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Abstract: We consider user to cell association in a het-

erogeneous network with a mix of LTE/3G and WiFi cells.

Individual user preferences are often neglected when a user

to cell association decision is made. In this paper we propose

use of a recommender system to inform the mapping of users

to cells. We demonstrate the effectiveness of the proposed

grouped-based user to cell associations for a set of syntheti-

cally generated user/cell ratings.

I. INTRODUCTION

In this paper we study the use of collaborative filtering based

recommender systems to assist users with wireless access

point selection. In metropolitan areas there is widespread avail-

ability of both cellular and WiFi services. LTE/3G coverage

is ubiquitous in urban areas. Many enterprises, schools, and

cities provide WiFi services to individuals. Hotspot directories

report large numbers of WiFi access points in urban areas,

e.g. jiwire in the US reports 400 to 1000 commercial WiFi

networks in each of the top ten U.S. metropolitan areas [1]

and the Fon service has aggregated more than 3 million access

points in the UK alone [2]. This is in addition to home-based

WiFi services. Currently almost all mobile devices possess

both cellular and WiFi interfaces, and smartphone users can,

and do, switch among different WiFi access points and their

cellular connection. Users therefore often have a great deal

of choice but, currently, little information on which to base

this decision other than the signal level bars displayed to

them by their handset. Note that from now on we will use

access point to interchangeably mean a WiFi access point or

a cellular connection since our recommendation approach is

agnostic to the wireless technology used. Unfortunately, signal

strength by itself is often not a good indicator of the usefulness

of an access point to a particular user: access points might

block certain applications [3], may have different terms and

conditions regarding user privacy, cost of the service etc and in

other ways may have poorer performance than that proclaimed

by the signal strength [4]. It is this observation which motivates

the provision of recommendations to a user as to which of

the access points available in a location are likely to be most

satisfactory for that particular user.

The setup we consider is illustrated schematically in Fig 1.

We have a set of n users and m access points. After user u

makes use of an access point v they rate the utility provided

to them – this is a matter of personal preference that reflects
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Fig. 1: Illustrating the setup considered. A user is in an area with
multiple access points (WiFi access points and LTE/3G cellular
connections). In the past the user has rated a subset of these access
points, as have other users. These ratings reflect user satisfaction and
take account of aspects such as cost, applications blocked/allowed,
congestion as well as signal strength. The aim is to use this data to
collaboratively recommend to a user the access points which they are
most likely to prefer.

the dollar price paid, ease of use, QoS, applications supported

and so on. Gathering these ratings together gives an n × m

ratings matrix R, where element Ruv is the rating by user u of

access point v. This matrix is typically sparse, since each user

individually may rate only a small number of access points.

Our aim is to estimate the missing entries in R, i.e. to provide

predictions of the ratings a user would make for access points

which are currently unrated. Those access points which are

predicted to have a high rating are then recommended to a

user. In addition to the sparseness of rating matrix R, which

is common in recommender systems, challenges include the

heterogeneity of the user population and the sensitivity of

ratings (and so recommendations) to user location. It is these

challenges which we seek to address in this paper.

Our main contributions are as follows. We propose a novel

matrix factorisation based recommender approach for use with

wireless access point data. This approach uses a mixture model

to capture sensitivity of access point ratings to user location

and clustering of users into a number of groups to capture user

heterogeneity while still allowing accurate predictions when

the ratings data is sparse. We evaluate the performance of

this approach for a range of network conditions, including a

realistic model of a downtown university campus.

II. RELATED WORK

The task of recommending cell selection based on learning

of user preferences has received very little attention in the

literature to date. Of course there exists an extensive body of
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research that highlight the benefits of offloading user traffic

to the WiFi or unlicensed LTE networks [5] - [6]. However,

the task of network selection is almnost always viewed as

a network-wide utility optimisation problem whereby the

network provider seeks to maximise data rates and/or min-

imise delays. This work rarely takes much account of the

requirements and preferences of the individual users. Today

different WiFi APs and cellular providers offer a variety of

services and a user can manually switch between different APs

in order to identify its preferred AP. Users are typically only

informed of the available access points and their associated

signal quality. A notable exception is [7] in which a more

sophisticated approach called WiFi-Reports is proposed. This

is a collaborative service that provides WiFi clients with

historical information about AP performance and application

support i.e. beyond just signal strength.

III. PRELIMINARIES

Matrix factorization approaches are a popular and successful

way of making recommendations. The ratings matrix R ∈
R

n×m is modelled as the product UT
V of matrix U ∈ R

d×n

and matrix V ∈ R
d×m. The idea is that the entries in column

Vv of matrix V capture the characteristics of resource v as a

point in a latent d-dimensional feature space and the entries

of column Uu the weights that user u attaches to these, so that

the rating of resource u by user u is the inner product UT
u Vv.

Importantly, d is much smaller than either n or m. It is this

which allows predictions to be made even when the matrix R

is sparse.

To estimate U and V a common approach is to adopt the

following statistical model. The rating supplied by user u for

resource v is a Gaussian random variable XRuv
∈ R with

mean U
T
uV v and variance σ2. That is,

Prob(XRuv
= Ruv|Ũ ,V ) ∼ e−φuv(Ruv)/σ

2

where φuv(Ruv) := (Ruv − UT
u Vv)

2. Let O ⊂ {1, · · · , n} ×
{1, · · · ,m} denote the set of user-resource rating pairs that

are contributed by the users and ZO = {XRuv
, (u, v) ∈ O},

RO = {Ruv, (u, v) ∈ O}. The conditional distribution over

these observed ratings is,

Prob(ZO = RO|U ,V ) ∼
∏

(u,v)∈O

e−φuv(Ruv)/σ
2

Assuming Gaussian priors for U and V with zero mean and
variance σ2

U and σ2
Ṽ

, respectively, the log-posterior is then

−

1

σ2

∑

(u,v)∈O

φuv(Ruv)−
1

σ2
U

trU
T
U −

1

σ2
V

trV
T
V + C (1)

where C is a normalising constant. We now estimate U

and V as the matrices which maximise this log-posterior.

Observe that since d is small this estimation can be carried

out successfully even when the set of observations O is small

(i.e. the observed elements of matrix R are sparse).

It is well known that users can often be grouped together by

their preferences. For example, users in the same group may

use similar mobile applications, have similar price sensitivity

and so on. Following [8] this can be captured by further

factorising matrix U as ŨP where Ũ ∈ R
d×p and P ∈ R

p×n.

Column Ũg captures the preferences of the g’th group of users

(referred to as a nym in [8]) and Pu the mapping from user u

to these groups. In [8] the elements of P are {0, 1} valued and

P is column stochastic (the columns sum to one) so that each

user is a member of a single group. By learning P as well as Ũ

and V based on the observed data we can carry out automatic

clustering of users into groups in parallel with factorising the

ratring matrix. With this change the log-posterior is now

−

1

σ2

∑

(u,v)∈O

φ̃uv(Ruv)−
1

σ2
Ũ

trŨ
T
Ũ −

1

σ2
V

trV
T
V + C (2)

with φ̃uv(Ruv) := (Ruv − (PŨ)TuVv)
2. To maximise the

log posterior (2), we can apply an iterative algorithm which

alternates between the following two steps:

1) Using the current estimates for the matrix of average

nym-item ratings R̃ and the number Λ(v) of users in

each nym who rate item v, estimate Ũ , V .

2) Given the current estimates for Ũ , V each user u

updates their column P u in P by solving

minPu∈I

∑
v∈V(u)(Ruv − P

T
u Ũ

T
V v)

2 where I =
{ei, i = 1, p}, ei the vector for which element i equals

1 and all other elements equal to 0.

IV. RECOMMENDING WIRELESS ACCESS POINTS

Our problem differs in a number of significant ways from

the standard matrix factorisation setup outlined above. Perhaps

the most important difference is that we expect the rating

assigned by a user to an access point to depend on the user’s

location. Namely, when close to an access point we expect that

the rating may be higher than when further away. We do not,

therefore, have a single rating by a user for an access point

and cannot construct a single rating matrix R of user-item

ratings.

A. Location-based Mixture Model

To accommodate this location dependence we propose the

following mixture model approach. We begin by dividing

the geographical area A of interest into a set of (possibly

overlapping) smaller patches Ai ⊂ A, i = 1, 2, . . . , q such that

∪q
i=1Ai = A. These patches might, for example, be selected

to be centered on regions where the WiFi access points are

most dense or based on local geographical knowledge. The

Ruv =

q∑

i=1

d(u, i)∑q
j=1 d(u, j)

Ri,uv (3)

where Ri ∈ R
n×m is a rating matrix associated with patch Ai

(ratings made when users are located in patch i), and d(u, i) is
the distance between the current position of user u and patch i.
We will return to the choice of an appropriate distance metric
shortly. Decomposing Ri as U

T
V i and assuming Gaussian

priors on U , V i and Gaussian noise on the ratings the log-
posterior is

−

1

σ2

∑

(u,v)∈O

ψuv(Ruv)−
1

σ2
Ũ

q∑

i=1

trU
T
U −

1

σ2
V

q∑

i=1

trV
T
i V i +C

(4)
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with ψuv(Ruv) := (Ruv −
∑q

i=1
d(u,i)∑q

j=1
d(u,j)

U
T
u (V i)v)

2.

To allow automatic clustering of users into groups (which

we refer to as automated group learning) we further factorise

U as ŨP where Ũ ∈ R
d×p and P ∈ R

p×n. With this change

the log-posterior becomes

−

1

σ2

∑

(u,v)∈O

ψ̃uv(Ruv)−
1

σ2
Ũ

q∑

i=1

trŨ
T
Ũ −

1

σ2
V

q∑

i=1

trV
T
i V i + C

(5)

with

ψ̃uv(Ruv) := (Ruv − (ŨP )Tu

q∑

i=1

d(u, i)∑q
j=1 d(u, j)

(V i)v)
2 (6)

Note that we use the same matrix P mapping from users to

groups for all patches Ai since we assume user preferences do

not change significantly with location. User preferences may,

of course, vary with their role which in turn may vary with

location, e.g. when at home and when at the workplace, but

we can capture this within our model by treating a change in

role as effectively the introduction of a new user.

B. Learning Algorithm

We assume1 that the set of patches Ai, i = 1, . . . , q is

given and also the distance metric d(u, i). This allows existing

matrix factorisation approaches to be applied in a relatively

straightforward manner. Namely, to maximise the log posterior

(5), we can apply an iterative algorithm which alternates

between the following two steps:

1) Using the current estimates for the matrix of group-item

ratings R̃i := Ũ
T
V i in patch Ai and the number Λ(v)

of users in each group who rate item v, estimate each

of Ũ , V i, i = 1, . . . , q in turn. That is, we first hold

V i, i = 1, . . . , q fixed and estimate Ũ then hold Ũ

fixed and estimate V i in turn for i = 1, . . . , q. Each

of these optimisations is convex and, indeed, is just a

least squares problem and so its solution is known in

closed-form.

2) Given the current estimates for Ũ , V i each user u

updates their column P u in P by solving

min
Pu∈I

∑

v∈V(u)

(Ruv − P
T
u Ũ

T
q∑

i=1

d(u, i)∑q

j=1 d(u, j)
(V i)v)

2
(7)

where2 I = {ei, i = 1, p}, ei the vector for which

element i equals 1 and all other elements equal to 0. This

optimisation is non-convex but can be trivially solved

1Local geographical information is often available that makes defining the
patches Ai relatively straightforward e.g. using knowledge of buildings with
many access points where users tend to congregate. Alternatively, clustering
approaches such as k-nearest neighbours might be used to induce patches
based on measurements but we leave this as future work.

2Note that it is straightforward to extend consideration to vectors P u which
are not restricted to be (0, 1) valued but this comes at the cost of increased
computational complexity and potentially also reduced privacy since when
P u is (0, 1) valued step 2 can be efficiently carried out locally within a
users mobile handset. Although we do not consider privacy further here due
to lack of space, it is increasingly recognised as being an important issue in
recommender systems e.g. see [8] and references therein.

by simply calculating the objective for each element in

(small) set I and selecting the lowest valued.

C. Convergence

We omit the proof for sake of brevity but it can be readily

verified that each step of the learning algorithm in Section

IV-B is a descent update. Hence, the algorithm is guaranteed

to converge to a stationary point of the log-posterior. Since

the log-posterior is non-convex (even though it is convex in

P , Ũ , V i, i = 1, . . . , q individually it is not jointly convex in

these matrices) we have no guarantee that the stationary point

to which the algorithm converges is not a local minimum or

even a saddle point. However, by starting from a number of

different initial conditions we can gain some confidence in its

convergence to a reasonable point and, as we will see in the

next section, experimental studies indicate that convergence is

typically both fast and to a reasonable minimum.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed access point

recommender system with automatic group learning using

synthetic datasets, i.e. where we know the ground truth.

A. User Rating Model

For evaluation purposes we model the rating Ru,a of access

point a by user u located in patch Ai as

Ri,ua = si,ua − Cu (8)

where si,ua is the data rate of user u when using access point

a from patch Ai and Cu denotes the cost of user u (e.g. the

cost charged for data access).

Having the user rating depend on the achieved rate si,ua
is natural. For our evaluation we assume that users belong to

one of two groups, namely have either Cu := 0 or Cu := 25.

This allows us to capture, albeit in a crude way, users with

differing price sensitivities. Users are assigned uniformly at

random to one of these two groups. This simple model neglects

the impact of e.g. blocking of certain applications by access

points, but can be readily extended to include such effects.

B. Small Geographic Area

We begin by considering a small geographic area corre-

sponding to a single patch Ai within which user ratings

are captured by rating matrix Ri. We will consider a more

accurate path loss model shortly, but initially we let the rate

sua of user u when using access point a be drawn from a

Gaussian distribution with mean µs and standard deviation

σs. Fig 2 illustrates the corresponding user ratings (9) for two

example realisations. In the left-hand plot the variance σs of

the rates sua is relatively small and the presence of two groups

of users is evident. In the right-hand plot the variance in the

rates is higher with the result that the user ratings are also

more variable.

Unless otherwise stated we use the network settings and

recommender system parameters summarised in Table I. We

measure the performance of the recommender system by
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Fig. 2: Illustrating the full user ratings matrix when µs = 50 Mbps.

Parameter Value

Network

Number of cells (m) 20
Mean users’ throughput (µs) 50
Standard deviation of users’ throughput (σs) 10
Learning Algorithm

Number of groups (p) 2
Dimension of the feature space (d) 2
Number of runs 10

TABLE I: Network and recommender system parameters.

holding back a subset consisting of 20% of the ratings selected

uniformly at radnom without replacement and then calculating

the root mean square (RMSE) between the predicted ratings∑q
i=1

d(u,i)∑q

j=1
d(u,j)

U
T
V i and true user ratings R in this subset.

Results shown are the mean and standard deviations over at

least 10 random realizations.

1) Prediction error vs. number of groups used and sparsity

of ratings: Figure 3(a) illustrates the impact of the number of

groups used on the automatic group learning algorithm (i.e.

when grouping matrix P is estimated and the dimension of P

is varied). It can the seen from Figure 3(a) that as the number

of groups used in increased from 1 to 2 there is a sharp drop

in the RMSE, as might be expected. As the number of groups

used is increased further, the RMSE increases slightly since the

number of groups is now larger than the true number of user

groups. Also shown for comparison is the RMSE obtained

when using ordinary matrix factorisation (P is held equal

to the identity matrix I , corresponding to each user being

assigned to their own group). It can be seem that this RMSE

is slightly higher than that with automatic group learning and

that as the number of groups in increased the RMSE with

automatic group learning rises towards the value for ordinary

matrix factorisation.

While Fig 2 shows the full rating matrix in practice each

user typically only rates a relatively small number of access

points and so the observed ratings matrix is sparse (has many

missing entries). We evaluate the impact of the degree of

sparsity on recommender performance by removing random

subsets of the ratings in each row. The ratio of the removed

ratings to the size of the ratings matrix is referred to as the

missing values ratio. When this is zero then the full rating

matrix is observed, when it is close to one then only very few

user ratings are observed. In online recommender systems a
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Fig. 3: RMSE of the recommender system predictions vs. the number
of groups p used and the missing values ratio. m = 20 access points,
n = 1000 users. In (b) with automatic group learning p = 2 is used.
In legend BLC denotes automatic group learning and MF ordinary
matrix factorisation.
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Fig. 4: RMSE of the recommender system predictions with automatic
group learning vs. the number of ratings and the impact of the number
of users n on the RMSE vs the missing values ratio. Unless otherwise
stated m = 20, n = 1000, p = 2.

missing values ratio of 90% or greater is common.

Figure 3(b) plots the measured RMSe vs the missing values

ratio for both automated group learning and ordinary matrix

factorisation. It can be seen that the RMSE rises sharply

for ordinary matrix factorisation as the missing values ratio

increases, but increases much more slowly when automatic

group learning is used. Indeed when group learning is not used

and the missing values ratio is 0.8 the error in the predictions

is comparable with the ratings themselves i.e the predictions

are largely useless. What is happening here is that learning

the group structure allows users in the same group to leverage

each others ratings when making predictions, and so greatly

increase accuracy especially when the ratings are sparse.

2) Prediction error vs. number of users and access points:

Fig 4(a) shows the impact on the prediction RMSE as the

number of user ratings available for training the recommender

system is varied and as the number of access points m

is varied. Note that the dimension of the ratings matrix R

changes as m is varied but by holding the number of user

ratings available constant we can still directly compare RMSEs

as m varies. It can be seen from Fig 4(a) that the RMSE

is insensitive to both the number of ratings (so long as this

number is not too small, as we know from Figure 3(b); the

lowest number of ratings used is 500 in Fig 4(a)) and the

number of access points.

Fig 4(b) plot the prediction RMSE vs the missing values

ratio and the number of users n.
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Fig. 5: Convergence time of learning algorithm vs. number of access
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The RMSE of the recommender system predictions is shown

in Fig 4 as the number of users n and the number of access

points m is varied. It can be seen that as the missing values

ratio is increased the prediction error tends to increase, as

might be expected. It can also be seen that as the number

of users increases the prediction error tends to decrease,

although this effect is relatively small and also diminishes as

n increases.

3) Convergence Time: Fig 5 shows the convergence time

of the learning algorithm as the size of the network (number of

access points, number of users) is varied. Results are shown for

commodity hardware (a standard MacBook laptop equipped

with an Intel Core i7 2.5GHz CPU having 6 MB L3 cache

and an NVIDIA GeForce GT750M 2GB GPU). The group

learning matrix factorisation approach lends itself readily to

parallelisation and used of the GPU. As a result it can be seen

from Fig 5 that it runs fairly quickly even for reasonably large

numbers of ratings e.g. with 100 APs and 25000 users there

are 2.5M ratings and the computations take about 1.5s in total.

It can also be seen from Fig 5 that the the convergence time

increases roughly linearly with the number of access points,

but sublinearly in the number of users. The latter is to be

expected since Ũi and V i scale with the number of groups

rather than the number of users.

C. Larger Area

We now extend consideration to a larger area of 300m2,

where the user rating of an access point is now strongly

dependent on their location. The access point locations are

selected in turn by drawing a position uniformly at random

within the area considered, this position is rejected if it is

within 10m of another AP and another position is draw,

otherwise the position is retained and the location of the

next AP is considered. Users are located uniformly at random

within the area of interest. We use the path loss model from

3GPP standard [9]. The rates su,a are then calculated using

the standard Shannon formula for an AWGN channel. The

network parameters used are summarised in Table II.

We define patches Ai, i = 1, . . . , q by dividing the area into

a grid of q squares. Each user is mobile and can potentially

rate every access point from every patch, although in practice

we only observe a subset of these ratings. The rating of access

point a by user u located in patch Ai is calculated as

Ri,ua = min{40Mbps,max{1Mbp, si,ua}} − Cu (9)

Parameter Value

Network

Number of cells (m) 20
Carrier Frequency 2 GHz

Channel Bandwidth 20 MHz

Path Loss model micro urban [9]

AP transmit power 100 mW

UE noise power -80 dBm

Learning Algorithm

Number of groups (p) 2
Dimension of the feature space (d) 2
Number of runs 10

TABLE II: Network and learning algorithm parameters.
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Fig. 6: RMSE of the prediction error of group learning with n = 1000
users vs. number of p of groups used and number q of patches used.
The sashed lines in plot (a) indicate results with ordinary matrix
factorisation. Unless otherwise stated m = 20, p = 2, q = 64. Full
ratings matrix used.

That is, we cap the rate at 40Mbps and ensure that the

minimum is at least 1Mbps. In the recommender system we

select distance metric d(u, i) = 1 when user u is in the patch

Ai and d(u, i) = 0 otherwise.

We begin with a sanity check using the full matrix of ratings

for both training and testing (i.e. without a 20% hold-back

being used for testing). Fig 6(a) plots the measured RMSE

of the prediction error vs the number of groups used by the

automatic group learning approach. It can be seen that as

the number of groups increases from 1 to 2 there is a sharp

drop in the RMSE, as expected. Further, that the RMSE is

similar with both automatic group learning and ordinary matrix

factorisation. This confirms that both approaches are able to

model the full measured ratings matrix (i.e. with no missing

observations) fairly well and with similar levels of accuracy.

Fig 6(b) plots the RMSE with automatic group learning as the

number of patches is increased. Here the full ratings matrix

is again observed, with each user rating every AP from every

patch so that for 100 patches, 20 APs and 1000 users there

are 100 × 20 × 1000 = 2M ratings. It can be seen that the

RMSE falls as the number of patches q is increased, as might

be expected since more fine grained information becomes

available as q increases. Results are shown for both 20 and

100 APs, and are much the same for both.

We now proceed to consider the impact of missing observa-

tions and to evaluate the predictive power of the recommender

system for data not used for training i.e. its generalisation
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Fig. 7: RMSE of the prediction error vs sparsity of measured ratings
available. Data shown both with group learning (indicated as BLC)
and ordinary matrix factorisation (indicated as MF). Unless otherwise
stated, n = 1000 users, m = 20 APs, q = 64 patches, p = 2 groups.

performance. A subset of 20% of the full rating matrix is

selected unformly at random without replacement to be held

back and used for testing of prediction accuracy. Of the

remaining 80% of ratings a subset are selected unformly at

random without replacement according to a specified missing

values ratio (a missing values ratio of 0.5 corresponding to

drawing 50% of these ratings).

Fig 7(a) plots the prediction RMSE as the missing values

ratio is varied. Results are shown both with automated group

learning and with ordinary matrix factorisation. It can be seen

that, similarly to Figure 3(b), when automated group learning

is used the RMSE increases much more slowly as the number

of missing values increases.

Fig 7(b) shows the prediction RMSE as the number of

ratings is held constant and the number of patches is varied.

Note that the setup differs from Fig 6(b) not only in that a

20% hold-back is used for testing but also in that the number

of ratings is held constant at 10,000 whereas in Fig 6(b) the

number of ratings varies with the number of patches used (the

full ratings matrix is of size q ×m × n). Hence, in Fig 7(b)

the missing values ratio increases as the number of patches

increases. This is closer to the situation in reality, and leads

to a trade-off whereby as the patch size is made smaller (i.e.

the number of patches is increased) the diversity of ratings

for an access point due to location variations can be expected

to decrease, tending to improve prediction accuracy, but at

the same time the number of observed user ratings in each

patch will also tend to decrease, tending to degrade prediction

accuracy. As a result, we observe in Fig 7(b) that the RMSE

exhibits a minimum. For 10,000 ratings when ordinary matrix

factorisation is used the minimum is when the number of

patches is around q = 36 and when automated group learning

is used the minimum is at around q = 64 patches. The increase

in the optimum with automated group learning is due to its

better performance when ratings are sparse, see Fig 7(a).

We can gain some more insight into the prediction perfor-

mance from Figure 8. Figure 8(a) plots the true and predicted

ratings for one example AP as those users with Cu = 0 move

through a sequence of patches running through the middle of

the area considered (the physical locations are indicated by the

x and y axes of the plot). It can be seen that the true ratings

peak around the centre-back of the plot and decrease smoothly

100

y (m)

1

2

3

4

300

x (m)

5

200 150100 0

True rating

Predicted rating

(a)

-10 -5 0 5 10

Prediction Error

10
-3

10
-2

10
-1

10
0

F
ra

c
ti
o

n
 o

f 
R

a
ti
n

g
s

(b)

Fig. 8: Comparison of predicted and actual ratings for a representative
AP and users located in a single patch (location indicated on the x
and y axes). For n = 1000 users, m = 20 APs, q = 64 patches,
p = 2 groups and with group learning.

as the distance from the AP increases, in line with the path loss

model used. In contrast, within each patch the predicted ratings

for users sharing the same group are essentially constant, with

this constant value roughly equal to the mean rating of users

from that group in that patch. Since the recommender system

lacks location information more detailed than the patch in

which a user is located, this clearly is a sensible strategy and

serves to give some confidence that the recommender system

is indeed working in a reasonable fashion.

Figure 8(b) plots the distribution of prediction errors over

all ratings (not the RMSE but the error for each individual

rating). It can be seen that the errors are concentrated around

zero and that the probability of exceeding 2 is less than 1%.

VI. CONCLUSIONS

In this paper we consider user to cell association in a

wireless network with multiple access points. We propose use

of a recommender system to inform the mapping of users

to cells. We demonstrate the effectiveness of the proposed

grouped-based user to cell associations for a set of syntheti-

cally generated user/cell ratings.
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