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Abstract: The classification of acoustic scenes and events is an emerging area of research in the field
of machine listening. Most of the research conducted so far uses spectral features extracted from
monaural or stereophonic audio rather than spatial features extracted from multichannel recordings.
This is partly due to the lack thus far of a substantial body of spatial recordings of acoustic scenes.
This paper formally introduces EigenScape, a new database of 4th-order Ambisonic recordings
of eight different acoustic scene classes. The potential applications of a spatial machine listening
system are discussed before detailed information on the recording process and dataset are provided.
A baseline spatial classification system using DirAC techniques is detailed and results from this
classifier are presented. The classifier is shown to give good overall scene classification accuracy
across the dataset, 7 of 8 scenes being classified with an accuracy of greater than 60% with an 11%
improvement in overall accuracy compared to use of MFCC features. Further analysis of the results
shows potential improvements to the classifier. It is concluded that the results validate the new
database and show that spatial features can characterise acoustic scenes and as such are worthy of
further investigation.

Keywords: soundscape; acoustic environment; acoustic scene; ambisonics; spatial audio; Eigenmike;
machine learning; dataset; recordings

1. Introduction

Since machine listening became an eminent field in the early 1990s, the vast majority of research
has focused on Automatic Speech Recognition (ASR) [1] and computational solutions to the well-known
‘cocktail party problem’—the “ability to listen to and follow one speaker in the presence of others” [2].
This is now a mature field of study, with robust speech recognition systems featured in most modern
smartphones. There has also been a great deal of research into Music Information Retrieval (MIR) [3],
a technology with applications in intelligent playlist algorithms used by online music streaming
services [4]. There has been comparatively little research investigating the automatic recognition of
general acoustic scenes or acoustic events, though there has been an increase in interest in this area
in recent years, largely due to the annual Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges established in 2013 [5].

The DCASE challenges have attracted a large number of submissions designed to solve the
problem of Acoustic Scene Classification (ASC) or Acoustic Event Detection (AED). A typical ASC
or AED system requires a feature extraction stage in order to reduce the complexity of the data to
be classified. The key is the coarsening of the available data such that similar sounds will yield
similar features (generalisation), yet the features should be distinguishable from those yielded by
different types of sounds (discrimination). Generally, the audio is split into frames and some kind
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of mathematical transform is applied in order to extract a feature vector from each frame. Features
extracted from labelled recordings (training data) are used to train some form of classification algorithm,
which can then be used to return labels for new unlabelled recordings (testing data). See [6] for a
thorough overview of this process.

The systems submitted to DCASE all identify acoustic scenes and events based upon features
extracted from monaural or stereophonic recordings. A small number of systems have used spatial
features extracted from binaural recordings [7–9], but the potential for extracting features using more
sophisticated spatial recordings remains almost completely unexplored. This is due to a number of
factors, including inheritance of techniques from ASR and MIR and the envisioned applications of
ASC and AED.

A majority of the early research into ASR approached the problem with the aim of emulating
elements of human sound perception. This “biologically relevant” [1] approach can be seen in the
popular Mel-Frequency Cepstral Coefficient (MFCC) features, which use a mel-scaled filter bank
in order to crudely emulate the human cochlear response [10]. A more fundamental self-imposed
limitation of this approach is the use of one or two-microphone recordings. Although, on introducing
the DCASE challenge, Stowell et al. stated that “human-centric aims do not directly reflect our goal...
which is to develop systems that can extract semantic information about the environment around them
from audio data” [5], it is natural to inherit techniques from more mature related fields.

The most commonly stated applications of ASC and AED technologies include adding
context-awareness to smart devices, wearable technology or robotics [6] where mounting of spatial
microphone arrays would perhaps be more impractical. Another application is automatic labelling of
archive audio, where the majority of recordings will be in mono or stereo format [5,6].

Some lesser-considered applications of ASC and AED technology involve the holistic analysis
of acoustic scenes in and of themselves. The focus here is gaining a greater understanding of the
constituent parts of acoustic scenes and how they change over time. This has potential applications
in acoustic ecology research for natural environments, re-synthesis of acoustic scenes for virtual
reality, and in obtaining more detailed measures for urban environmental sound than the prevailing
LAeq sound level metric. The LAeq measurement aggregates all sound present in a scene into one
single sound level figure. This disregards the variety of sources of the sounds, influencing much
environmental sound legislation to focus on its suppression—an “environmental noise approach” [11].
A machine listening system could consider the content of an acoustic scene as well as absolute sound
levels. This information could be used to create more subtle metrics regarding urban sound, taking
into account human perception and preference—a “soundscape approach” [11]. This kind of system
was proposed by Bunting et al. [12], but despite some promising work involving source separation in
Ambisonic audio [13], published results from that project have been limited. The term soundscape is
used here according to the ISO definition, meaning “the acoustic environment of a place, as perceived
by people, whose character is the result of the action and interaction of natural and/or human
factors” [14]. This emphasis on perception is apt in this case, but a subjective perceptual construct is
clearly not what a machine listening system will receive as input for analysis. We therefore use the
term ‘acoustic scene’ when discussing recordings.

Another potential application of such a system is assisting in the synthesis of acoustic scenes
for experimental purposes. If a researcher or organisation wishes to obtain detailed data on human
perception of environmental sound, one technique that can be used is a sound walk, in which listening
tests can be conducted in situ at a location of interest. This gives the most realistic stimulus possible,
direct from the environment itself. Results gained using this technique are therefore as representative as
is achievable of subjects’ reactions to the real-world acoustic environment, a factor known as ‘ecological
validity’ [15,16]. The key disadvantages are that this method is not repeatable [15] and can be very
time-consuming [17]. An alternative is laboratory reproduction of acoustic scenes, presented either
binaurally [18] or using Ambisonics [19,20]. These are less time-consuming and more repeatable [15],
but the clear disadvantage is the potential for reduced ecological validity of the results, which leads to
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the criticism that lab results “ought to be validated in situ” [21]. A key issue is how to condense an
urban sound recording into a shorter format whilst retaining ecological validity. Methods for this have
included selection of small clips at random [15] or manually arranging a acoustic scene “composition”
in order to “create a balanced impression” [19]—essentially condensing the acoustic scene by ear.
Whilst manual composition of a stimulus is undoubtably more roboust than presentation of a random
short clip that may or may not be representative of the acoustic scene as a whole, it is not an optimal
process. The subjective recomposition of an acoustic scene by a researcher introduces a source of bias
that could be reflected in the results. A machine listening system could effectively bypass this issue by
providing detailed analysis that could assist with synthesis of shorter clips that remained statistically
representative of real acoustic scenes.

The limitation to low channel counts is less applicable given these applications of machine
listening technology. Spatial recordings offer the potential of a rich new source of information that
could be utilised by machine listening systems and higher channel counts offer the opportunity for
sophisticated source separation [13,22] which could assist with event detection.

The lack of research into classification using spatial audio features could also be due to the fact that
there has been, as yet, no comprehensive database of spatially-recorded acoustic scenes. Any modern
database of recordings intended for use in ASC research must contain many examples of each location
class. This is to avoid the situation whereby classification results are artificially exaggerated due to test
clips being extracted from the same longer recordings as clips used to train classifiers, as exemplified
in [23]. A similar phenomenon has been seen in MIR research where classifiers were tested on tracks
from the same albums as their training material [24]. The TUT Database [25], used in DCASE challenges
since 2016, fulfils this criterion. It features recordings of 15 different acoustic scene classes made across a
wide variety of locations, with details provided in order to avoid any crossover in locations between the
training and testing sets. This database was recorded using binaural in-ear microphones. The DCASE
2013 AED task [5] used a small set of office recordings made in Ambisonic B-format (though only
stereo versions were released as part of the challenge). Since it was intended for AED, this dataset
features recordings of office environments only, not the wide range of locations needed for ASC work.
The DEMAND database [26] features spatial recordings of 6 different acoustic scene classes, each
recorded over 3 different locations. This is a substantial amount of data, but potentially still too
small a collection for effective classifier training and validation. The recordings were made using a
custom-made 16-channel microphone grid, which offers potential for spatial information extraction,
though techniques developed using this data might not be generalisable to other microphone setups.
This paper introduces EigenScape, a database of 4th-order Ambisonic recordings of a variety of urban
and natural acoustic scenes for research into acoustic scene and event detection. The database and
associated materials are freely available—see supplementary materials for the relevant URLs.

The paper is organised as follows: Section 2 covers the technical details of the recording process,
provides information on the recorded data itself and describes the baseline classification used for initial
analysis of the database. Section 3 gives detailed results from the baseline classifier and offers some
analysis of its behaviour and the implications this has for the dataset. Section 4 offers some additional
discussion of the results, details potential further work and concludes the paper.

2. Materials and Methods

2.1. Recording

EigenScape was recorded using the mh Acoustics EigenMike [27], a 32-channel spherical
microphone array capable of recording up to 4th-order Ambisonic format. In Bates’ Ambisonic
microphone comparisons [28,29] the EigenMike is among the lowest rated in terms of perceptual audio
quality, rated as sounding “dull” compared to other microphones. Conversely, directional analysis
shows the EigenMike gives the highest directional accuracy of any of the microphones tested, including
the popular 1st-order Ambisonic Soundfield MKV and Core Sound TetraMic. It should be noted that
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the analysis in [28,29] used only the 1st-order output from the EigenMike (for parity with the other
microphones), disregarding the higher-order channels. Since the dataset presented in this paper is
primarily aimed at machine (rather than human) listening, and the EigenMike can record far more
detailed spatial information than 1st-order microphones whilst retaining a relatively portable form
factor, the EigenMike was chosen for this task.

Recordings were made using the proprietary EigenMike Microphone Interface Box and
EigenStudio recording application [27]. Recordings were made at 24-bit/48 kHz resolution and
the files use ACN channel ordering [30]. All the recordings used a gain level of +25 dB set within the
EigenStudio software as the ambient sound at many recording locations did not yield an adequate
recording level at lower gain levels. The only exception to this is the recording labelled ‘TrainStation-08’,
which used only +5 dB gain as very high level locomotive engine noise present at that location caused
severe clipping at +25 dB.

For the majority of the recordings, the EigenMike was mounted in a Rycote windshield designed
for use with the SoundField ST350 microphone [31]. Although the windshield was not designed for the
EigenMike, care was taken to rigidly mount the microphone and the shield was effective in cancelling
wind noise. The first few recordings used a custom-made windshield, but this was switched for the
Rycote as the set-up time proved much too long. One indoor recording did not use any windshield.
The discrepancies in windshield use and gain level should be negligible by comparison to the wide
variety of sounds present in the scenes, especially when coarse features are extracted for use in a
machine listening system. Such a system should be robust to the small spectral changes incurred
by use of different windshields and to differences in ambient sound level between scenes. Indeed,
the DARES project [32] used entirely different recording setups for indoor and outdoor recordings
and this was judged to have “minimal influence on the quality of the database”. Nevertheless, these
discrepancies are noted in metadata provided for EigenScape.

To make these recordings, the microphone was mounted on a standard microphone stand set to
around head height. A Samsung Gear 360 camera [33] was also mounted to the tripod, recording video
in order to assist with future annotation of events within scenes where the sound might be ambiguous.
Figure 1 shows the full recording apparatus.

Figure 1. The setup used to record the EigenScape database: mh-Acoustics Eigenmike within Rycote
windshield, Samsung Gear 360 camera, Eigenmike Microphone Interface Box and Apple MacBook Pro.
The equipment is shown here at Redcar Beach, UK: 54°37′16′′ N, 1°04′50′′ W.
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2.2. Details

Eight different examples each of eight different classes of acoustic scene were recorded for a total
of 64 recordings. All recordings are exactly 10 min in length. The uniform recording duration facilitates
easy segmentation into clips of equal length (e.g., 20 segments at 30 s long). Basic segmentation tools
are available with the dataset in order to assist with this. The recordings were planned out specifically
to create a completely evenly-weighted dataset between the various scenes and to facilitate easy
partitioning into folds (e.g., 6 recordings used for training, the other two used for testing).

The location classes were inspired by the classes featured in the TUT database: lakeside beach,
bus, cafe/restaurant, car, city center, forest path, grocery store, home, library, metro station, office,
urban park, residential area, train, and tram [25], but restricted to open public spaces, reflecting the
shifted focus of this work towards acoustic scene analysis. The eight classes in EigenScape are as
follows: Beach, Busy Street, Park, Pedestrian Zone, Quiet Street, Shopping Centre, Train Station and
Woodland. These location classes were chosen to give a good variety of acoustic environments found
in urban areas and to be relatively accessible for the recording process.The recordings were made
at locations across the North of England in May 2017. An online map has been created showing
all the recording sites and is listed in supplementary materials. Basic location details are included
in the dataset metadata, along with recording dates and times. Although individual consent is not
required for recording in public spaces, permissions of the relevant local authorities or premises
management was sought where possible. Some locations would not allow tripod-based recordings,
so the microphone stand was held as a monopod. These are noted in the metadata.

A little over 10 min was recorded at each location, with a short amount of time removed from
the beginning and end of each file post-recording. This removed the experimenter noise incurred
by activating and deactivating the equipment and achieved the exactly uniform length of the audio
clips. During recording, every effort was made to minimise sound introduced to the scene by the
experimenter or equipment. It should be noted that occasionally a curious passerby would ask about
what was happening. This was fairly unavoidable in busier public places, but since conversation is
part of the acoustic scenes of such locations, these incidents should not affect feature extraction too
much. Discretion is advised if these recordings are used for listening tests or as background ambiences
in sound design work.

The complete dataset has been made available online for download. The full database is presented
in uncompressed WAV format within a series of ZIP files organised by class. Since each recording
is 10 min of 25 tracks at 24-bit/48 kHz, the whole set is just under 140 GB in size. As this could
potentially be very taxing on disk space and problematic to download on slower internet connections,
a second version of the dataset has been created for easier access. This second version consists of all
the recordings, but limited to the 1st-order Ambisonic channels (4 tracks) and losslessly compressed to
FLAC format within a single ZIP file. This results in a much more manageable size of 12.6 GB, whilst
still enabling spatial audio analysis and reproduction. This is also in accordance with the UK Data
Service’s recommended format for audio data [34].

2.3. Baseline Classification

To create a baseline for this database that utilises spatial information whilst maintaining a
level of parity with the MFCC-Gaussian Mixture Model (GMM) baseline typically used in DCASE
challenges [5,6,25], the audio was filtered into 20 mel-spaced frequency bands (covering the frequency
range up to 12 kHz) using a bank of bandpass FIR filters. The filters each used 2048 taps and were
designed using hamming windows. Estimate direction of arrival (DOA) estimates to be used as
features were extracted from each band using Directional Audio Coding (DirAC) analysis [35–37]
as follows:

D = −PU (1)
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where P contains the 20 mel-filtered versions of the 0th-order Ambisonic channel (W) of the recording
and U contains the filtered versions of the 1st-order Ambisonic bi-directional X, Y and Z-channels
in a three-dimensional matrix. Resultant matrix D contains instantaneous DOA estimates for each
frequency band. Mean values of D were calculated over a frame length of 2048 samples, with 25%
overlap between frames. Angular values for azimuth θ and elevation φ were derived from this as
follows [38]:

θ = arctan
(

X

Y

)

(2)

φ = arccos
(

Z

||D||

)

(3)

where X, Y, and Z are the X, Y and Z channel matrices extracted from D. These angular values were
used as features. Diffuseness values were also used as features, and were calculated as follows [36]:

ψ = 1 −
|| − D||

c{E}
(4)

where {.} represents the mean-per-frame values described previously, c is the speed of sound, and:

E =
1
2

ρ0

(

P2

Z2
0
+ ||U||2

)

(5)

where Z0 is the characteristic acoustic impedance and ρ0 is the mean density of air.
The database was split into 4 folds for cross-validation. In each fold, 6 location class recordings

were used for training, with the remaining 2 used for testing. The extracted DirAC features from
each frame of the training audio were used to train a bank of 10-component GMMs (one per scene
class). The test audio was cut into 30-s segments (40 segments in total for testing). Features were
extracted from these segments, and each GMM gave a probability score for the frames. These scores
were summed across frames from the entire 30-s segment, with the segment classified according to the
model which gave the highest total probability score across all frames.

3. Results

Initial analysis of this dataset previously published as part of the DCASE 2017 workshop [39]
compared classification accuracies achieved using the DirAC features to those achieved when using
MFCCs. In addition, classifiers were trained using individual DirAC features—azimuth, elevation
and diffuseness—and a classifier was trained using a concatenation of all MFCC and DirAC features.
Figure 2 shows the mean and standard deviation classification accuracies achieved across all scenes
using these various feature sets. It can be seen that using all DirAC features to train a GMM classifier
gives a mean accuracy of 64% across all scene classes, whereas MFCC features give a 58% mean
accuracy (averaged across all folds). Azimuth data alone is much less discriminative between scenes,
giving an accuracy of 43% on average, which is markedly worse than MFCCs. Elevation data, on the
other hand, gives similar accuracies, and diffuseness data gives slightly better accuracies than MFCCs.
The low accuracy when using azimuth data is probably attributable to the fact that azimuth estimates
will be affected by the orientation of the microphone array relative to the recorded scene, whereas
elevation and diffuseness should be rotation-invariant. A new classifier using elevation and diffuseness
values only was therefore trained and gave an average classification accuracy of 69%, which is the
best performance that was achieved. The Elevation/Diffuseness (E/D)—GMM classifier was therefore
adopted as the baseline classifier and all further results reported here are derived from it.
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Figure 2. Mean and standard deviation classification accuracies across all folds for the entire dataset
using various different feature sets (from [39]).

Figure 3 shows the mean and standard deviation classification accuracies from the baseline for
each acoustic scene class. As previously mentioned, the mean accuracy across all scene classes is
69%. The low standard deviation (7%) indicates the dataset as a whole gives features that are fairly
consistent across all folds. All of the scene classes except Beach are classified with mean accuracies
above 60%. In fact, if the Beach class is discounted, the overall mean accuracy rises by 9%. Busy
Street, Pedestrian Zone and Woodland are classified particularly well, at 86%, 97% and 85% accuracy
respectively. Looking at the standard deviation values for accuracy across folds could give some
indication of the within-class variability between the different scene recordings. The very low standard
deviation in Pedestrian Zone accuracies of 4% implies that the Pedestrian Zone recordings have
very similar sonic characteristics, that is, they give very consistent features. Busy Street, Park and
Train Station could be said to be moderately consistent, whereas Quiet Street, Shopping Centre and
Woodland show more variability between the various recordings. The drastically lower accuracy of
the Beach scene classification is very anomalous. It could be that as the primary sound source at a
beach will likely be widespread and diffuse broadband noise from the ocean waves, this could yield
indistinct features that could be difficult for the classifier to separate from other scenes.

Figure 4 shows confusion matrices (previously published in [39]), which indicate classifications
made by the MFCC and E/D classifiers averaged across all folds. Rows indicate the true classes
and columns indicate the labels returned by the classifiers. The E/D matrix features a much more
prominent leading diagonal and confusion is much less widespread than in the MFCC matrix, clearly
indicating that the E/D classifier outperforms the MFCC classifier in the vast majority of cases. Beach
is the only class in which the MFCC classifier significantly outperforms the E/D classifier. The most
commonly-returned labels for the Beach scene by the E/D classifier are Quiet Street and Busy Street,
perhaps due to the aforementioned broadband noise from ocean waves yielding spatial features similar
to that of passing cars. This interpretation is corroborated by Figure 5, which shows elevation estimates
extracted from 30-s segments of Beach, QuietStreet and TrainStation recordings as heat maps for
comparison. The Beach and QuietStreet plots both show large areas across time and frequency where
elevation estimates remain broadly consistent at around 90°, indicating the presence of broadband
noise sources dominating around that angle. The TrainStation plot, on the other hand, shows much
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more erratic changes in elevation estimates across time, and indeed there is no confusion between
Beach and TrainStation using the E/D classifier.
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Figure 3. Mean and standard deviation classification accuracies across all folds for each scene class
using the E/D-GMM classifier.
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(a) MFCC features
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Figure 4. Confusion matrices of classifiers trained using MFCC features and Elevation/Diffuseness
features extracted using DirAC. Figures indicate classification percentages across all folds (from [39]).
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(a) Beach
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(b) QuietStreet
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(c) TrainStation

Figure 5. Heat maps depicting elevation estimates extracted from 30-s segments of Beach, QuietStreet
and TrainStation recordings.
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It is interesting to consider instances where the E/D classifier considerably outperforms the
MFCC classifier, such as with Pedestrian Zone, which is classified 97% accurately by the E/D classifier
whereas the MFCC classifier only manages 52%. This indicates that the spatial information present in
pedestrian zones is much more discriminative than the spectral information, which seems to share
common features with both quiet streets and train stations. Further to this, it is interesting to investigate
the instances where there is significant confusion present in both classifiers. Park, for instance, is most
commonly misclassified as QuietStreet by both classifiers. This is probably due to the fact that both Park
and QuietStreet scenes are both characterised as being relatively quiet locations, yet still in the midst
of urban areas. These recordings tend to contain occasional human sound and low-level background
urban ‘hum’ (as opposed to Woodland, which tends to lack this). In other cases, however, the specific
misclassifications do not always correspond. The most common misclassification of Shopping Centre
by the MFCC classifier is Pedestrian Zone, a result perhaps caused by prominent human sound found
in both locations. In contrast to this, for the E/D classifier the most common misclassification of
Shopping Centre is Train Station, and in fact there is no confusion with Pedestrian Zone at all. This
could be due to the similarity in acoustics between the large reverberant indoor spaces typical of train
stations and shopping centres, which could have an impact on the values calculated for elevation
and diffuseness.

Figure 6 shows Receiver Operating Characteristic (ROC) Curves for the individual models trained
to identify each location class. These curves evaluate each GMM’s performance as a one-vs-rest
classifier. The curves were generated by comparing the scores generated by each model with the
ground-truth labels for each scene and calculating the probabilities that a certain score will be given to
a correct clip (True Positive) or will be given to a clip from another scene (False Positive). These pairs
of probabilities are calculated for every score output from the classifier and when plotted, form the
ROC curve. The larger the area under the curve (AUC), the better the classifier. The curves shown in
Figure 6 show the mean ROC across the four folds. It can clearly be seen that the AUC values do not
follow the pattern of the classification accuracies shown in Figure 3. This discrepancy is most stark
in Figure 6a, which shows the Beach model to be the best individual classifier, with an AUC of 0.95.
This indicates that the Beach model is individually very good at telling apart Beach clips from all other
scenes. The very low Beach classification accuracy from the system as a whole could be explained by
the fact that all the other scene models have lower AUC values than the Beach model, which suggests
greater tendencies in the other models to give incorrect scenes higher probability scores.

It should be noted here that points on the ROC curves do not indicate absolute score levels.
For instance, a false positive point on any given curve will not necessarily be reached at the same
absolute probability score as that point on any other curve. It is therefore possible that the Beach model
tends to give lower probability scores in general than the other models, and is therefore most of the the
time ‘outvoted’ by other models.

These results suggest that classification accuracies could be improved by using the AUC values
from each model to create confidence weightings to inform the decision making process beyond the
basic summing of probability scores. A lower score from the Beach model could, for instance, carry
more weight than from the Train Station model, which has an AUC of 0.58, indicating performance at
only slightly higher than chance levels.
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Figure 6. ROC curves for each scene classifier, showing mean (solid line) and standard deviation (grey
area) of the curves calculated using results across all folds. Dotted line represents chance performance.



Appl. Sci. 2017, 7, x 12 of 14

4. Discussion

The results presented in Section 3 indicate that the collation of EigenScape has been successful
in that this classification exercise shows the suitability of this dataset for segmentation and
cross-validation. The good, but not perfect, degree of accuracy shown by the baseline E/D-GMM
classifier is very significant in that it goes some way towards showing the validity of this dataset in
terms of providing a good variety of recordings. Recordings within a class label are similar enough to
be grouped together by a classifier, whilst retaining an appropriate degree of variation.

These results suggest that DirAC spatial features extracted from Ambisonic audio could be
viable and useful features to use for acoustic scene identification. The simplicity of the classifier
used here indicates that higher accuracies could be gleaned from these features, perhaps by using
a more sophisticated decision making process, or simply more sophisticated models. Utilising
temporal features could be a compelling next step in this work. It would be especially interesting
to investigate whether ∆-azimuth values could be more discriminative than the azimuth values
themselves, being perhaps less dependent on microphone orientation. It is also worth noting that
all spatial analysis of this dataset so far has used only the 1st-order Ambisonic channels for feature
extraction. The 4th-order channels present in this database provide much higher spatial precision
that could enable more sophisticated feature extraction. The high channel count should also facilitate
detailed source separation that could be used for polyphonic event detection work. Event detection
within scenes should be a key area of research with this dataset moving forwards.

The size and scope of this database are such that there is a lot more knowledge to be gained
than has been presented here. The findings of this paper are important initial results that indicate the
investigation of spatial audio features could be a fertile new area in machine listening, especially with
a view to applications in environmental sound monitoring and analysis.

Supplementary Materials: The EigenScape database is provided freely to inspire and promote research work and
creativity. Please cite this paper in any published research or other work utilising this dataset. EigenScape Dataset:
http://doi.org/10.5281/zenodo.1012809; Baseline code and segmentation tools: https://github.com/marc1701/
EigenScape; Recording Map: http://bit.ly/EigenSMap.
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Abbreviations

The following abbreviations are used in this manuscript:

ASR Automatic Speech Recognition
MIR Music Information Retrieval
DCASE Detection and Classification of Acoustic Scenes and Events
ASC Acoustic Scene Classification
AED Acoustic Event Detection
MFCC Mel-Frequency Cepstral Coefficients
DOA Direction of Arrival
DirAC Directional Audio Coding
GMM Gaussian Mixture Model
E/D Elevation/Diffuseness
ROC Receiver Operating Characteristic
AUC Area Under the Curve



Appl. Sci. 2017, 7, x 13 of 14

References

1. Wang, D. Computation Auditory Scene Analysis: Principles, Algorithms and Applications; Wiley: Hoboken, New

Jersey, 2006.

2. Cherry, C. On human communication : a review, a survey, and a criticism; MIT Press: Cambridge, Mass, 1978.
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