 

evolutional perspectives. What is currently weak is an integrative understanding of the CZ 

multi-functionality through critical representations of how CZ structures and processes interact 

across spatiotemporal scales. Multi-functional landscape research in this area has made significant 

progress over the last decade has which the potential to strengthen the adoption of a process 

supported CZ framework to facilitate process-based and mechanistic landscape functionality 

studies. Processes may include, but are not limited to, the hydrologic cycle, the geochemical cycle, 

the carbon cycle, the nutrient cycle, gaseous exchange, erosion and deposition, weathering, soil 

formation and evolution, life processes, and human impacts. This can lead multi-functional 

landscape research to a more scientifically robust stage, enabling more informed and powerful 

decision support to landscape planning and management. 
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The multi-functionality of CZs can also be considered through an integrative landscape 

perspective (Fig.1). The coupling of horizontal and vertical processes integrates the 

multi-functionality of CZs and landscapes. In the vertical direction, coupling links water and 

nutrition transfers with weathering processes in the CZs (from bedrock to soil, and 

vegetation) across time scales that range from seconds to millions of years. For 

multi-functional landscape management, processes characterized by seasonal, annual and 

decadal time scales need particular consideration, while other processes provide context or 

background considerations that directly support decision-making. Likewise, process-based 

mechanistic analyses can also promote spatiotemporal scaling and coupling [70].  

The sustainable use and management of landscapes emphasized by CZ science provides 

strong scientific support through consideration of the above processes and their coupling 
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effects. Function-oriented landscape development and conservation decisions, based on 

advanced process-based studies, can inform and facilitate landscape sustainability. In the 

horizontal direction, coupling considers the spatial flows of material, energy, information, and 

landscape services. Among the three types of landscapes shown in Fig.1, urban landscapes 

depend largely on agricultural landscapes for food and fiber, with natural landscapes 

pervasive to all landscapes and underpin environmental quality. Therefore, the 

multi-dimensional integration of multi-functional landscape research and CZ science can 

contribute to a concerted science-based resolution of environmental degradation and pollution 

problems, as a prerequisite to sustainable development in earth surface systems. 

Global alliance for monitoring 

Both CZ science and multi-functional landscape research cannot develop without 

consideration of structural, process and functional perspectives. Ecological monitoring provides 

the basis of ecosystem services and the integrated assessment of landscape functions. The 

diversity of the ecosystem services and landscape multi-functionality requires a multi-dimensional 

approach to ecological monitoring from both field-based small-scale measures and 

multi-resolution remote sensing based monitoring [71, 72]. There are many monitoring systems 

for ecosystems and landscapes, such as International Long Term Ecological Research (ILTER) 

[73], the Global Environment Monitoring System (GEMS) [74], the Global Terrestrial Observing 

System (GTOS) [75], the Chinese Ecosystem Research Network (CERN) [76, 77], the Long Term 

Ecological Research (LTER) in the US [78], the Terrestrial Ecosystem Research Network (TERN) 

in Australia [65, 79], and the Environmental Change Monitoring Network (ECN) in the UK [80]. 
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Importantly, from a global perspective, the development of an international monitoring network of 

CZs is needed. 

Integrating CZ observatories into a global network broadens our understanding of processes 

at larger spatial scales, providing deeper insights, and advancing our understanding of the 

integration and coupling of earth surface processes [25]. Therefore, current monitoring facilities 

across the globe tend to be networked and are multi-disciplinary. Other monitoring networks also 

have the potential to be integrated through expanding their multi-disciplinarity (towards 

trans-disciplinarity), and can be more resource efficient than merely establishing new monitoring 

sites for a single scientific purpose. New monitoring sites may be needed if the current 

configuration of current sites is found to be insufficient to represent a major CZ or global land 

surface landscape-type, suggesting the need for on-going reviews of monitoring sites and their 

potential relocation. This suggests the need for and promotion of close collaboration among the 

existing monitoring whilst simultaneously reviewing and planning the requirements for 

representative monitoring sites at both local and global scales. 

Scaling and coupling by modeling 

Landscape and CZs are multi-scale hierarchical systems with common spatial heterogeneity 

and temporal dynamics. They require spatiotemporal scaling and the coupled modeling of 

complex interacting processes for improved understanding and management of earth surface 

systems. Practical solutions for temporal scaling lie in a suitable coupling and integration of 

different processes together with an understanding of various drivers of change, and their temporal 

scales, in CZs and multi-functional landscapes. For example, coupling of biogeochemical and 
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hydropedological processes has been investigated at Boulder Creek CZ observatory in Colorado 

[81], the Catalina-Jemez CZ observatory [48], and the Shale Hills CZ observatory [82]. Research 

has shown that interactions exist between fast cyclic processes (e.g. diurnal fluctuation of soil 

moisture, and yearly changes in vegetation growth) and long-term cumulative changes (e.g. 

bedrock weathering, pedogenesis, and ecosystem succession) [83]. Besides the coupling of 

biogeochemical and hydropedological processes, other processes need to be further investigated 

especially across different temporal scales [14]. 

Spatial scales can be qualitatively categorized into three relevant domains of micro-scale, 

meso-scale and macro-scale. At present, CZ monitoring includes two of these categories: one uses 

(ground-based) sensor technology to monitor at the micro-scale; whilst the other uses remote 

sensing technology to monitor at the macro-scale. The technology between the two scales is still 

immature, leaving much scope for development. The inconsistency between the scale of the 

proves being observed and the monitoring (or observational) scale is a challenge for process and 

modelling research, and as a consequence scaling is an important issue for CZ and landscape 

sciences [57, 84]. However, the objective of (down- or up-) scaling is to reveal the interactions 

between patterns and processes operating within the hierarchical landscape and the CZ systems, 

which are often highly nonlinear and dynamic [85]. According to the hierarchical theory of 

O'Neill et al. [86], each scale has its own constraints and thresholds, so it can be difficult apply the 

same constraints and thresholds across scales when scaling up or down. Similarly, there are large 

uncertainties for down-scaling from the whole landscape to the ecosystem or to the pedon [11]. 

Research often follows an integrative multiple-scale approach that establishes a set of rules and 

algorithms in the modelling system for scaling. Research at the micro-scale has found that 

Downloaded from https://academic.oup.com/nsr/advance-article-abstract/doi/10.1093/nsr/nwy003/4794955
by guest
on 17 January 2018



up-scaling to the macro-scale can provide a comprehensive analysis of regional ecosystem 

services and landscape functions. For example, an Australian research team achieved a carbon and 

water balance with 1 km resolution by the coupling of an ecosystem model and a meso-scale 

model. Up-scaling to the regional level was supported by airborne remote sensing methods, before 

down-scaling to the site and leaf level [87]. A multi-scale analysis framework has also been 

established for the dynamic simulation of landscape functions, with consideration of the local 

scale, the management scale, and the regional scale [88]. 

In the vertical direction, coupling includes two categories. One links above-ground systems 

to belowground systems, and the other one links the shallow root zone soil to deep weathered 

bedrock [14]. The former has attracted much attention through multi-disciplinary and 

trans-disciplinary studies due to the cross scale consideration of land-atmosphere interactions. The 

latter requires further investigation of more advanced monitoring and modelling, because surface 

soil cycles operate at small spatiotemporal scales, while the deeper groundwater and weathered 

bedrock cycles operate at much larger spatiotemporal scales. 

Clearly scaling and systematic coupling can be addressed by modeling. Multi-functional 

landscape and CZ systems have inherent sensitivities in responses to land use changes [14, 22]. 

Thus multi-functional landscape and CZ model simulations depend strongly on land use changes, 

but also on land cover change and knowledge of multiple other processes [14, 22]. There are three 

ways of model coupling. Firstly, the models are related to different processes, such as 

biogeochemical and hydropedological processes, as mentioned above [14]. Other processes can 

also be monitored for coupling [89], such as hydrologic processes with sediment transport 

processes [90, 91], using the multi-component Reactive Transport Models (RTMs) [92]. Coupling 
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models should include links between pedogenesis and landscape evolution [93], and between 

anthropogenic and natural processes. Secondly, models can be coupled multi-dimensionally. 

Processes in CZs are multi-directional, so multi-dimensional mapping is an important technology 

for predicting the heterogeneous structures and processes in CZs and multi-functional landscapes, 

as earth surface systems. Thirdly, the coupling of conceptual and methodological models needs to 

be directed by a systematic framework for more effective real world problem solving. Conceptual 

and methodological models are used to investigate important flows (e.g. water, energy, solutes, 

carbon, nitrogen, and sediment), and to quantify the distribution of topographical and 

environmental features [94], which cannot be addressed by any single model, separately. 

CONCLUSION 

Multi-functional landscape research and Critical Zone (CZ) science are two emerging fields 

in earth system science. This paper reviews research progress and the commonalities of the two 

scientific disciplines, as a first step for their potential integration. Each paradigm emphasizes 

continuous evolution and a high degree of process heterogeneity in both horizontal and vertical 

directions and maintainings a close relationship with ecosystem services. Based on these 

commonalities, this paper suggests a number of potential advances through the integration of 

different strands of multi-functional landscape research with CZ science, by strengthening 

function-oriented CZ science, process-based mechanistic analyses for multi-functional landscapes, 

global long term and networked monitoring, and systematic modeling supported by scaling and 

deep coupling. Multi-disciplinary integration can support the advancement of both 

function-oriented landscape and CZ research in order to meet future planning and management 

Downloaded from https://academic.oup.com/nsr/advance-article-abstract/doi/10.1093/nsr/nwy003/4794955
by guest
on 17 January 2018



needs at a variety of spatio-temporal scales. This is a key challenge for sustainable development 

and human well-being in the 21st century. 
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