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ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth

Texture Recognition

Shan Luo1,2,3,4, Wenzhen Yuan1, Edward Adelson1, Anthony G. Cohn2 and Raul Fuentes3

Abstract— Vision and touch are two of the important sensing
modalities for humans and they offer complementary informa-
tion for sensing the environment. Robots could also benefit from
such multi-modal sensing ability. In this paper, addressing for
the first time (to the best of our knowledge) texture recognition
from tactile images and vision, we propose a new fusion method
named Deep Maximum Covariance Analysis (DMCA) to learn
a joint latent space for sharing features through vision and
tactile sensing. The features of camera images and tactile data
acquired from a GelSight sensor are learned by deep neural
networks. But the learned features are of a high dimensionality
and are redundant due to the differences between the two
sensing modalities, which deteriorates the perception perfor-
mance. To address this, the learned features are paired using
maximum covariance analysis. Results of the algorithm on a
newly collected dataset of paired visual and tactile data relating
to cloth textures show that a good recognition performance
of greater than 90% can be achieved by using the proposed
DMCA framework. In addition, we find that the perception
performance of either vision or tactile sensing can be improved
by employing the shared representation space, compared to
learning from unimodal data.

I. INTRODUCTION

Vision and tactile sensing are two of the main sensing

modalities to perceive the ambient world for humans. We

employ eyes and hands in a coordinated way to fulfill

complex tasks such as recognition, exploration and manipu-

lation of objects: vision perceives the appearance, texture and

shape of objects at a certain distance whereas touch enables

the acquisition of detailed texture, local shape and other

haptic properties through physical interactions. In addition,

we have experience of “touching to see” and “seeing to

feel”. Specifically, when we intend to grasp an object, we

are likely to glimpse it first with our eyes to “feel” its

key features, i.e., shapes and textures, and estimate haptic

sensations. Such visual features become unobservable after

the object is grasped since vision is occluded by the hand and

becomes ineffective. In this case, touch sensation distributed

in the hand can assist us to “see” corresponding features. By

tracking and sharing these clues through vision and tactile

sensing, we can “see” or “feel” the object better.

Research conducted in neuroscience and psychophysics

has investigated sharing between vision and tactile sensing

[1]. Visual imagery has been discovered to be involved in

the tactile discrimination of orientation in normally sighted
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Fig. 1: (a) The GelSight tactile sensor [5]. (b) GelSight

data is collected by pressing the sensor on clothes. (c) The

GelSight image with markers (block dots) captured when no

object in contact with the sensor. (d) The GelSight image

collected when the coated membrane is deformed by the

cloth texture.

humans [2]. The human brain also employs shared models

of objects across multiple sensory modalities such as vision

and tactile sensing so that knowledge can be transferred from

one to another [3]. This sharing of information is especially

useful when one sense cannot be used. For instance, it has

been found that humans rely more on touch when the texture

has small details that are difficult to see [4].

Inspired by the synthesis of vision and tactile sensing in

humans, we apply the representation sharing across the two

modalities in the artificial perception. There are differences

between vision and tactile sensing. For vision, the field

of view (FoV) is large and global; there are factors that

can affect visual perception, e.g., scaling, rotation, transla-

tion, color variance and illumination.In contrast, for tactile

sensing, the FoV is small and local as direct sensor-object

interactions need to be made; the influence of scaling is

shielded as the real dimension and shape of the object

interacted with can be mapped to the tactile sensor directly,

whereas the impact of rotation and translation remains. In

addition, the different impressions of object shapes caused

by forces of various magnitudes and directions resemble the

variety of light and illumination conditions in vision. How

to learn a joint latent space for sharing features through
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vision and tactile sensing while eliminating or mitigating the

differences between these two modalities is the key issue we

will investigate in this paper.

We take cloth texture recognition as the test arena for our

algorithms as it is a perfect scenario for sharing features

through vision and tactile sensing: the tactile sensing can

perceive very detailed texture such as yarn distribution pat-

tern in the cloth whereas vision can capture similar texture

pattern (though sometimes is quite blurry). There are also

factors that only exist in one modality that may deteriorate

the recognition performance. For instance, color variance of

cloth is present in vision but is not demonstrated in tactile

sensing. We aim to extract the shared information of both

modalities while eliminating these factors.

In this paper, we propose a novel deep fusion framework

based on deep neural networks and maximum covariance

analysis to learn a joint latent space of vision and tactile

sensing. We also introduce a newly collected dataset of

paired visual and tactile data. The rest of paper is organized

as follows: related work is reviewed in Section II; the tactile

sensor GelSight is introduced in Section III; the new dataset

combining vision and tactile data is presented in Section IV;

the proposed framework is illustrated in Section V; experi-

mental results are presented in Section VI; conclusions and

future work are described in Section VII.

II. RELATED WORKS

A. Fusion of vision and tactile sensing

With attempts dated back to the 1980’s [6], tactile sensing

has been acting a supporting role for vision in most previous

works due to the low resolution of tactile sensors [7]–[9]. By

using the tactile device to confirm the object-sensor contact,

in [10] visual features are extracted first to form an initial

hypothesis of object shapes and tactile measurements are

then used to refine the object model. Hand-designed features

can also be extracted from tactile data to form a feature set

with visual features. In [11], image moments of tactile data

(both 2D and 3D) are utilized together with vision and action

features to create a feature set to facilitate grasping tasks. In

[12], to identify the content in a container by grasping, the

general container deformation is observed by vision and the

pressure distributions around the contact regions are captured

by tactile sensors. The knowledge embedded in vision and

tactile sensing can also be transferred from one to the other,

for instance, in [13] vision and tactile samples are paired to

classify materials. In more recent works [14] and [15], deep

neural networks are used to extract adjectives/features from

both vision and haptic data. Differently from the prior works

using low-resolution tactile sensors (for instance a Weiss

tactile sensor of 14×6 taxels used in [16], [17]), we use

a high-resolution GelSight sensor of (320×240) to capture

more detailed textures. The GelSight sensor is also used in

[18] to fuse vision and touch data where the goal is rather

to reconstruct a point cloud representation and there is no

learning of the key features of the two modalities.

B. Multi-modal deep learning

This work is broadly inspired by the emerging efforts put

into learning latent features from multiple modalities. Many

works have attempted to investigate the cross-modal relations

between vision and sound (especially speeches) modalities

[19]. One interesting example is [20] where sounds are

produced from image sequences. The correlations between

other modalities can also be learned from the features using

deep neural networks, for example, matching images and

caption texts [21], and inferring mechanical properties of

fabrics from depth and touch data [22]. In this work, we

leverage the natural synthesis of vision and tactile sensing to

learn deep shared representations of these two modalities.

C. Surface texture recognition

Most previous works on texture recognition employ data

from either vision or tactile sensing only. The most popular

hand-crafted features for texture recognition are based on

Local Binary Pattern (LBP) descriptors that have been ap-

plied in either visual [23] or tactile [24] texture recognition.

In tactile sensing, it is common to move a high-frequency

dynamic sensor across an object surface: by sensing the

friction arising from the contact, the surface textures can be

recognized [25]. In such works, single-point contact sensors,

e.g., whisker-like sensors, are commonly used. In this paper,

a high-resolution GelSight sensor is held stationary to press

on the texture, which is a much harder problem than the

standard texture recognition approaches using a dynamic

contact sensor. Furthermore, to the best of the authors’

knowledge, this is the first work to explore both tactile

images and vision data for texture recognition.

III. GELSIGHT TOUCH SENSOR

The GelSight tactile sensor used in this paper is a high-

resolution tactile sensor that can capture the surface geometry

and texture of interacted objects. It consists of a camera at

the bottom and a piece of elastometric gel coated with a

reflective membrane on the top, as shown in the Fig. 1a. The

elastomer deforms to take the surface geometry and texture

of the objects that it interacts with. The deformation is then

recorded by the camera under illumination from LEDs of

R, G, B colors that project from various directions through

light guiding plates towards the membrane. In this manner,

a 3-dimensional height map of the touched surface can then

be reconstructed with a photometric stereo algorithm [5].

To make the transparent elastomer sensitive to the contact,

after trials, the elastomer made of the silicone rubber XP-

565 from Silicones, Inc., with the neo-Hookean coefficient µ

of 0.145MPa, is found most suitable for the task. We use a

webcam of 960×720 and implement the surface topography

recovery system on a Matlab platform with the webcam

running at over 10 Hz. On the elastomer membrane there

are some specially designed markers (square with side length

0.40mm) that can improve the tactile spatial acuity [26].

The sensor is made with inexpensive materials and can

give high spatial resolution. In addition, the sensor is not

affected by the optical characteristics of the materials being



measured like visual cameras, which allows the capture of

a wide range of material surfaces. Furthermore, the use of

compliant elastomer gel allows the measurement of rich

physical properties of objects interacted with.

IV. VITAC CLOTH DATASET

We have built a clothing dataset of 100 pieces of everyday

clothing of both visual and tactile data, which we call the

ViTac Cloth dataset. The clothing are of various types and

are made of a variety of fabrics with different textures. In

contrast to available datasets with only either visual images

[23] or tactile readings [24] of surface textures, the data of

two modalities, i.e., vision and touch, was collected while

the cloth was lying flat. The color images were first taken

by a Canon T2i SLR camera, keeping its image plane

approximately parallel to the cloth with different in-plane

rotations for a total of ten images per cloth. As a result,

there are 1,000 digital camera images in the ViTac dataset.

The tactile data was collected by a GelSight sensor. As

illustrated in Fig. 1b, a human holds the GelSight sensor

and presses it on the cloth surface in the normal direction.

In Fig. 1c, a GelSight image with markers is shown as the

sensor appears in a non-contact state. As the sensor presses

the cloth, a sequence of GelSight images of the cloth texture

is captured, as shown in Fig. 1d. On average each cloth was

contacted by the sensor for around 30 times and the number

of GelSight readings in each sequence range from 25 to 36.

In total 96,536 GelSight images were collected. All the data

is based on the shell fabric of the cloth; any hard ornaments

on the clothes were precluded from appearing in the view

of GelSight or digital camera. Examples of digital camera

images and GelSight data are shown in Fig. 2.

V. DEEP MAXIMUM COVARIANCE ANALYSIS

In this section, we introduce the framework of Deep Max-

imum Covariance Analysis (DMCA) to match the weakly-

paired vision and tactile data. As illustrated in Fig. 3,

DMCA first computes representations of the two modalities

by passing them through separate multiple stacked layers

of a nonlinear transformation and then learns a joint latent

space for two modalities such that the covariance between

two representations as high as possible.

Let X = (x1, ..., xn) ⊂ R
d×n and X ′ = (x′

1
, ..., x′

n′) ⊂
R

d′
×n′

be the data sets from two sensing modalities, i.e.,

camera images and GelSight data, respectively. We aim to

obtain the functions f and f ′ to map both X and X ′ to

a shared space R
q . In this multimodal setting, unimodal

methods can still be used by just processing each data

domain independently such as Principal Component Anal-

ysis (PCA). However, the functions f and f ′ can depend

on both modalities, therefore, better representations of the

information can be retained by finding the dependencies

between different modalities than those methods using only

unimodal information. There are several methods that can be

applied for learning the shared representations of multiple

modalities. One typical example is Canonical Correlation

Analysis (CCA) that has been used not only for shallowly

learned features but also in the context of deep learning

[21]. But CCA is a distinctive method that constructs lower-

dimensional representations suitable for a specific task. It

orients the learned features to be projected in a space that

discards the information not relevant to this task. In this

manner, it can achieve a high performance in one task

whereas cannot perform well in another. For this reason, we

choose the generative dimensionality reduction method MCA

to find lower-dimensional representations of the multimodal

data that are appropriate for various tasks. MCA, also known

as singular value decomposition (SVD) analysis, constructs a

covariance matrix between two datasets and then performs a

SVD of the resulting matrix. It is a useful statistical technique

for extracting coupled modes of variability between data

from two modalities.

Before applying MCA, we learn representations for the

two modalities separately to better represent the data from

each modality. We feed the camera and GelSight images into

two neural networks respectively, as shown in Fig. 3. In this

work, the GelSight data is fed into the networks as separate

images. In [15], a ConvNet is built to predict the tactile

information during poking given an image of the object and

the pretrained CNNs have been used. Following this work,

we initialize by pre-training the AlexNet architecture [27]

and transfer the learned weights for each part of the network.

The learned hidden representations from the output of the

FC8 layer H ⊂ R
D×n and H ′ ⊂ R

D′
×n′

are fed into

the MCA layer, where D and D′ are the dimensions of the

hidden representations in the two modalities respectively.

Given two fully paired representation H and H ′, i.e., there

is a pairing between each hi and h′

i. MCA seeks pairs of

linear projections W , W ′ that maximise the covariance of

the two views:

(W ∗,W ′∗) = argmax
W,W ′

cov(WTH,W ′TH ′)

= argmax
W,W ′

tr[WTHH ′TW ′]
(1)

As mentioned, MCA is a good method for multimodal

dimensionality reduction, but it requires fully paired data that

is not the case in many applications. For example, in our

situation, the visual and GelSight images cannot be fully

paired as they are collected in different phases. As tactile

data is attained, the camera vision will be obstructed by the

GelSight sensor and the state of the cloth will be changed due

to the GelSight sensor-cloth interaction. Therefore the data

from the two modalities cannot be fully paired. To solve this

kind of weakly paired situation, we employ a variant of MCA

proposed in [13]. Similar to Eq. 1, we perform multimodal

dimensionality reduction by solving a SVD problem with

projection matrices W and W ′ and also a n × n′ pairing

matrix Π to pair instances from both modalities:

(W ∗,W ′∗, Π) = argmax
W,W ′,Π

tr[WTHΠH ′TW ′] (2)

Here, Π ∈ {0, 1}n×n′

, i.e., the elements of Π are either

1 or 0. If Πi,j = 1, it implies a pairing between the ith



Fig. 2: Example camera images (top row) and corresponding GelSight images (bottom row) from the ViTac Cloth dataset.

To make the textures visually distinguishable, the images shown here are enlarged parts of raw camera/GelSight images.

Conv1 ReLU1

Conv2 ReLU2

ReLU7 FC8

Maximum 
Covariance 

Analysis

Vision
Data

GelSight
Data

…...
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Fig. 3: Architecture of the proposed network. The camera and GelSight images are fed into two separate networks and the

learned features from the two pipelines are used to achieve a joint latent space using a MCA block.

vision sample and the jth tactile sample. Each sample is

only paired to at most one sample in the other modality, i.e.,
∑n

i=1
Πi,j ≤ 1 for all j = 1, ..., n′ and

∑n′

i=1
Πi,j ≤ 1 for

all i = 1, ..., n. In this manner, the strong pairings between

individual samples in a weakly paired group can be inferred.

As (2) requires both continuous optimization for W and

W ′, and combinatoric optimization for Π , therefore, there

is no single closed-form solution to this optimization. To

solve this problem, alternating maximization is applied. First,

assumed that Π is known, SVD can be performed as in (1):

(W ∗,W ′∗) = argmax
W,W ′

tr[WTHΠH ′TW ′] (3)

Second, assuming that W and W ′ are known, i.e.,

Π∗ = argmax
Π

tr[WTHΠH ′TW ′] (4)

This corresponds to a linear assignment problem and can

be solved using the Jonker-Volgenant algorithm that needs

expensive computations, especially for the singular value

decompositions. In the application of learning shared rep-

resentations of vision and tactile sensing, the dimension of

learned features required to encode the rich information in

camera and GelSight images is in the order of 103, for

example, we have D = 4, 096 for the hidden representations

of camera images. To make DWCA practically applicable to

our application, we implement both the feature learning and

MCA phases on a GPU with the CUBLAS and CUSOLVER

libraries distributed as part of NVIDIA’s CUDA Program-

ming Toolkit1 to compute linear algebra subroutines.

1https://developer.nvidia.com/cuda-toolkit/

VI. EXPERIMENTS AND ANALYSIS

We evaluate the proposed DMCA method on cloth texture

recognition using tactile and vision data in the ViTac Cloth

dataset. We first perform the standard unimodal classification

using training and test data of the same single modality. Then

we examine the cross-modal classification performance, i.e.,

training a model based on one sensing modality while apply

the model on data of the other modality. This is based on

the assumption that visually similar textures are more likely

to have similar tactile texture, and vice versa. Lastly, we

consider a shared representation learning setting, which is to

learn a shared representation of both modalities that is used

to recognize textures with single modality in the test phase.

The data in the two modalities in the ViTac Cloth dataset is

split into two parts of a 9:1 ratio for training and test data. As

stated earlier, the GelSight data and camera images cannot be

fully paired, therefore, we use the weak pairing information

of which cloth surface the data is recorded from. For each

camera image or GelSight reading, we resize the image to

256 × 256 first and then extract the center part of image

227 × 227 as the input of the neural networks. To measure

the performance of the proposed DMCA method, we use the

standard multi-class accuracy as our performance metric. We

implement our code in Keras with a Theano backend2.

A. Unimodal cloth texture recognition

We first perform the classic unimodal recognition task

using data of each single modality. Following [15], we fine-

tune the AlexNet model and replace the last layer with

2http://deeplearning.net/software/theano/



TABLE I: Texture recognition using unimodal modalities and

cross modalities of vision and tactile sensing

Training data Test data Recognition accuracy

Vision Vision 85.9%

Tactile Tactile 83.4%

Vision Tactile 16.7%

Tactile Vision 14.8%

a fully connected layer of 100 outputs, where 100 is the

number of texture classes. We use cross-validation to deal

with over-fitting, with a learning rate of 0.001, batch size

of 128 and 20 epochs used, and the rest of the experiments

follow the same configuration. When we use the data from

the GelSight sensor for both training and test set, an accuracy

of 83.4% can be achieved for the cloth texture recognition.

And when we take the data from the digital camera for both

training and test set, an accuracy of 85.9% can be obtained.

This shows that the feature representations learned by deep

networks enable texture recognition with either modality

alone. However, especially for robotics, training data of a

particlar modality is not always easy to obtain. For instance,

due to limited options of off-the-shelf high-resolution tactile

sensors and the high cost of sensor development, tactile data

for objects is neither commonly available nor easy to collect;

also, detailed textures of objects are not always easy to access

by digital cameras either. To this end, next we explore the

cross-modal cloth texture recognition to train a model using

one sensing modality while applying the model on data from

the other modality.

B. Cross-modal cloth texture recognition

It is possible to recognize cloth textures using data of one

modality with the model trained on the other because both

GelSight and camera data are presented as image arrays and

cloth textures appear to be of similar patterns in both as

shown in Fig. 2, which is similar to the case when humans

see/feel cloth textures. The recognition results of unimodal

and cross-modal cloth texture recognition are listed and com-

pared in Table I. Perhaps surprisingly, the cross-modal cloth

texture recognition performs much worse than the unimodal

cases. When we evaluate the test data from GelSight sensor

using the model trained on vision data, an accuracy of only

16.7% is achieved. It is even worse when we evaluate the

test data from the digital camera using the model trained on

GelSight data, only an accuracy of 14.8% is obtained. The

probable reasons are factors that make the same cloth pattern

appear different in the two modalities. In camera vision,

scaling, rotation, translation, color variance and illumination

are present. For tactile sensing, impressions of cloth patterns

change due to different forces applied to the sensor while

pressing. These differences mean that the learned features

from one modality may not be appropriate for the other. To

extract correlated features between vision and tactile sensing

and preserve these features for cloth texture recognition

while mitigating the differences between two modalities, we

explore the proposed DMCA method to achieve a shared

representation of textures for both modalities.
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Fig. 4: Cloth texture discrimination accuracy with GelSight

test data for the different numbers of shared space dimen-

sions, by applying DMCA to bimodal data.

C. Shared representation learning for cloth recognition

In the experiments, we assume that both camera and Gel-

Sight data are present during the model learning phase, but

only GelSight or camera data is used in the later application

to new data. The setting can help us to find whether DMCA

can acquire low dimensional representations that demonstrate

better information embedded in the bimodal data than those

learned from unimodal data.

We first investigate how the cloth texture classes are

classified when only GelSight data is present. As shown in

Fig. 4, the classification performance of DMCA improves

as the output dimension becomes larger. As the output

dimension continues to increase, the accuracy of DMCA

tends to level off and can achieve a classification accuracy of

around 90%. The results show that in DMCA complementary

features can be learned from vision to help the tactile

modality discriminate the cloth textures. This is valuable

for applying the shared representations in the tactile texture

discrimination. As tactile data of different objects is not easy

to collect due to the high cost of sensor development and

time consuming data collection process, it is feasible to add

vision data to form a multimodal shared representation with

tactile modality so that we can reduce the efforts to collect

large volumes of tactile data.

We then look into how the cloth classes can be classified

when only camera images are available. As shown in Fig. 5,

a similar performance can be observed for DMCA. The clas-

sification performance of DMCA enjoys a dramatic increase

as the output dimension increases, and then levels off above

dimension20, achievingj a classification accuracy of 92.6%.

The results demonstrate that in DMCA complementary fea-

tures can also be learned from tactile modality to help vision

discriminate cloth textures.

Overall, the results show that the proposed DMCA learn-

ing scheme performs well on the application of tactile-vision
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Fig. 5: Cloth texture discrimination accuracy with camera test

images for the different numbers of shared space dimensions,

by applying DMCA to the bimodal data.

shared representations in either tactile or visual cloth texture

recognition. This confirms that MCA is a powerful tool not

only for hand-crafted features [13], but also for features

learned by deep networks. It has also been demonstrated

that inclusion of the other modal data in the learning phase

can improve the recognition performance when only one

modality is used in the test phase.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework for learning

joint latent space shared by two modalities, i.e., camera

vision and tactile data in our case. To test the proposed

framework, a set of experiments was conducted on a newly

collected ViTac dataset of both visual and tactile data for a

task of cloth texture recognition. Overall, we observe that

(1) both vision and tactile sensing modalities can achieve

a good recognition accuracy of more than 90% by using

the proposed DMCA method; and (2), the perception per-

formance of either vision or tactile sensing can be improved

by employing the shared representation space, compared to

learning from unimodal data. There are several directions

for future work: the proposed DMCA framework could

be applied in other applications, such as learning shared

representations from videos, audio soundtracks and subtitles;

or temporal information could be included in the latent space.
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