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Heat and moisture transfer behaviour in Phyllostachys edulis (Moso 
bamboo) based panels 
Puxi Huang1, Y.M.John Chew2, Wen-Shao Chang3, Martin P. Ansell4, Mike Lawrence5, Eshrar Latif6, 
Andy Shea7, Graham Ormondroyd8 and Hu Du9 

Abstract 

This study focuses on the heat and moisture transfer behaviours in the Phyllostachys edulis (Moso 
bamboo) panels in various temperature and relative humidity (RH) conditions. Moso bamboo panels 
with different lamination methods were prepared by bamboo strips from different layers of bamboo 
culm wall. The dynamic coupled heat and moisture transfer experiments were conducted. Unsteady 
state numerical modelling was conducted by COMSOL MultiphysicsTM. A rigorous approach was 
adopted in this paper, firstly a series of parametric studies of numerical simulation are firstly presented 
in this paper and then validated by the experiments. Both experiment and simulation results appear to 
be consistent with the results of measurements of the basic hygrothermal parameters, which 
demonstrates the robustness of the results. The temperature and RH results indicated that although the 
layer of panel made by the internal part of bamboo culm wall can provide good insulation performance, 
its ability to resist high RH variation is inferior to the layer from the external part of bamboo culm wall. 
The parametric study found that density is the most critical parameters to influence the temperature 
distributions in the transient state. The thermal conductivity dominates the temperature variation at the 
steady states. The water vapour diffusion resistance factor is the key parameter which influences the 
RH simulation results. Numerical simulation with moisture transfer shows better consistency than the 
simulation without moisture in both equilibrium and transient states. The results of this study 
demonstrated that the external part of the bamboo culm wall can be utilised to minimise the RH variation 
of the panel while the internal part is suitable for increasing the thermal insulation performance of the 
panel. 

Keywords: Moso Bamboo; Heat and moisture transfer; modelling and experimental study; 
parametric study. 

1. Introduction 
The implementation of bamboo in the building industry has been regarded as an effective strategy to 
reduce energy consumption. The advantages of bamboo as a biological building material have been 
mentioned by many researches (Van Der Lugt et al. 2006, Flander and Rovers 2009, Majumdar et al. 
2010). To evaluate the potential of bamboo as a biological building envelope material, the temperature 
and relative humidity (RH) are two essential factors which directly influence the performance of the 
volume stability, serving life and building energy saving. Hence the knowledge of heat and moisture 
transfer behaviour in bamboo is critically important.  

                                                      
1 P.X. Huang (corresp.), Welsh school of Architecture, Cardiff University, UK.  Email: HuangP9@cardiff.ac.uk    
2 Y.M.J. Chew,  Dept. Chemical Eng., University of Bath, UK. Email: Y.M.Chew@bath.ac.uk  
3 W.-S. Chang, Sheffield School of Architecture, The University of Sheffield, UK. Email: ws.chang@sheffield.ac.uk  
4 M.P.Ansell, Dept. Architecture & Civil Eng., University of Bath, UK. Email: M.P.Ansell@bath.ac.uk 
5 M, Lawrence, Dept. Architecture & Civil Eng., University of Bath, UK. Email: m.lawrence@bath.ac.uk  
6 E Latif, Welsh School of Architecture, Cardiff University. UK. Email: LatifE@cardiff.ac.uk  
7 A, Shea, Dept. Architecture & Civil Eng.,University of Bath, UK. Email:a.shea@bath.ac.uk 
8 G, Ormondroyd, Biocomposites Centre, University of Wales, Bangor, UK. Email: g.ormondroyd@bangor.ac.uk 
9 H. Du, Welsh school of Architecture, Cardiff University, UK.  Email: DuH4@cardiff.ac.uk 

mailto:HuangP9@cardiff.ac.uk
http://www.bath.ac.uk/view/person_id/5484.html
mailto:Y.M.Chew@bath.ac.uk
mailto:M.P.Ansell@bath.ac.uk
mailto:m.lawrence@bath.ac.uk
mailto:LatifE@cardiff.ac.uk
mailto:a.shea@bath.ac.uk
https://www.linkedin.com/company/25850?trk=prof-exp-company-name
mailto:g.ormondroyd@bangor.ac.uk
mailto:DuH4@cardiff.ac.uk


2 

 

However, studies of heat and moisture transport in raw bamboo still under development. The challenges 
may include the following aspects: A bamboo culm can be approximated as a hollow tube with 
relatively small thickness. Direct measurement of the hygrothermal properties, for example, density, 
porosity, thermal conductivity, specific heat capacity and vapour permeability, is restricted by the 
curved shape of bamboo. The size of the temperature and RH sensors needs to be relatively small to 
meet the contact requirement. The time consumed in carrying out of the moisture related experiments, 
such as isotherm or vapour permeability measurement, is significant (Latif et al. 2015).   

Related hygrothermal research on wood was published early than the research on bamboo. Heat and 
moisture transfer model has been utilised to simulate wood drying process (Plumb et al. 1985). Younsi 
et al. (2006) presented a three-dimensional simulation of heat and moisture transfer in wood which is 
based on the theory of coupled heat and mass transfer in capillary porous media from Luikov (1966). 
Li  et al. (2010) investigated heat and moisture transfer behaviour of the bamboo plywood wall and 
bamboo plywood concrete wall. The study focused on the temperature and water content variation of 
entire composite wall rather than bamboo layers.  

The aforementioned reviews indicated that partial differential equations (PDEs) have been broadly 
utilised in building physics field to describe the transient heat and moisture transfer mechanism of 
building materials. Due to the complexity of the PDEs, large numbers of mathematical tools were 
developed to provide the numerical solutions for the PDEs. To assess the accuracy of the current model 
for hygrothermal modelling, a British standard provided a benchmark example (BS EN 15026 2007) 

for calibration. Studies from Portal (2011) and Nusser and Teibinger (2012) proved that simulation 
tool from the theory of Portal et al. (2014) and the balance PDEs of WUFI software can meet the 
requirements of the benchmark. Delgado et al. (2012) reviewed 14 hygrothermal modelling  tools and 
suggested that versatility, visibility, renewability and user-friendliness are the features of successful  
hygrothermal  modelling  tools.   

This study focuses on the heat and moisture transfer behaviours of the Phyllostachys edulis (Moso 
bamboo) panels in various temperature and relative humidity conditions. To prepare this study, a 
number of the experiments were conducted to acquire the data of density, specific heat capacity, thermal 
conductivity, water diffusivity, water vapour permeability and isotherm curve of Moso bamboo (Huang 
et al. 2014 and Huang et al. 2015). These experiments indicated that Moso bamboo demonstrated non-
homogeneous hygrothermal properties in different directions. Especially in the radial direction, the 
content of vascular bundle tissue is obviously higher at the external side of bamboo culm wall (See Fig 
1). To quantify the influence of the non-homogeneous hygrothermal properties on heat and moisture 
transfer, both experimental studies and simulation prediction works are included in this paper. The 
Computational Fluid Dynamics (CFD) simulation allows predictions of the temperature and RH results 
of the bamboo specimens. Furthermore, the speculated values and hygrothermal properties can be 
adjusted to specify the heat and moisture transfer resistances in the parametric studies of CFD. The heat 
and moisture transfer experiments can be utilised to not only validate the simulation results but also 
identify the temperature and RH response of Moso bamboo in the actual situation.  
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Fig 1. Section view of a Moso bamboo culm wall  

Little research has been done on the non-homogeneous hygrothermal properties and their influence on 
transient heat and moisture transfer behaviour of Moso bamboo. The results of this study can provide 
guidance for manufacturing bamboo panels with good thermal performance by integrating external, 
middle, and internal parts of bamboo culm wall. 

 

2. Methodology 

2.1 Heat and moisture transfer experiment design 
Four Moso bamboo panels were prepared for heat and moisture transfer experiments. The bamboo 
originally import from Hunan province in China. The age of the bamboo is 4.5-5 years. All panels were 
laminated by Moso bamboo strips. The cutting position of the bamboo strips is illustrated by Fig 2. 
Panel 1 was laminated from the strips from the external surface of bamboo culm wall. Panel 2 was made 
by the strips from the internal surface. These two panels were utilised to specify the cutting position 
caused variation of the hygrothermal performance. Panel 3 and panel 4 were laminated from three types 
of bamboo strips. Both two panels have the same middle layer. Panel 3 utilised the external strips as the 
outdoor surface while Panel 4 utilised the internal surface as the outdoor surface. These two panels were 
prepared to demonstrate the direction of lamination caused variation of the hygrothermal performance.  

In the radial direction, bamboo culms demonstrated obvious non-homogeneous features in terms of 
hygrothermal performance. The minimum glue was used in this lamination method. The glue consists 
of two components. One is the 1711 phenol resorcinol glue, the other is 2520 hardener. The manufacture 
method is simple and it is easy for mass production.   
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Fig 2. Four types of bamboo laminated panels   

The dimension of the panel is illustrated by Fig 3. Grooves were milled on the bamboo strips. The 
temperature and RH sensors were embedded in the middle point of every layer of the bamboo strip. The 
monitor points were nominated as No.1, No.2, and No.3 from left to right (See Fig 4). Two extra 
bamboo strips were utilised to fill the gap and fixed the sensors in-between two grooves. The side 
surfaces of the bamboo panel were insulated with wax to avoid the undesired heat and moisture loses.  
Four panels were assembled using the same method. Each panel used three groups of temperature and 
RH sensors. 

 

Fig 3. The assembling of the bamboo panel with the temperature and RH sensor  

 

Fig 4. The edge section of bamboo panels with the temperature and RH sensors  
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The bamboo panels were fixed in a polypropylene foam panel. The external surface of the 
polypropylene foam panel was covered by the aluminium foil tapes. (See Fig 5) The polypropylene 
foam panel was placed between two climate chambers. The left climate chamber was utilised to simulate 
the outdoor temperature and RH conditions. The right climate chamber remained constant temperature 
and RH values. The polypropylene foam and wax insulation aim to ensure that the heat and moisture 
flow are perpendicular to the surface with the largest area of bamboo panel.  

 
Fig 5. Bamboo panels in a special designed polypropylene foam panel 

 

Fig 6. Twin climate chambers for heat and moisture transfer study  
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The climate chambers can provide wide temperature conditions ranging from -40 °C to 100 °C. The RH 
conditions can range from 10% to 98%. The temperature and RH fluctuation range are ±10 °C and ±40% 
respectively in this study.  This scheme can provide representative climate conditions while avoid 
volume change caused deformation and undesired condensation. The temperature and RH conditions 
are summarised in table 1. 

Table 1. The temperature condition plan of two climate chambers 

Step 
number 

Time 
 

Left climate chamber 
condition 

Right climate chamber 
condition 

1 0-Day 1 25°C 50% RH 

25°C 50%  RH  
2 Day 1 – Day 4 15°C 90% RH 
3 Day 4 – Day 8 25°C 50% RH 
4 Day 8 – Day 11 35°C 10% RH 
5 Day 11 – Day 15 25°C 50% RH 

 

All bamboo panels were stored in the right climate chamber until the temperature and RH were uniform. 
Then, the panels were sealed between two climate chambers with same initial condition for 24 hours 
(See Fig 6). A relatively cold and moist climate condition was set for the left climate chamber for 3 
days at first. The temperature and RH condition of the left climate chamber were reset to the same 
condition with the right climate chamber for 4 days. The left climate chamber was set to provide a 
relatively hot and dry climate condition for 3 days. The experiments were terminated after both 
chambers were maintaining same condition for 4 days.  The temperature and RH data were recorded 
every 5 minutes.   

2.2 Heat and moisture transfer simulation  
The governing equations for coupled modelling of heat and moisture transfer in this study are shown in 
equations 1 and 2. The PDEs were also utilised in MOISTURE-EXPERT and WUFI software (Kunzel 

and Kiessl 1996, Delgado et al. 2012 and Nusser and Teibinger 2012). The hygrothermal properties 
need to be input as a series of variables and conditional parameters in this study. To satisfy these specific 
and flexible requirements, COMSOL MultiphysicsTM was utilised to conduct the numerical simulation 
in this study.  ሺ߲ܪȀ߲ܶሻሺ߲ܶȀ߲ݐሻ  ൌ ሻܶߘߣሺߘ  ݄௩ߘሾߜߘሺ߮ ௦ܲ௧ሻሿ                                     Equation 1 ሺ߲ݓȀ߲߮ሻሺ߲߮Ȁ߲ݐሻ ൌ ߮ܦሾሺߘ  ሺ߮ߘߜ ௦ܲ௧ሻሿ                                     Equation 2 ሺ߲ܪȀ߲ܶሻ    Heat storage capacity (J/m3·K) 

T                 Temperature (K) 

t                  Time (s) ߣ                 Thermal conductivity (W/m·K) ݄௩               Evaporation enthalpy of water (J/kg)   ߜ              Water vapour permeability (kg/m·s·Pa) ߮                Relative humidity  

Psat             Saturated pressure of water vapour (Pa)   

W               Water content of the bamboo substance (kg/m3) 
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ሺ߲ݓȀ߲߮ሻ    Moisture capacity   ܦ                Liquid water diffusivity (m2/s)  
 
To solve the PDEs, at least 6 input parameters, temperature and RH initial and boundary conditions 
need to be specified.  
 
The average density data of Moso bamboo were obtained by a computed tomography (CT) method. The 
thermal diffusivity values of Moso bamboo were measured by a flash tube method. The thermal 
diffusivity values can be used to calculate the thermal conductivity. 
 
The thermal conductivity was calculated by equation 3 (Fourier 1878).  
ߣ  ൌ     Specific heat capacity (J/kgāK)ܥ Density (kg/m3)     ߩ Thermal diffusivity (m2/s)   ߙ   Thermal conductivity of bamboo solid phase (W/m·K)ߣ                                                     Equation 3ܥߩߙ
 
The average specific heat capacity of Moso bamboo was measured using a TA instruments Q200 
modulated differential scanning calorimeter with a scan rate of 3 C/min, a modulation of ±1 C per 
100 s, and an oxygen-free nitrogen gas flow rate of 25 ml/min. The results are illustrated by the fig 6. 
The specific heat capacity values vary as a function of temperature. Therefore, the thermal conductivity 
data, calculated by equation 3, are also a function of temperature.  
 

 

 
Fig 7. The average specific heat capacity results of bamboo specimens  

 
The liquid water diffusivity of Moso bamboo was estimated by a method considering the porosity and 
density of the material (Zillig et al. 2006). The water vapour permeability of Moso bamboo was 
measured by a dry cup method.  
 
The water vapour permeable capability of a construction material is often expressed by the water vapour 
diffusion resistance factor. The water vapour diffusion resistance factor was calculated by equation 4 
(BS EN 12086 2013).  
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ߤ  ൌ         Water vapour permeability of the specimen (kg/m·s·Pa)ߜ     Water vapour permeability of air (kg/m·s·Pa)ߜ Water vapour diffusion resistance factor, dimensionless         ߤ                                                         Equation 4ߜȀߜ
The water vapour permeability of air can be calculated by equation 5 (BS EN 12086 2013).  
ߜ  ൌ ሺʹǤ͵Ͳ  ͳͲିହ  ܲȀܴ௩  ܶ  ܲሻሺܶȀʹ͵Ǥͳ͵ሻଵǤ଼ଵ                   Equation 5 ߜ   Water vapour permeability of air (kg/m·s·Pa) ܲ      Standard atmospheric pressure (101325 Pa) ܴ௩     Gas constant for water (461.5 J/K·kg) ܶ       The temperature (K) ܲ      Ambient air pressure (Pa) 
 
The values of water vapour permeability of bamboo (ߜ) need to be inputted in the PDEs for calculation. 
These values are varied with the temperature because the water vapour permeability of the air (ߜ) is 
a function of temperature. 
 
The moisture capacity values of Moso bamboo were calculated by equation 6 (Times 1998). To 
calculate the moisture capacity values, the isotherm curves of bamboo specimens of three different 
layers are necessary. The isotherm curves were measured by a desiccator method. The sorption curves 
were utilised for the step number 1, 2, and 5 whilst the desorption curves were utilised for step number 
3 and 4 (See table 1).    
 ሺ߲ݓȀ߲߮ሻ ൌ Ɍ                                                     Equation 6 

 

Figure 8. Isotherm curves of the Moso bamboo in the radial direction 
 
To study the influence of the moisture content on thermal properties, the equivalent thermal 
conductivity of a bamboo strip can be described by equation 7 (Luikov 1966). 
 
 
ߣ   ൌ ߣ   ௪                                                   Equation 7ߣԢԢݑ
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 ௪  Thermal conductivity of water phase (W/m·K)ߣ ԢԢ  The ratio of water substance to dry wood substance, dimensionlessݑ   Thermal conductivity of bamboo solid phase (W/m·K)ߣ Total or the equivalent thermal conductivity of a bamboo (W/m·K)    ߣ
  

Similarly, the heat storage capacity can be described by the equation 8 (Luikov 1966): 
 ሺ߲ܪȀ߲ܶሻ ൌ ሺܥ௦  ሺͳȀߩ௦ሻ ܥ௪ܹሻߩ௦                                          Equation 8 
 ௪  Specific heat capacity of water (J/kg·K)ܥ  ௦   Bulk density of the dry materialߩ ௦   Specific heat capacity of dry material (J/kg·K)ܥ 
 
The data of 6 input parameters are summarised by table 2.  

 
Table 2. The essential parameters for heat and moisture transfer PDEs  

Input parameters External  Middle Internal Method of measurement  
Density  (kg/m3) 1157 723 474 CT (Huang et al.2015) 

Thermal diffusivity  (m2/s) 6.36×10-7 1.74×10-7 1.28×10-7 
Flash tube 

(Huang et al.2017) 
Specific heat capacity See fig 6 DSC (Huang et al.2016) 
Thermal conductivity at 25°C 
(W/m·K) 

1.12 0.19 0.09 Calculated by Equation 3 

Water liquid diffusivity (m2/s) 6.15×10-10 2.65×10-12 2.95×10-13 (Zillig et al. 2006) 
Water vapour diffusion 
resistance factor 

57 42 38 Dry cup (Huang et al.2016) 

Isotherm See fig 8 Desiccator and DVS 
 

2.3 Boundary conditions  
The thermal boundary condition of this study is classified as the Robin condition. The two surfaces, 
which are exposed to the two climate chambers, are regarded as the convective surfaces. Therefore, the 
heat flux density and moisture flux density of two convective surfaces can be described by Equation 9 
and 10 (Luikov 1966). ݍ ൌ ்݄ሺ ܶ െ ܶሻ                                                    Equation 9 
 Heat flux density (W/m2) ்݄   Heat transfer coefficient (W/m2·K) ܶ   Temperature of the ambient air (K) ܶ   Temperature of the bamboo surface (K)     ݍ 
 ሶ݉ ൌ ݄ሺߩ െ  ሻ                                                Equation 10ߩ

 ሶ݉     Water vapour flux density (kg/m2·s) ݄  Water vapour transfer coefficient driven by the density difference of water vapour (m/s)  ߩ   Density of the water vapour in the ambient air (kg/m3) ߩ   Density of the water vapour in the bamboo surface (kg/m3) 
 
In this study, the water vapour flux density needs to be calculated by the relative humidity. Therefore, 
the Equation 10 can be changed to Equation 11. 
 
 ሶ݉ ൌ ݄ோுሺ߮ െ ߮ሻ                                           Equation 11 
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ሶ݉         Water vapour flux density (kg/m2·s) ݄ோு  Water vapour transfer coefficient driven by the difference of RH (kg/m2·s) ߮       RH of the water vapour in the ambient air (kg/m3) ߮       RH of the water vapour in the bamboo surface (kg/m3) 
 
The RH can be expressed by the ratio of the density of the water vapour in a media to the saturated 
density of the water vapour. See Equation 12 and 13 (BS EN 12086 2013).  
  
 ߮ ൌ ሺߩȀߩ௦௧ሻ                                                       Equation 12 ߮ ൌ ሺߩȀߩ௦௧ሻ                                                       Equation 13 

 
 ௦௧    Saturated density of the water vapour (kg/m3)ߩ        Density of the water vapour in the bamboo surface (kg/m3)ߩ        Density of the water vapour in the ambient air (kg/m3)ߩ 

Therefore, the water vapour transfer coefficient in this study can be calculated by equation 14. This 
coefficient is a variable of temperature because the saturated density of the water vapour varies with 
temperature.  
 ݄ோு ൌ  ௦௧݄                                                Equation 14ߩ
 ݄ோு  Water vapour transfer coefficient driven by the difference of RH (kg/m2·s) ݄      Water vapour transfer coefficient driven by the difference of water vapour density (m/s) ߩ௦௧    Saturated density of the water vapour  
 

2.4 Assumptions   
The heat and moisture transfer behaviour of biological material is fairly complex. This study examines 
the influence of basic hygrothermal properties on the heat and moisture transfer behaviour of Moso 
bamboo. A number of assumptions were made to simplify the numerical model: 
 The temperature, RH, and velocity of the air in the climate chambers were regarded as constant 
parameters in this study.  
The heat and moisture lose from the wax insulation and polypropylene foam panel was neglected. 
The heat and moisture transfer of four bamboo panels was one dimensional.  
The expansion of bamboo panels is negligible in this study. 
 

2.5 Model validation    
 
The heat and moisture transfer models were solved by COMSOL MultiphysicsTM. This model was 
validated by the benchmark example in a British standard (BS EN 15026: 2007).  The results are 
illustrated by Figs 8 and 9. Solid lines describe the maximum and minimum values of the benchmark 
material. Dashed lines are the simulation results of the model applied in this study. Both temperature 
and moisture content results indicated that the model is reliable for the heat and moisture transfer 
simulation of the building material. Similar validation works has been done by other heat and moisture 
transfer researches on building materials. (Nusser and Teibinger 2011, and Portal et al. 2014) 
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Fig 9. The benchmark validation results for temperature 

 

 
Fig 10.  The benchmark validation results for moisture content 

 

3. Results and discussion 

The temperature results are illustrated in Fig 11.  The red dash line represents the set temperature. The 
other dash lines are the simulation results of three monitor points. The solid lines represent the results 
from experimental measurements. 

It can be seen that lower difference among No.1, No.2, and No.3 was observed from the results of panel 
1 while higher difference among No.1, No.2 and No.3 was found from the results of panel 2. The 
temperature at No.3 of panel 2 is closer to the right climate chamber than the temperature at No.3 of 
panel 1. The results from panel 1 and panel 2 clearly indicated that bamboo internal strips have lower 
thermal conductivity than bamboo external strips when the heat transfer achieves equilibrium state. 
Similarly, the temperature at No.2 position is closer to the temperature at No.1 position for panel 3. The 
temperature at No.2 position is closed to the temperature at No.3 position for panel 4. The reason of 
this phenomenon is caused by the thermal conductivity difference of the first layers and last layers 
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between the panel 3 and panel 4. The first layer of panel 3 is the bamboo external parts and the first 
layer of panel 4 is the bamboo internal parts. The results are consonant with the measured results from 
the thermal diffusivity and thermal conductivity calculation.  

 

Fig 11. Temperature results for four panels 

The relative humidity results are shown in Fig 12. The results indicated that the RH values of the four 
panels needs much more time to approach equilibrium state than the temperature values. The lowest 
RH peak value and relative slow RH response can be found from the results of panel 1. The highest 
peak RH value and relative quick RH response can be found from the results of panel 2. The RH 
response speed of the panel 3 and panel 4 are between the results from panel 1 and panel 2. The results 
from the panel 3 are similar to the results of the panel 1. The results from the panel 4 are similar to the 
results of the panel 2.  High water vapour diffusion resistance factor and high moisture capacity were 
found from the external bamboo culms. Internal bamboo culms demonstrated low water vapour 
diffusion resistance factor and low moisture capacity. These results also appear to be consistent with 
the results of isotherm and water vapour diffusion resistance measurements.  
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Fig 12.  The RH results of four panels 

 
The temperature and RH results indicated that although the layer of panel made by the internal part of 
bamboo culm wall can provide good insulation performance, its performance of resisting the high RH 
variation is inferior to the layer from the external part of bamboo culm wall. An external part of bamboo 
culm wall can provide a barrier to the unsteady RH conditions. The internal part of bamboo culm wall 
can be utilised to increase the thermal resistance of a panel. 
 
The difference between simulation results and measured results of all panels is less than 0.5 ºC in the 
equilibrium state. The difference of the RH between simulation results and monitored results from 
experiment measurements is higher than the difference of the temperature results. The results are 
compliant with the aforementioned assumptions.   

 
 

4 Parametric studies  

4.1 Results 

The parametric study aims to find the parameter which has the highest influence on the temperature or 
RH results. The value of each parameter was set to vary from 80% to 120% of the original simulation 
input. The increment is 20%. The reason for using this range is that the variation of the measured 
parameters is less than 20% at the same point of measurement. Furthermore, the variation needs to be 
from both positive and negative directions to make sure the results vary consistently.  
 
The temperature results of the parametric study are shown by Fig. 13. The results indicated that variation 
of parameters in 20% causes little changes on the simulation results at the equilibrium stage. The time 
consumption for temperature change is less than 2 hours at the transient stage. Therefore, the 
temperature variation in this short time period is invisible in Fig. 13.  
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Fig 13.  The parametric study results of temperature of four panels 

 
Fig. 14 illustrated the transient temperature change of four panels within 8 hours from the temperature 
change time point to the time of approaching the equilibrium stage. Although, the adjustments of each 
parameter demonstrate little changes in the simulation results, the influence of density can be seen. The 
temperature variation caused by density adjustments are illustrated by the yellow solid line and yellow 
dash lines. These two lines deviate the highest value from the original simulation results. Therefore, 
density can be regarded as the most sensible parameter to influence the temperature simulation results. 
The results of panel 1 indicated that higher density input can lead to closer results to the experiment 
results. This trend is not obvious for the other panels.  
 

 
Fig 14.  Parametric study results at a temperature change period 

 
To further examine the influence of density, a second parametric study was conducted. The results are 
shown by Fig. 15. The input density values were set to increase 50% and 100% respectively. The results 
indicated that the simulation results at the transient stage are closer to the experimental results by 
increasing 100% density value for panel 1. However, for other panels, the original simulation results 
are more accurate.  At the equilibrium stage, the original simulation results are closer to the experiment 
results.  
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Fig 15.  Parametric study results of enlarged density values at a temperature change period  

 
 
The RH results of the parametric study are shown by Fig. 16. The results indicated that variation in 20% 
for both vapour diffusion resistance and isotherm cause relatively higher influence than other 
parameters. The 120% lines of these two parameters are closer to the experiment results at No.1 monitor 
point.  Two solid lines are highly overlapped.  
  

 
Fig 16. The parametric study results of RH of four panels 

 
The influence of the isotherm and water vapour diffusion resistance factor µ were considered in a further 
parametric study. The original values of the parametric study were set to increase 50% and 100% for a 
new simulation.  The results are shown by the Fig 17 and Fig.18.     
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Fig 17. The parametric study results of the RH by increasing the µ 

 

Fig 18.  The parametric study results of the RH by increasing the moisture content of isotherm  

The results indicated that better fitting can be found at the No.1 position of all penal after the parametric 
adjustment. However, the original simulation results of No.2 and No.3 demonstrated better fitting trend 
than results of parametric study. Therefore, the parametric study can further focus on the individual 
adjustment for each layer. 
 
The further parametric study firstly increase water vapour diffusion resistance factor of the No.1 
position for all panels. The effect is obvious on results of the No.1 position. However, concomitant 
values increasing can also be found at No.2 and No.3 positions. To neutralise the undesired increasing 
values from these two positions, the water vapour diffusion resistance factors of the No.2 position were 
set to decrease a trial range. Another method was to increase the water vapour diffusion resistance 
factors of both No.1 and No.2 positions. This method is not as sensitive as the initial method. After a 
number of trials, an acceptable adjustment scheme was utilised on the individual adjustment for each 
layer.  See table 3. 
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Table 3. The adjustment of water vapour diffusion resistance factors for individual layer 

 
 No.1 No.2 No.3 

Panel 1 +50% -50% 0% 
Panel 2 +50% -20% 0% 
Panel 3 +50% -20% 0% 
Panel 4 +50% -20% 0% 

 
 
The results are shown by Fig 19. The adjustment of water vapour diffusion resistance factors can lead 
to a relatively closer simulation results than the original simulation results.  
 

Fig 19.  The RH results of individual layer µ adjustment  

Same scheme in table 3 was utilised for isotherm adjustment, the results of the isotherm adjustment are 
compared with the results of µ adjustment in Fig 20.  The comparison indicated that results of µ 
adjustment are closer to the experimental results. That means, in this scheme, the water vapour diffusion 
resistance factor can be regarded as a more sensitive factor than the isotherm. Isotherm adjustment may 
need further variation to approach the same results.  
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Fig 20.  The RH results of individual layer µ adjustment and isotherm adjustment 

The liquid water diffusivity was estimated by a method which was presented in the research of Zillig 
(2006). In this study, the impact of the existence of liquid water diffusivity in the simulation results was 
evaluated. Fig 21 showed that the RH difference between the simulation results with liquid water 
diffusivity and the simulation results without liquid water diffusivity is ignorable. The highest 
difference between the results with liquid water diffusivity and the results without liquid water 
diffusivity is 0.2% at panel 3. Therefore, simply ignoring the liquid water diffusivity value is acceptable 
in this study. 

 

Fig 21 The liquid water diffusivity adjustment result 

An extreme case, which could be shown in the parametric study, is the existence of moisture caused 
influence on the temperature results. Fig 22 compares the results among the experiments, the initial 
simulation, and a simulation without involving any moisture. The results indicated that the simulation 
with moisture is more accurate than the simulation without moisture in both the equilibrium and 
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transient states. The results also imply that the existence of moisture could increase the heat captaincy 
and reduce the thermal conductivity. The slower response at the transient state is obvious at panel 1 and 
narrower temperature distribution can be found at panel 2.  
 

 

Fig 22. The simulation results with and without moisture content 

4.2 Discussion 

The parametric study found that density can be regarded as the most critical parameters to influence the 
temperature simulation results at the transient state. The thermal conductivity dominates the 
temperature variation at the steady state. The water vapour diffusion resistance factor can be regarded 
as the most sensitive parameter to influence the RH simulation results. The liquid water diffusion is 
negligible in the conditions of this study. The parametric study results indicated that the simulation with 
moisture is more accurate than the simulation without moisture in both equilibrium and transient states. 
The results also imply that the existence of moisture could increase the heat captaincy and reduce the 
thermal conductivity. The aforementioned assumptions are acceptable in this study.  
 
In addition, temperature results of all panels show a rebound trend after the lowest temperature point. 
See Fig 14, 15 and 21. The rebound trend is more obvious at panel 2 and panel 4 than at panel 1 and 
panel 3. The condensation of water can be regarded as a reason for this rebound trend. Low temperature 
may cause the water condensation. Water condensation can release heat. Panel 2 and panel 4 have a low 
density layer opposite to the left climate chamber. This layer also demonstrates high vapour 
permeability and low moisture capacity. Higher content of water vapour can be passed but cannot be 
stored in this layer. Therefore, the extent of temperature rebound trend is higher at panel 2 and panel 4 
than at panel 1 and panel 3. 
 
It should be noticed that the field experiment cannot be replaced by the modelling study. The modelling 
study was utilised to predict the temperature and RH results. The boundary condition and initial 
condition are expressed by theoretical values. In real field experiments, these conditions are not as 
strictly the same as the theoretical values. In addition, a modelling study can only predict part of the 
real phenomenon. The temperature rebound phenomenon is a response which is not predicted by the 
modelling study. Furthermore, the highly corresponding result from the parametric scheme in this study 
is just one possible performance of the real situation. In field experiments, the hygrothermal response 
may be caused by the effects of multiple factors. 
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5. Conclusions 

This study focuses on the heat and moisture transfer behaviour in Phyllostachys edulis (Moso bamboo) 
panels at various temperature and relative humidity conditions.  
 
Experiments results indicate that panel 2 which was made by internal bamboo strips demonstrated the 
best performance of thermal insulation in four panels. Panel 1 which was made by external bamboo 
strips showed the worst performance of thermal insulation. The temperature of middle layer of panel 3 
is closed to the external side. The temperature of middle layer of panel 4 is closed to the internal side. 
The most significant RH variation is from internal bamboo strips while the minimum RH variation of 
bamboo layers is from external bamboo strips. Panel 3 showed similar trend with panel 1 in terms of 
RH variation of bamboo layers.  Panel 4 showed similar trend with panel 2 in terms of RH variation of 
bamboo layers. External side of bamboo culm wall can effectively mitigate the outdoor RH variation. 
 
Simulations results indicated that the temperature prediction is relatively accurate. The RH prediction 
is well compliant with the experiment results at middle and internal layers of bamboo panels. The 
accuracy of the external layer can be further improved.     
 
Both experiment and simulation results appear to be consistent with the results of measurements of the 
basic hygro-thermal parameters. The results indicate that although the layer of panel made by the 
internal part of bamboo culm wall can provide good insulation performance, its ability to resist the high 
RH variation is inferior to the layer from the external part of bamboo culm wall. The difference of the 
RH between simulation results and monitored results from experiment measurements is higher than the 
difference of temperature results.  
 
Parametric study found that density can be regarded as the most sensitive parameter to influence the 
temperature simulation results at the transient state. The thermal conductivity dominates the 
temperature variation at the steady state. The water vapour diffusion resistance factor can be regarded 
as the most sensitive parameter to influence the RH simulation results. The liquid water diffusion is 
negligible in the conditions of this study. The parametric study results indicated that the simulation with 
moisture is more accurate than the simulation without moisture in both equilibrium and transient state. 
The results also imply that the existence of moisture could increase the heat capacity and reduce the 
thermal conductivity. The aforementioned assumptions are acceptable in this study.  
 
The results of this study recommend that the external part of the bamboo culm wall can be utilised to 
minimise the RH variation of the panel while the internal part of bamboo culm wall is suitable for 
increasing the thermal insulation performance of the panel. Therefore, a form of high hygrothermal 
performance bamboo panel can be made by a thin layer of external part of bamboo culm wall and thick 
layers of internal part of bamboo culm wall. 
 
The newly designed high hygrothermal performance bamboo panel can minimise mould and damp risks 
for bamboo constructions in humid climate regions and eliminate potential health issues associated with 
living environment. The methodology of this study is also applicable to other types of timber building 
envelope where the growing demand has shown significantly in the past decade due to the low carbon 
agenda. 
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