
This is a repository copy of Linked networks for learning and expressing location-specific 
threat.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/126249/

Version: Accepted Version

Article:

Suarez-Jimenez, Benjamin, Bisby, James A, Horner, Aidan James orcid.org/0000-0003-
0882-9756 et al. (3 more authors) (2018) Linked networks for learning and expressing 
location-specific threat. Proceedings of the National Academy of Sciences of the United 
States of America. E1032-E1040. ISSN 1091-6490 

https://doi.org/10.1073/pnas.1714691115

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Location-specific threat 

1 
 

Linked networks for learning and expressing 

location-specific threat 

 

*Benjamin Suarez-Jimenez† 1,4, James A. Bisby† 1,2, Aidan J. Horner3, John A. King5, Daniel S. 

Pine4, *Neil Burgess1,2 

 

†These authors contributed equally to this work 

 

1Institute of Cognitive Neuroscience, University College London 

2Institute of Neurology, University College London 

3Department of Psychology, University of York 

4Section of Developmental Affective Neuroscience, National Institute of Mental Health 

5Department of Clinical Psychology, University College London 

 

 

*Authors for correspondence: 

Benjamin Suarez-Jimenez & Neil Burgess 

UCL Institute of Cognitive Neuroscience, London, WC1N 3AR, UK 

Email: benjamin.jimenez@nih.gov, n.burgess@ucl.ac.uk 

Tel: +44 20 7679 1147; Fax: +44 20 7813 2835 

 

Category: Biological Sciences - Neuroscience 

Keyword: fMRI, location-specific threat conditioning, hippocampus, navigation, learning 



Location-specific threat 

2 
 

Abstract 

Learning locations of danger within our environment is a vital adaptive ability whose neural bases 

are only partially understood. We examined fMRI brain activity while participants navigated a 

virtual environment which flowers appeared and were “picked.” Picking flowers in the danger zone 

(half of the environment) predicted an electric shock to the wrist (or “bee-sting”); flowers in the 

safe zone never predicted shock; and household objects served as controls for neutral spatial 

memory. Participants demonstrated learning with shock expectancy ratings and skin conductance 

increases for flowers in the danger zone. Patterns of brain activity shifted between overlapping 

networks during different task stages. Learning about environmental threats, during flower 

approach in either zone, engaged the anterior hippocampus, amygdala, and vmPFC, with 

vmPFC-hippocampal functional connectivity increasing with experience. Threat appraisal, during 

approach in the danger zone, engaged the insula and dorsal anterior cingulate (dACC), with 

insula-hippocampal functional connectivity. During imminent threat, after picking a flower, this 

pattern was supplemented by activity in periaqueductal gray (PAG), insula-dACC coupling, and 

posterior hippocampal activity that increased with experience. We interpret these patterns in 

terms of multiple representations, of: spatial context (anterior hippocampus); specific locations 

(posterior hippocampus); stimuli (amygdala); value (vmPFC); threat – both visceral (insula) and 

cognitive (dACC); and defensive behaviors (PAG), interacting in different combinations to perform 

the functions required at each task stage. Our findings illuminate how we learn about location-

specific threats and suggest how they might break-down into overgeneralization or hypervigilance 

in anxiety disorders. 
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Significance statement 

When exploring our world, we must learn about the identity and location of threats. Despite the 

adaptive significance of these processes, little is known about the component processes, which 

allow human learning. We delineate these processes engaged as people learn associations 

between spatial location and its aversive value in a virtual environment. vmPFC, anterior 

hippocampus and amygdala form a network that supports such learning. dACC and insula 

engagement reflect the cognitive and visceral appraisal of looming danger. Encounters with 

imminent threats recruit the periaqueductal grey with the initiation of defensive behavior. Findings 

highlight how networks of distributed brain structures interact to support distinct processes 

engaged during learning, each of which may malfunction to give risk to features of psychological 

disorders. 
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Learning the locations of threats is essential for survival, and impairment in this ability generates 

debilitating symptoms of anxiety disorders, such as avoidance and over-generalization of fear (1–

3). Previous work has shown how discrete threat-related cues or contexts impact behavior (4–7), 

and research in rodents has distinguished the brain areas supporting particular features of threat-

related learning (8–13). In addition, several neuroimaging studies identify brain regions engaged 

when people learn to associate threat with discrete stimuli and contexts. However, most research 

in humans relies on static images and simple paradigms that fail to capture key aspects of the 

scenarios which generate fear in patients. As such, relatively little research maps the way in which 

networks of brain regions interact to support clinically-relevant behaviors. Avoidance of dangers 

that are specific to one area of an environment without impacting on behavior in other (safe) areas 

represents one such clinically-relevant behavior that can be modeled using virtual reality and the 

techniques of systems neuroscience. Accordingly, we developed a novel, naturalistic paradigm in 

which to study learning of the environmental location of a specific threat and its expression in 

behavior. 

When exploring an environment, the hippocampus is thought to store spatial representations of 

the surrounding context and embedded locations (14–16). The binding of these representations 

allows organisms to learn about threat, with the hippocampus crucial for modulating the context-

dependence of fear and its extinction (8, 13, 17, 18). Studies in rodents distinguish functions of 

the dorsal hippocampus, which stores contextual representations, from the ventral hippocampus, 

which may mediate anxiety-like behavior (19–21, 21, 22), a difference potentially reflected in the 

size of place fields along the dorsoventral axis (22–24).  

In humans, a similar dissociation along the posterior-anterior axis of the hippocampus has been 

proposed, corresponding to the dorsoventral axis in rodents (21, 25–27). For example, activity in 

the posterior hippocampus has been shown to correlate with spatial memory for object locations 

within a virtual environment, whilst activity in the anterior hippocampus correlates with novelty 

(28, 29). Further, the anterior hippocampus appears to be involved in processing environmental 

threat, with greater activity corresponding to increasing levels of threat, whether triggered by the 

presence of a sleeping predator (30) or a prior association between a virtual context and electric 

shock (17). 

During threat, the dorsal anterior cingulate cortex (dACC) and dorsomedial prefrontal cortex are 

involved in the appraisal and expression of conditioned responses (31–33). By contrast, the 

ventromedial prefrontal cortex (vmPFC) is a primary candidate for providing top-down regulation 
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of fear and anxiety (34–39); vmPFC shows synchronized activity with the anterior hippocampus 

as rodents approach dangerous parts of an environment (40, 41). The vmPFC is more generally 

associated with value-based decision making (42–44) which would include assessment of 

environmental threat. Thus, the anterior hippocampus and both dorsal and ventral mPFC may 

interact to support behavior in response to environmental threat (45–47). 

As a threat becomes imminent, defense reactions are triggered, often involving active escape or 

avoidance (48–50). Engagement of immediate survival actions is thought to be supported by the 

amygdala and midbrain structures, including the periaqueductal gray (10, 51). The amygdala also 

allows organisms to associate discrete cues with aversive properties (10, 52–54) and is thought 

to interact with the PAG to process information about the unconditioned stimulus (55) and initiate 

defense behaviors (56). In humans, imminent threat increases overall activity in the PAG and its 

functional coupling with dACC (57, 58) to support fear expression. 

Here we used a virtual environment and functional magnetic resonance imaging (fMRI) to extend 

past work. Specifically, we capture the behavior and patterns of brain activity as people are 

learning the environmental locations of dangers, and as they are approaching locations 

associated with danger or safety. The virtual environment consisted of a walled arena with distant 

cues for orientation and identical cues (flowers) whose association with threat depended only on 

their location within the environment. Participants navigated in this environment and alternatively 

completed one of two tasks: (1) picking flowers that might contain a bee, as indicated by a mild 

electric shock representing a sting (shocks were restricted to one-half of the environment); or (2) 

collecting objects, and later replacing them to test memory for their location. This task allowed us 

to differentiate neural responses associated with various aspects of learning in both dangerous 

and safe parts of a single environment. Previous literature suggests hippocampal and mPFC 

involvement in learning and appraisal of environmental threat, and amygdala and midbrain 

involvement in fear expression. Here we hoped to identify the sequences of activity in these and 

related regions, and patterns of functional connectivity between them, as a location becomes 

associated with threat and during the approach to such a location. 

Results 

Behavioral and Skin Conductance Results 
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As participants explored the virtual environment (Fig. 1A and B; see Methods for further details), 

they were required to navigate towards flowers that appeared one at a time in different locations. 

As a flower was touched (picked), they were held stationary for a variable duration (2-8 seconds) 

and required to rate their expectancy for receiving a shock/sting (rating of 0-9). Flowers located 

in one-half of the environment were paired with shock (danger zone; delivered at the end of the 

stationary period on 50% of trials), whereas flowers in the other half of the environment were 

never paired with shock (safe zone). All flowers were the same and their predictive value (danger 

or safety) could not be distinguished by visual appearance alone. 

We first compared skin conductance level (SCL; tonic changes in skin conductance) during 

periods when participants approached flowers. During these periods, we compared SCL between 

flowers located in dangerous and safe areas of the environment (mean duration of approach 

periods = 8.95 sec ±2.27); we also assessed changes in SCL from early to late stages of the 

experiment (collapsing trials into four blocks; 10 trials in each block). A 2x4 ANOVA (zone x block) 

showed greater SCL when approaching flowers located in dangerous relative to safe areas (Fig. 

1C; F(1,21)=8.92, p<0.01; no main effect of block, F(3,63)=1.01, p>0.05, or zone x block 

interaction, F(3,63)=1.37, p>0.05).  

We next examined skin conductance responses (SCR) immediately after participants touched the 

flower, during the stationary period (mean duration = 5.02 sec ±0.44 sec). A 2x4 ANOVA (zone x 

block) revealed greater SCRs to flowers located in dangerous compared to safe zones (Fig. 1D; 

F(1,21)=7.76, p<0.01). We also saw a significant effect of block (F(3,63)=16.06, p<0.01; no zone 

x block interaction, F(3,63)=1.69, p>0.05) reflecting a general decrease in SCRs as the 

experiment progressed (block 1 v block 4, t(21)=4.88, p<0.001).  

Assessing shock expectancy ratings (Fig. 1E), a 2x4 ANOVA (zone x block) showed a significant 

zone x block interaction (F(3,63)=20.76, p<0.01) and significant main effects of block 

(F(3,63)=9.98, p<0.01) and zone (F(1,21)=135.55, p<0.01). Further analysis of the interaction 

showed that, whilst shock expectancy ratings to flowers associated with danger increased from 

block 1 to block 4 (t(21)=3.08, p<0.01), they decreased for flowers predicting safety (block 1 v 

block 4, t(21)=6.50, p<0.001). Indeed, this pattern was confirmed with a greater increase in shock 

expectancy during block 4 for flowers associated with danger relative to safety (danger minus 

safety) compared to block 1 (t(21)=6.32, p<0.001). In summary, participants were quick to learn 

the contingencies between flowers and their location within the environment. We saw greater skin 

conductance during approach and stationary periods for flowers located in the environment 
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associated with shock. Also, shock expectancy ratings showed a similar pattern with higher 

ratings for flowers predicting danger.  

Interleaved with these flower trials, participants performed a spatial memory task within the same 

environment (see Methods for further details). Participants were required to learn the location of 

four objects, with two objects appearing in each side of the environment (i.e., the safe or danger 

zones, although objects were never paired with shock). Participants were required to replace 

objects where they had been found, and distance error from the correct location provided a 

measure of performance. Like threat analyses, trials were partitioned into four equal blocks. A 

2x4 within-subjects ANOVA (zone x block) on mean object placement distance error showed a 

significant effect of block (F(3,63)=14.98, p<0.01; no main effect of zone or zone x block 

interaction, F’s<1). A direct comparison of performance across test blocks showed that distance 

error decreased from block 1 to block 4 (t(21)=6.00, p<0.01; Fig. S1) reflecting improved spatial 

memory performance irrespective of whether objects had been located in the danger or safe 

zones of the flower task.  

fMRI Results 

Approach periods: Differences between learning about threat and object locations  

We first mapped areas that were differentially involved in performing the two tasks, contrasting 

brain activity as participants approached flowers (collapsing across danger and safe conditions) 

with object approach periods when participants were instructed to collect the object and 

remember their spatial location (i.e. omitting object replacement trials; mean duration of approach 

= 14.91 sec ±6.89 sec). Each period began at trial onset, either when the next flower or next 

object appeared in the environment, and each period ended when that flower or object was 

“collected.” We then analyzed the final 75% of the approach period, omitting the initial 25% to 

remove orienting behavior preceding active navigation. To assess differences in learning across 

the two tasks, we divided trials into blocks comprising the first- (early) and last-half (late) of the 

experiment, and whether approaching a flower or object, resulting in a 2x2 ANOVA with factors 

of task (object or flower) and block (early, late; see Table S1 for full results from this analysis). 

When approaching flowers during threat learning (flowers > objects), we saw greater activity in a 

range of regions often associated with fear learning and memory, including vmPFC, dACC, 

anterior hippocampus, amygdala (p<0.05 FWE SVC; Fig. 2A upper panel), posterior cingulate 
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cortex (PCC), medial parietal cortex and insula (p<0.05 FWE; medial parietal activity extending 

into precuneus and retrosplenial cortex at p<0.001 uncorrected). When approaching objects 

(objects > flowers), a different network of areas showed greater activity including the left middle 

frontal gyrus, middle temporal gyrus, inferior parietal lobule and inferior frontal gyrus, right 

precentral gyrus, inferior frontal gyrus and an area extending across lingual and parahippocampal 

gyri (p<0.05 FWE; Fig. 2A lower panel). These results highlight two distinct networks recruited 

when learning about environmental threat or general spatial memory for object locations (there 

was no effect of block when contrasting early versus late blocks).  

Interestingly, we saw a task by block interaction in the hippocampus, amygdala (p<0.05 FWE 

SVC; Fig. 2B left panel), and vmPFC and medial parietal areas (including precuneus, and PCC; 

p<0.05 FWE; extending to the retrosplenial cortex at p<0.001 uncorrected; Fig. 2B right panel). 

Activity in these areas was greater when approaching flowers compared to objects and this 

difference was greater during the last half compared to the first half of the experiment. In 

summary, although several higher cortical areas showed more activity when approaching objects 

in the spatial memory task, mPFC, anterior hippocampus, and amygdala demonstrated greater 

activity when approaching flowers during threat learning, an effect that increased from the first to 

last half of the experiment. 

Approach periods: Differences between flowers predicting danger or safety 

We compared brain activity as individuals approached flowers located in the danger and safe 

zones of the environment. We again divided trials into two blocks comprising the first- (early) and 

last-half (late) of the experiment producing a 2x2 ANOVA with factors of zone (danger, safety) 

and block (early, late; see Table S2 for full results from this analysis). When approaching flowers 

located in the danger zone (danger > safe), we saw greater activity in dACC (p<0.05 FWE SVC; 

Fig. 3A) and bilateral insula (p<0.001 uncorrected). The reverse contrast (safe > danger) revealed 

no significant effects even when using a lenient threshold (p<0.001 uncorrected).  

Next, we looked for brain areas that showed greater activity during the second half of the 

experiment compared to the first half (late > early), reflecting changes over time as participants 

learned about the environment, irrespective of which zone they were in. This analysis showed 

greater activity during the second half of the experiment in medial parietal areas (including 

precuneus, retrosplenial cortex, and PCC), vmPFC and the right hippocampus (p<0.05 FWE; 

greater activity was also seen in the left hippocampus using small volume correction, p<0.05 FWE 
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SVC; Fig. 3B). The reverse contrast, identifying areas more active during the first half of the 

experiment (early > late), showed greater activity in the right insula and ventrolateral PFC (p<0.05 

FWE). There was no zone (safe, danger) by block (early, late) interaction during the approach 

periods to flowers, possibly due to the rapid learning of contingencies as indicated by our SCR 

results. 

Given our hypothesis that the hippocampus represents the spatial context, to which participants 

learned to associate danger, we next looked for brain activity when approaching flowers 

correlated over trials with hippocampal activity as a function of either zone (danger, safety) or 

block (early, late). We, therefore, performed two separate psychophysiological interaction 

analyses (59) on data from approach periods, using the right hippocampus as a seed region (MNI 

coordinates: 27, -18, -15; defined from our late versus early approach contrast). Results revealed 

a positive correlation between the hippocampus and bilateral insula (p<0.001 uncorrected) when 

approaching flowers located in part of the environment associated with danger compared to safety 

and between the hippocampus and vmPFC (p<0.001 uncorrected) during the last half of learning 

compared to the first-half.  

In summary, vmPFC and hippocampus showed increased activity during approach periods as 

learning progressed and showed increased functional connectivity during the task. These results 

suggest the involvement of the vmPFC and hippocampus in learning about the context, although 

changes in activity did not discriminate between danger and safety. On the other hand, dACC 

activity and coupling between the right hippocampus and insula increased when approaching 

flowers in the dangerous compared to safe zone throughout the whole task.  

Stationary Periods: Differences between flowers predicting danger and safety 

We next examined brain activity when participants were held stationary after picking flowers and 

anticipating a potential shock, comparing across danger and safe zones and early and late halves 

of the experiment. During these stationary periods, flowers located in an area of the environment 

associated with danger (danger > safety) generated greater activity in the caudate, dACC, 

bilateral insula and an area of the midbrain, including the periaqueductal gray (p<0.05 FWE; Fig. 

4A). For the reverse contrast, flowers located in the safe zone of the environment (safety > 

danger) were associated with greater activity in vmPFC although at a more liberal threshold 

(p<0.001 uncorrected; Fig. 4A), consistent with an estimation of value.  
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We found an effect of block with increased activity during the last-half of learning (late > early) in 

bilateral posterior hippocampus (p<0.05 FWE SVC; Fig. 4B). We saw no significant changes in 

activity for the reverse contrast (early > late) nor any interaction effects between zone (safe, 

danger) and block (early, late), again possibly reflecting the rapid learning of contingencies as 

observed in our SCR result. 

Given that activity in dACC was greater during stationary periods when located in areas of the 

environment predicting danger, we next looked whether this area showed increased functional 

correlations with other brain regions as a function of threat (danger > safety). A PPI analysis using 

dACC as a seed region (defined from our danger > safety contrast during stationary periods) 

showed increased functional connectivity with bilateral insula in danger compared to safe zones 

(p<0.001 uncorrected).  

In summary, areas often involved in imminent threat including dACC, insula, PAG and caudate 

showed greater activity during stationary periods after picking flowers in parts of the environment 

associated with danger. Greater functional connectivity between the dACC and insula was also 

seen during stationary periods for flowers located in the danger zone. In contrast, vmPFC showed 

greater activity during stationary periods when picking flowers in areas associated with safety 

throughout the whole experiment.  

Discussion 

We examined how people learn to recognize features of dangerous objects while mapping the 

brain networks that support components of such learning. Our task was designed in such a way 

that participants had to rely on spatial memory to learn threat contingencies and could not 

discriminate danger and safety based on the visual properties of flowers alone, a process likely 

supported by amygdala-dependent reinforcement learning (53, 54, 60). We demonstrated 

physiological and subjective signatures of location-specific threat as evidenced by greater skin 

conductance responses and shock expectancy ratings for flowers located in the danger zone. 

Learning about environmental threat, when approaching flowers in either zone, was associated 

with greater activity in the anterior hippocampus, vmPFC, and amygdala, with vmPFC-

hippocampal functional connectivity increasing with experience (see Fig. 5A). During the 

appraisal of threat as flowers located in the danger zone were approached, we saw increased 

activity in the insula and dACC, along with greater insula-hippocampal functional connectivity (see 

Fig. 5B). During imminent threat, after picking a flower, this pattern was extended with activity in 
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PAG and insula-dACC coupling (see Fig. 5C). Further, we saw a dissociation along the long axis 

of the hippocampus with greater posterior activity during imminent threat as opposed to anterior 

hippocampal activity during approach. In contrast, a network of areas in frontal, parietal, and 

temporal lobes was observed during spatial memory for unemotional objects. Our results highlight 

distinct networks that appear crucial in the successful provision of multiple representations to 

facilitate learning, appraisal, and behavioral responses to environmental threat. 

Learning about danger within an environment requires the integration of location information with 

acquired value-based contingencies, processes thought to involve synchronization of neural 

activity in rodent homologs of anterior hippocampus and vmPFC (7, 40, 61). Our results suggest 

that similar anterior hippocampus-vmPFC communication might support analogous forms of 

learning in humans. While activity in vmPFC and anterior hippocampus did not differentiate 

danger and safety when approaching flowers, it increased with experience (from first- to last-half 

of the experiment), as did functional connectivity between them. This hippocampus-vmPFC 

engagement suggests a role in learning about environmental locations that is potentiated by the 

threat-related flower task compared to the spatial memory task (approaching objects). This would 

be consistent with findings that vmPFC involvement in memory increases with the subjective 

salience or value of the memoranda (e.g. (62, 63). Thus vmPFC may integrate evaluative 

processes with a hippocampal provision of spatial location to establish the distribution of 

environmental threat.  

Other key memory-related areas also showed increased activity in late compared to early blocks 

only when approaching flowers, not when approaching objects, including retrosplenial cortex and 

precuneus. Again, activity in these areas may be specifically involved in threat learning 

discrimination (64, 65). However, it is also possible that increased activity in these anterior and 

posterior midline regions reflects encoding of the broader, less precise, location associated with 

threat compared to the specific locations of objects in the spatial memory tasks.  

Furthermore, approaching flowers that predicted danger (compared to those in the safe zone) 

was associated with greater activity in dACC and insula, two regions often co-active during 

emotional processing (66). When approaching danger, the insula might provide interoceptive 

signals of anxiety and fear (67) to be integrated with cognitive-based appraisal in dACC (68, 69). 

As activity in regions distinguishing danger and safety did not alter over time (i.e., no zone x block 

interaction), we assume that internal affective representations were acquired rapidly within our 

task, as indicated by the fast separation of skin conductance levels and shock expectancy ratings 
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between danger and safety. Further, increased insula-anterior hippocampus connectivity when 

approaching flowers associated with danger suggests that the hippocampus might relay location 

information to support internal signals of threat.  

We saw a clear dissociation within the hippocampus, consistent with prior work in rodents. 

Specifically, we observed greater activity during the second as compared to the first half of the 

experiment in the anterior hippocampus during approach; this contrasts with activity in the 

posterior hippocampus, which was elevated after picking flowers, regardless of their location. This 

hippocampal dissociation might relate to the increasing size of place fields from the rodent 

homologs of posterior to anterior hippocampus (70). Thus, the anterior hippocampus might allow 

the more distributed potential threat (any flowers in the danger zone) to be associated with a 

broader spatial context. In contrast, the posterior hippocampus could support the more precise 

association of threat to the specific location of the shock when delivered. Such an interpretation 

would be consistent with the posterior medial temporal activity observed in the spatial memory 

task, in which the specific locations of individual objects had to be remembered.  

Our anterior hippocampal effect during approach was more posterior than in other human studies 

using anxiogenic tasks (17, 30), possibly due to subtle differences in experimental design. In 

previous studies, an aversive shock was predicted by an approaching predator (30), or while 

passively watching a video clip of a virtual environment (17), so that danger was not so clearly 

restricted by the spatial location within the overall context. In our task, danger was restricted to 

half of the environment and location (in or out of the danger zone) was always important for 

prediction. We speculate that when coarser conceptual representations of space and broader 

contexts can be used to inform behavior, hippocampal activity will be more anterior reflecting 

larger place fields (27, 70, 71).  

Imminent threat during stationary periods in the danger zone was characterized by greater activity 

in insula and dACC and increased functional connectivity between them. Activity in these areas, 

seen during both approach and stationary periods, likely reflects integration of visceral feelings 

and cognitive appraisals of threat to trigger threat detection and fear expression (58). Imminent 

threat was also associated with increased PAG activity, an area known to drive immediate 

defense reactions (72–74), and thought to receive inputs from dACC and insula to promote 

behavioral responses to threat (75). This network of areas might work in concert to produce 

anxiety and fear to guide defensive behavior, with the PAG implicated in flight and immobility 

responses in rodents (56, 74, 76) and feelings of dread for a looming shock in humans (58).  
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Consistent with proposed dissociable roles for mPFC subregions during fear learning (31, 77), 

while dACC activity was greater for flowers predicting danger, greater vmPFC activity during 

stationary periods was observed for flowers predicting safety, albeit at a more liberal threshold. 

The vmPFC has been implicated in tracking positively valued options (44) and supporting 

inhibition of previously learned fear responses (32, 34), with dorsal and ventral sub-regions of 

vmPFC proposed to support such value representation and inhibition of learned responses, 

respectively (78). Typically ypically, studies show vmPFC recruitment after initial fear has been 

acquired and then extinguished (32, 34, 61) or when fear and safety signals are reversed (37), 

also supporting a role in inhibition. It is plausible that individuals initially learn more generalized 

fear representations across an environment and, as more specific location information is acquired, 

via functional connectivity with hippocampus, behavioral responses are refined by vmPFC-

mediated inhibition of fear responses falling outside of the appropriate locations (18, 35, 45). 

Overall, we show a clear dissociation between areas of mPFC (i.e. dACC and vmPFC) that work 

to promote or inhibit behavioral responses (36, 38).  

Our findings have clear clinical implications for learning about environmental threat and its later 

expression. Abnormal responding of the hippocampus, insula, and dACC has been noted in 

patients suffering from anxiety disorders (79, 80), possibly contributing to generalized anxiety and 

fear across environmental stimuli. Context plays an important role in fear conditioning, informing 

an individual whether stimuli predict safety or danger. It is important to distinguish between the 

relatively well studied mechanisms, focusing on the amygdala, associating fearful responding to 

specific objects (9, 10) from the mechanisms of contextual-modulation of these fearful responses. 

In some psychopathologies, it is specifically the discrimination between safety and danger 

contexts that is impaired, with dysfunction of both hippocampus and mPFC implicated (1, 81). 

These patients often show an overgeneralization of, or an exaggerated response to, threat into 

contexts predicting safety (74).  

Here we found that activity in the anterior hippocampus, mPFC, and insula reflects experience of 

the distribution of danger within a single environment. The functional connectivity between 

anterior hippocampus and mPFC increases as the task is learned, suggesting that hippocampal 

inputs to mPFC allow the inhibition of contextually inappropriate responses to fear. In addition, 

functional connectivity between anterior hippocampus and insula increased in dangerous 

compared to safe locations, suggesting a hippocampal contribution to context-specific 

interoceptive sensations of dread. As such, our results indicate disrupted communication with 

anterior hippocampus as a key factor in some aspects of hypervigilance and over-generalization 
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of fear within anxiety disorders and PTSD. To test this hypothesis, future studies should target 

anterior hippocampal communication with insula and mPFC in clinical populations performing 

naturalistic virtual context conditioning tasks. Such experiments could establish whether fMRI (or 

MEG; (29, 82–85) correlates of inter-regional communication relate to specific sets of symptoms 

such as hypervigilance, avoidance, or exaggerated arousal.  

In conclusion, we show that humans are capable of learning complex associations between the 

spatial location of objects within an environment and their aversive properties. Findings highlight 

a potential role for the anterior hippocampus, amygdala, and vmPFC in learning about the spatial 

context, the stimuli within it, and their associated value as flowers are approached. Recruitment 

of the dACC and insula when approaching danger suggests a role in cognitive and visceral 

appraisal of threat, with increased insula-hippocampal functional connectivity possibly reflecting 

the role of spatial context in driving interoceptive feelings of threat. As threat becomes imminent, 

dACC and insula activity, with increased connectivity between them, might contribute to ongoing 

appraisal processes and initiation of defensive behaviors via PAG, along with increased activity 

in the posterior hippocampus over time in line with its established role in representations of 

location. Observed differences in activity along the long-axis of the hippocampus during approach 

and threat imminence are consistent with the spatial scale of the anteroventral gradients in the 

hippocampus appropriate to current behavior. These results, along with the engagement of other 

areas described above, open the road to the understanding of how multiple complex 

representations relying on distinct brain areas could support threat learning and related behavioral 

expression. These findings may be particularly informative for research on psychological 

disorders in which patients often show a dysfunction of the brain areas and processes outlined 

here.  

Methods 

Participants. Twenty-seven healthy volunteers, aged 20-30 years, were recruited from the 

University College London student population. Before taking part, all participants provided written 

informed consent and, after completion, were debriefed and reimbursed for their time. The study 

was approved by the UCL Research Ethics Committee. All participants were right-handed and 

free from neurological or psychological impairment. Three participants were excluded from 

analyses due to technical issues during scanning, and two further participants were omitted as 

they were unable to explain the shock contingencies between the locations at the end of the task 
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(see procedure below). We, therefore, analyzed data from the remaining 22 participants (13 

males; mean age=24.33; SD=3.20).  

Virtual environment. A circular virtual environment was produced using Unity software (Unity 

Technologies, USA). The environment comprised of a circular grassland with a perimeter 

boundary wall surrounded by distal cues (mountains, sun, and clouds) presented at infinity for 

orienting, and two landmarks (beehives) placed within the environment (see Fig. 1A and B). The 

environment was presented in a first-person perspective, and participants could explore using a 

button box to move forward, turn left or right, and respond.  

Skin conductance. Skin conductance was measured as an index of anxiety via 8mm Ag/AgCl 

electrodes attached to the medial phalanges of the index and middle fingers of the participant’s 

left hand. Data were acquired using a custom-built constant voltage coupler (2.5v) with output 

converted into an optical pulse frequency. The optical signal was then converted to voltage pulses 

and recorded throughout the experiment (Micro 1401/Spike 2, Cambridge Electronic Design, 

Cambridge, UK). 

Procedure. During the task, participants were instructed to move around the environment and 

pick flowers that appeared one at a time in random locations. All flowers used throughout the task 

were the same in visual appearance. On contact with a flower, the participant was held stationary 

for a variable duration (2000-8000ms; stationary period). During this period, they were asked to 

make a rating on a 0-to-9 scale concerning their expected likelihood of receiving a shock (0 for 

no shock, 9 for definite shock). This rating was performed via button presses of a slider, using 

one button to decrease the rating and another button to increase it. There were 80 flowers in total, 

with 40 situated in each half of the environment. Half of the environment was associated with 

danger, with flowers picked in this zone reinforced with shock on 50% of trials (danger), while 

flowers picked in the other half were never paired with shock (safe). After the stationary period, 

participants were free to move, and the next flower appeared in the environment. Shocks were 

applied using a Digitimer DS7A electrical stimulator (Digitimer, Welwyn Garden City, UK) and 

were delivered to the left hand with intensity up to 20mA for 2ms duration through a silver chloride 

electrode. Shock intensity was individually adjusted for each participant before starting the 

experiment. Individual adjustment procedures delivered a series of shocks to each subject, 

starting at 1.2mA. Subjects were asked to rate the level of pain with each shock on a 1-10 scale. 

Shock intensity was increased until the level was annoying, but not painful. 
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Interleaved with these flower-search trials, participants also performed spatial memory trials within 

the same environment in the absence of shocks, with one spatial memory trial occurring after 

every four flower trials. On each spatial memory trial, participants were required to learn the 

location of one of 4 objects (wooden box, gas can, book, and clock), which appeared in distinct 

locations; two objects appeared in each half of the environment. For the first four spatial memory 

trials, the object appeared in its location, and participants were instructed to collect the object and 

memorize its location. After the initial four spatial memory trials, 16 memory trials were carried out 

(4 per object) during the experiment. During these trials, participants’ memory for object locations 

was tested. A static image of the object was presented in the top left corner of the screen, and 

the participant was required to move it to the object’s home location. Upon arriving at the 

presumed home location of the object, participants pressed a button to indicate their response. 

After responding, a feedback phase was presented in which the object appeared in its correct 

location, and the participant had to collect it, strengthening the object location memory for the 

next time the same object was presented (see Fig. S1). 

At the end of the experiment, participants were asked to name the four objects and their locations 

used during the spatial memory task, as well as explain the contingencies of danger and safety 

during threat learning. Participants who were unable to provide the objects’ name and position, 

or explain the contingencies (n=2), were excluded from the final analysis.  

Behavioral analysis. Skin conductance response data processing and analysis were performed 

using MATLAB. Skin conductance data were down-sampled to 200 Hz and then synchronized to 

the task. Skin conductance was assessed during two periods of the threat learning task. First, 

mean skin conductance level (SCL) during each approach quantified tonic skin conductance 

levels as participants navigated towards the flower. SCL was quantified from the last three-

quarters of the approach period from flower appearance until trial completion. Skin conductance 

level was calculated by measuring the mean skin conductance from the beginning of active 

approach until before the flower was picked for each trial. Second, skin conductance responses 

were analyzed during the stationary period to examine phasic changes in anticipation to the shock 

outcome. Skin conductance responses were calculated for every trial by subtracting the minimum 

skin conductance during the stationary period (baseline) from the maximum response (peak) 

before the stimulus onset. Any response difference under 0.03 micro-Siemens was scored as 

zero. SCR was log transformed (log [1+SCR]) to normalize the distribution and then range 

correction ([SCR-SCRmin]/[SCRmax-SCRmin]) was applied to control for individual variation in 

responding (86). The same correction was applied to the skin conductance levels. For analyses, 
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SCRs and SCL were averaged into four equal blocks across the duration of the experiment, with 

each block including ten trials per condition (safe and danger).  

Expectancy ratings taken at the beginning of each stationary period were analyzed in a similar 

way to skin conductance. Each rating provided (0-9) was averaged across trials to create four 

equal blocks across safe and danger conditions (10 trials in each block).  

Finally, performance on the spatial memory task was analyzed by assessing distance error on 

each test trial. This distance error was calculated by taking the distance in virtual meters between 

the participant’s response location when replacing the object and its correct location within the 

environment. Distance error was taken from each trial and averaged into four blocks (1 trial from 

each object in each block). All results were analyzed using a General Linear Model (GLM) for 

repeated measures using 2x4 ANOVAs to look for changes between conditions (safe, danger) 

and block (1 to 4). Bonferroni-corrected posthoc comparisons were conducted, and an alpha level 

of 0.05 was used. 

fMRI acquisition. Blood oxygen level-dependent T2*-weighted functional images were acquired 

on a 3T Trio system (Siemens, Germany) using echo-planar imaging (EPI) with a 32 channel 

head coil. Images were acquired obliquely at 45° with the following parameters: repetition time, 

3,360ms; echo time, 30ms; slice thickness, 2mm; inter-slice gap, 1mm; in-plane resolution, 3 × 

3mm; field of view, 64 × 72mm2; 48 slices per volume. A field map using a double echo FLASH 

sequence was recorded for distortion correction of the acquired EPI (87). After the functional 

scans, a T1-weighted 3-D MDEFT structural image (1mm3) was acquired to co-register and 

display the functional data.  

fMRI analysis. Data processing and analysis were performed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). EPI images were first preprocessed using a bias correction to 

control for within volume signal intensity difference, unwarping and realignment to correct for 

movement and slice-time correction. Images were then spatially normalized to the MNI template 

using parameter estimates from warping each participant’s structural image to a T1-weighted 

average template image. All images were finally smoothed using an 8mm FWHM Gaussian 

kernel.  

Statistical analyses occurred in two stages. The first-level model included 15 regressors of 

interest. Four separate regressors were created for approach periods, starting from the end of the 
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first quarter of each approach period to the point in which that flower was reached. Using a boxcar 

function, the regressors consisted of a 2x2 design (zone x block), divided by zone (safe or danger) 

and by block (first-half or last-half). A further four regressors were created for the stationary period 

of each trial, starting after the participant had rated their shock expectancy for the duration of the 

stationary period. These regressors were separated in the same way as approach periods (4 

regressors). The end of each trial was also modeled using a stick function to account for whether 

participants received a shock, or not, across danger and safe conditions (3 regressors). Finally, 

trials when participants were approaching an object, and learning its location in the spatial 

memory task were modelled by using a boxcar function for the approach period to the location 

where the object had to be picked (4 regressors, first and second half of the experiment). Six 

regressors of no interest were also added to the model representing movement parameters 

estimated during realignment. Parameter estimates for conditions of interest were then entered 

into second level GLMs. 

All analyses report family-wise error (p<0.05 FWE) corrected effects across the whole brain. 

Given the a priori hypotheses, effects in the bilateral hippocampus, amygdala, and mPFC that 

survive small volume correction (SVC; p<0.05 FWE) were reported. One bilateral mask 

comprising the hippocampus and a second bilateral mask for the mPFC that included the 

orbitofrontal gyrus, medial frontal gyrus, and anterior cingulate and medial cingulate gyrus was 

created, defined using the Automated Anatomical Labeling atlas (88), and implemented using the 

WFU Pickatlas toolbox in SPM8 (89). In accordance with previous studies, anterior and posterior 

regions of the hippocampus were identified relative to the first coronal slice in which the uncal 

apex was visible (90, 91). 

To examine approach periods during threat learning, a second-level model was created to 

contrast approach to flowers associated with safety or danger and whether they were collected 

during the first or second half of the experiment. Therefore, approach periods were analyzed using 

a 2x2 ANOVA (zone, block). Periods when the flower was picked, and participants were held 

stationary, were analyzed in a similar second level model using a 2x2 ANOVA (zone, block). 

Finally, approach periods during threat learning (approaching flowers) was compared with 

approach periods during the spatial memory task (approaching location to replace the object). A 

second-level model was created contrasting approach periods for threat learning (collapsing 

across safety and danger) with approach during spatial memory across the first and second half 

of the experiment using a 2x2 ANOVA (task, block). 
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For any significant interaction, the representative time-course was extracted through SPM8 

MarsBaR (http://marsbar.sourceforge.net) toolbox, using a 6mm sphere at the peak of the activity 

in the regions of interest, using the first eigenvariate calculated from singular value decomposition. 

The extracted values were analyzed in SPSS 22 on a 2x2 ANOVA (task x block) and further 

analyzed through a sample t-test, which was Bonferroni corrected.  

Expectancy ratings and SCR were used as parametric modulation of interest to assess the 

correlation between BOLD signal (during active approach and stationary periods) and behavioral 

measures. However, as activity was not significantly modulated by SCR or expectancy ratings, 

we omit these analyses from the manuscript (whole brain parametric modulation analyses, 

p>0.005 uncorrected). 

Functional connectivity analyses. Functional connectivity was assessed at group level using 

psychophysiological interactions (PPI) analysis using the SPM8 generalized psychophysiological 

interaction toolbox (92). The gPPI toolbox compares functional connectivity to a single seed 

region across tasks while accommodating for multiple task conditions in the same PPI model. The 

seed regions were selected based on a priori hypothesis of the connectivity of the vmPFC, dACC, 

PAG, and hippocampus to other areas during the task. Peak activation from these areas in the 

group level analysis, for approach and stationary periods, were used to create volumes of interest 

for each subject. The seed time series activity was extracted using a 6mm sphere at the center 

of the activation peak. Each seed region was assessed for task connectivity during active 

approach and stationary period. The individual t-contrast images of the interaction from the gPPI 

were examined using a group level one-sample t-test. The group PPI were detected using t-test 

with a threshold of p<0.001 uncorrected. 
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Figure 1. Task illustration and behavioral data across threat learning. (A) Overhead 

illustration of the circular environment that participants explored and how it was split into one-half 

associated with danger (red) and the other with safety. The environment included two beehives 

(black dots) located at opposite sides of the environment. Participants were required to collect 

flowers, which were generated within the environment. (B) Example of the participant’s viewpoint, 

showing a beehive and flower within the environment. (C) Mean tonic skin conductance level 

(SCL) as flowers were approached. (D) Mean phasic skin conductance responses (SCR) during 

the stationary periods when flowers were picked. (E) Shock expectancy ratings at the onset of 

stationary periods when picking a flower. Error bars show SEM, *p<0.01. 
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Figure 2. Activity differences between approaching flowers and objects during threat and 

spatial memory, respectively. (A upper red panel) Greater activity when approaching flowers 

compared to objects in a range of areas, including the insula, medial parietal cortex, PCC (p<.0.05 

FWE), vmPFC, bilateral anterior hippocampus, and amygdala (p<0.05 FWE SVC). (A lower blue 

panel) When approaching objects compared to flowers, greater activity was seen in posterior 

medial temporal, parietal, and prefrontal neocortical areas (p<0.05 FWE). (B) Activity change was 

greater from the first to the second half of the flower task compared to activity change during the 

object location task in anterior hippocampus and amygdala (p<0.05 FWE SVC; left panel) and 

vmPFC, medial parietal cortices/precuneus, and PCC (p<0.05 FWE; right panel). All images are 

presented at p<0.001 uncorrected for display purposes. Percentage signal changes for learning 

about threat and object locations across early and late periods of the task extracted from anterior 

hippocampus (MNI coordinates: 27, -18, -15; B left panel) and vmPFC (3, 54, -9; B right panel). 

Error bars show SEM.  
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Figure 3. Activity differences when approaching flowers across danger and safety. (A) For 

flowers approached in the danger compared to the safe zone, there was greater activity in dACC 

across the whole test session. (B) Irrespective of the location of flowers, activity increased from 

the first to second half of the experiment in the anterior hippocampus (left panel) and vmPFC and 

medial parietal areas (including precuneus, retrosplenial cortex, and PCC; right panel). All images 

are presented at p<0.001 uncorrected for display purposes. Percentage signal changes for 

danger and safety across early and late periods of learning extracted from anterior hippocampus 

(MNI coordinates: 27, -18, -15; B left panel) and vmPFC (3, 54, -9; B right panel). Error bars 

show SEM. 
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Figure 4. Activity differences during stationary periods after picking flowers predicting 

danger and safety. (A) Contrasting periods when participants were stationary when flowers were 

picked in the dangerous versus safe zone of the environment showed greater activity in 

periaqueductal gray, dACC (upper panel), and bilateral insula (p<0.05 FWE; middle panel). 

Analysis of the reverse contrast for flowers picked in the safe zone (safe > danger) showed greater 

activity in the vmPFC (p<0.001 uncorrected; lower panel). (B) Irrespective of the location of 

flowers, during the last half of learning (late > early), we saw greater activity in bilateral posterior 

hippocampus (p<0.05 FWE SVC). Images are presented at p<0.001 uncorrected for display 

purposes. (B right) Percentage signal change during stationary periods for danger and safety 

across early and late parts of learning extracted posterior hippocampus (MNI coordinates: 33, 

-33, -3). Error bars show SEM. 



Location-specific threat 

32 
 

 

Figure 5. Illustration of sequential network activity in the flower task. (A) During approach 

periods, activity in the anterior hippocampus (aHPC), amygdala (AMYG) and ventromedial 

prefrontal cortex (vmPFC) increased in the late compared to the early-phase of learning, including 

greater functional connectivity between aHPC and vmPFC, irrespective of threat. (B) Approach 

to flowers predicting danger was associated with increased activity in the dorsal anterior cingulate 

cortex (dACC), and insula, with increased connectivity, also observed between dACC and aHPC. 

(C) When danger was imminent, during the stationary period, increased activity was evident in 

dACC, insula (as well as connectivity between them) and periaqueductal grey (PAG). The 

posterior hippocampus (pHPC) also showed greater activity during the last-half of the experiment 

when picking the flower compared to the first half. Left: illustration of task phase. Middle: 

schematic of activity over time (first- and second-half of experiment; approach periods in blue, 

stationary periods in pink). Right: Brain activity and functional connectivity. Green lines and boxes 

represent activity (and green arrows functional connectivity) that increases from the first to second 

half of the experiment. Red lines and boxes represent activity (and red arrows functional 

connectivity) that increases with danger. See Tables S1-3 for a complete breakdown of regions 

across these analyses.  
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Supplementary Results 

Performance on the spatial memory task was analyzed by assessing distance error on each test 

trial. This error was calculated by taking the distance in virtual meters between the participant’s 

response location when replacing the object and its correct location within the environment. 

Distance error was taken from each trial and averaged into four blocks (1 trial from each object in 

each block; 4 trials per block). All results were analyzed using a General Linear Model (GLM) for 

repeated measures using 2x4 ANOVAs to look for changes between conditions (safe, danger) 

and block (1 to 4). Bonferroni-corrected posthoc comparisons were conducted, and an alpha level 

of 0.05 was used. 

A 2x4 within-subjects ANOVA (zone x block) measuring error rate of object placement showed a 

significant effect of block (F(3,63)=14.98, p<0.01), showing error decreased over time regardless 

of the zone. There was no significant effect of zone (F(1,21)=0.94, p>0.05) or interaction between 

zone x block (F(3,63)=0.96, p>0.05) (Fig. S1).  

 

Fig. S1. Experiment 4 Mean object placement error. Mean object placement error, for the safe 

zone (Safe) and the dangerous zone (Dang) over time. Error bars show SEM, **p<0.01. 
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Table S1. Summary of imaging findings when approaching flowers during threat learning or 

objects during spatial memory encoding. 

  MNI coordinates  

Region Laterality x  y  z z-score 

Task (flower, object) x block (early, late) 

Main effect of approaching flowers (flower > object) 

Insula / Rolandic operculum L 45  -18  21 7.26 

 R  -54  -6  9 6.61 

Middle temporal gyrus R -45  3  -30 6.02 

Postcentral gyrus R 30  -27  60 6.00 

 L -48  -18  48 4.66 

Precentral gyrus R 33  -21  54 5.76 

Inferior occipital gyrus L -21  -99  -6 5.44 

Posterior cingulate cortex R 3  -51  27 5.42 

Cerebellum R 30  -84  -30 5.05 

Putamen L -27  -6  -3 4.95 

Dorsomedial prefrontal cortex┼ R 9  -30  63 4.90 

Ventromedial prefrontal cortex┼ L -9  54  39 4.59 

Hippocampus┼ R 27  -15  -15 3.97 

 L -30  -15  -15 3.78 

Amygdala┼ R 27  -9  -15 3.97 

 L -21  -9  -12 3.81 

        

Main effect of approaching objects (object > flower) 

Precentral gyrus R 30  -3  51 >8.00 

Middle frontal gyrus L -30  -51  -9 >8.00 

Lingual gyrus R 24  -60  -6 >8.00 

Cerebellum L -12  -54  -48 7.60 

 R 12  -51  -51 7.01 

Middle temporal gyrus L -54  -60  -3 6.26 

Inferior parietal lobe L -57  -33  39 6.05 

Insula L -36  21  0 5.59 

Inferior temporal gyrus  R 57  -54  -3 5.42 

Inferior frontal gyrus R -36  -72  -45 4.90 

 

Task (flower > object) x block (late > early) interaction  

Ventromedial prefrontal cortex R 3  54  -9 5.63 

Hippocampus┼ R 27  -18  -15 4.34 

 L -30  -15  -15 3.39 

Amygdala┼ R 27  -9  -15 3.93 

 L -21  -9  -15 3.78 

        

p<0.05 FWE across whole brain unless stated; ┼p<0.05 FWE SVC 

 
  



Location-specific threat 

35 
 

 
Table S2. Summary of imaging findings when approaching flowers predicting danger or safety. 

  MNI coordinates  

Region Laterality x  y  z z-score 

Threat (danger, safety) x block (early, late) 

Main effect of threat (danger > safe) 

Dorsal anterior cingulate ┼  0  9  27 4.24 

Insula* L -36  21  3 3.82 

 R 39  27  3 3.69 

        

Main effect of block (late > early) 

Angular gyrus L -45  -72  30 6.04 

Posterior medial cingulate cortex L -3  -39  36 5.53 

Middle frontal gyrus L -24  24  51 5.27 

Precuneus R 6  -57  39 5.21 

Posterior cingulate cortex R 9  -48  15 4.76 

Hippocampus R 27  -18  -15 4.75 

 L -21  -21  -18 4.49 

Ventromedial prefrontal cortex R 3  54  -9 4.68 

 

Main effect of block (early > late)  

Inferior frontal gyrus R 51  12  15 5.29 

Postcentral gyrus R 63  -18  33 5.08 

Supramarginal gyrus L -63  -24  30 4.88 

 R 33  27  3 4.80 

Insula R 57  -36  36 4.79 

        

p<0.05 FWE across whole brain unless stated; ┼p<0.05 FWE SVC; *p<0.001uncorrected 
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Table S3. Summary of imaging findings during freezing periods for flowers during danger and 

safety. 

  MNI coordinates  

Region Laterality x  y  z z-score 

Threat (danger, safety) x block (early, late) 

Main effect of threat (danger > safety) 

Supramarginal gyrus L -66  -24  21 7.38 

 R 54  -21  24 7.10 

Doral anterior cingulate cortex R 6  0  39 6.66 

Postcentral gyrus R 21  -42  63 6.53 

Insula L -36  0  -3 6.24 

 R 35  3  -5 5.77 

Thalamus R 12  -18  9 6.02 

Periaqueductal grey R 6  -24  3 5.11 

Posterior medial cingulate cortex L -12  -27  39 5.04 

Middle temporal gyrus L -51  -63  9 4.98 

Superior frontal gyrus R 18  -12  72 4.79 

Cerebellum L -21  -57  -51 4.77 

Dorsomedial prefrontal cortex L -6  -9  66 4.75 

        

Main effect of threat (safety > danger) 

Ventromedial prefrontal cortex* L -3  48  -9 3.59 

 

Task (flower > object) x block (late > early) interaction  

Inferior parietal lobule L -30  -78  48 5.37 

Angular gyrus L -45  -72  42 4.84 

Hippocampus┼ R 33  -33  -3 4.25 

 L -30  -33  -6 4.22 

        

        

p<0.05 FWE across whole brain unless stated; ┼p<0.05 FWE SVC 

 


