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Identification of conductivity in inhomogeneous
orthotropic media

Abstract

Purpose - The purpose of this paper is to solve numerically the identification of the thermal
conductivity of an inhomogeneous and possibly anisotropic medium from interior/internal
temperature measurements.

Design/methodology/approach - The formulated coefficient identification problem is
inverse and ill-posed and therefore, in order to obtain a stable solution, a nonlinear regular-
ized least-squares approach is employed. For the numerical discretisation of the orthotropic
heat equation, the finite-difference method is applied, whilst the nonlinear minimization is
performed using the MATLAB toolbox routine lsqnonlin.

Findings - Numerical results show the accuracy and stability of solution even in the pres-
ence of noise (modelling inexact measurements) in the input temperature data.

Research limitations/implications - The mathematical formulation uses temporal tem-
perature measurements taken at many points inside the sample and this may be too much
information that is provided to identify a spacewise dependent only conductivity tensor.
Practical implications - Since noisy data are inverted, the study models real situations
in which practical temperature measurements recorded using thermocouples are inherently
contaminated with random noise.

Social implications - The identification of the conductivity of inhomogeneous and or-
thotropic media will be of great interest to the inverse problems community with applications
in geophysics, groundwater flow and heat transfer.

Originality /value - The current investigation advances the field of coefficient identification
problems by generalising the conductivity to be orthotropic in addition of being heteroge-
neous. The originality lies in performing, for the first time, numerical simulations of inver-
sion to find the anisotropic and inhomogeneous thermal conductivity form noisy temperature
measurements. Further value and physical significance is brought in by determining the de-
gree of cure in a resin transfer molding process, in addition to obtaining the inhomogeneous
thermal conductivity of the tested material.

Keywords: Inverse problem; orthotropic and inhomogeneous media; regularization; nonlin-
ear least-squares.

1 Introduction

Growing research activities have been taking place in the numerical techniques and com-
putational algorithms for solving inverse problems in different fields such as biomedical, see
e.g. Paruch (2017), and heat transfer, see e.g. Yan et al. (2015), Alifanov (2017), processes.
These problems involve situations in which the interior physical parameters or experimental
measurements are inaccessible inside the domain or difficult to obtain accurately.



In many manufacturing applications, particularly in advanced composite material science,
inverse modelling is considered as the most important stage for monitoring the structural
integrity of materials, see e.g. Dawson et al. (2013). Accurate knowledge of thermal prop-
erties and heat transfer modelling within composite materials are crucial issues and very
attractive research field, see e.g. Monchiet and Bonnet (2013). For these materials there are
different types of media such as isotropic, orthotropic and anisotropic.

Identification of the thermal conductivity of a fully inhomogeneous and anisotropic medium
is ill-posed in nature because it depends on indirect observable measurements which con-
tain small errors that could result in large changes in the solution. In addition, there is
the notorious issue of non-identifiability in the sense that even the full knowledge of the
Dirichlet-to-Neumann boundary map is not sufficient to determine the anisotropic and in-
homogeneous conductivity tensor of a material subject to steady-state heat conduction or
electrostatic excitations, see Lionheart (1997). Moreover, even if in the isotropic but inho-
mogeneous case the conductivity can be uniquely determined from the complete knowledge
of the Dirichlet-to-Neumann map, see Kohn and Vogelius (1985), this is still not so practi-
cal because an infinite number of measurements has to be performed for providing all the
necessary boundary temperature/potential and heat/current flux. In order to deal with
this non-identifiability issue, some previous studies, see e.g. Irmay (1980), Richter (1981),
Knowles (2001), Knowles and Yan (2002), proposed to measure the dependent variable (tem-
perature, piezometric head or electric potential) everywhere inside the solution domain such
that the original second-order elliptic equation is recast as a first-order hyperbolic equation.
More recently, Bal et al. (2014) suggested to measure many internal current densities in
order to guarantee a unique and explicit reconstruction of a fully anisotropic conductivity
tensor entering a steady-state Darcy flow conductivity equation. An even more engineering
approach is to assume that the conductivity is constant, piecewise constant or linearly de-
pendent on the space variables, see Hematiyan et al. (2015), Chen et al. (2016), Mustata
et al. (2001), Lesnic et al. (2007) and Harris et al. (2008), such that a parameter finite
dimensional problem is to be solved in a nonlinear least squares sense.

The paper is devoted to the simultaneous estimation of tensor components of an inho-
mogeneous thermal conductivity for which the functional minimization has to be performed
in an infinite dimensional space of functions. The convergence is reached by iteration taking
into account of temperature measurements in both space and time inside the solution domain
to determine the thermal conductivity coefficient uniquely.

The paper includes seven sections. We give the mathematical formulation of the problem
in section 2. The finite-difference method used to discretise the direct problem is given in
section 3. Section 4 is devoted to describe the regularized nonlinear minimization used for
solving in a stable manner the inverse coefficient identification problem. In Section 5, we
provide numerical results and discussion. In Section 6, we present a physical example of
including and identifying the degree of cure in a resin transfer molding process. Finally,
conclusions are presented in Section 7.



2 Mathematical formulation

The heat flow through heat conducting media is significantly affected by their heterogeneous
and/or anisotropic structure. A similar situation occurs in fluid flow through porous media.
Therefore, let us consider a transient planar heat conduction problem in the bounded domain
Q x (0,T], where T" > 0, with continuously space varying anisotropic material properties.
This problem is governed by the unsteady two-dimensional heat conduction equation for the
transient temperature u(z,y,t), namely,

C(z,y)0u — V- (K(z,y)Vu) = S(x,y,t), (z,y,t) € Qx(0,7T], (2.1)

where C' > 0 is the heat capacity, S is a source term and the thermal conductivity matrix

. ki(r,y) kia(z,y)
K(IE,?/) = ( k21<x’y) ng(SL’,y) ) ) (2'2)

is a continuous, symmetric and positive definite matrix, i.e. ki9 = koy and ky1kog —ki2ks; > 0.

The conductivity K can be either: isotropic (k13 = koo, k12 = kg = 0), orthotropic
(k11 # koo, k12 = koy = 0) or anisotropic (k11 # ka2, k12 = ka1 # 0). We take the space
solution domain 2 be the rectangle (0, 1;) x (0, l3) and solve the time-dependent heat equation
(2.1) subject to the following Neumann heat flux boundary and initial conditions:

—(KVu) - n|y—0 = ¢1(0,y,t), on y € (0,l3),t € (0,7T] (2.3)

—(KVu) - n|oy—y, = g2(l1,y,t), on ye (0,ly),te (0,7T] (2.4)
—(KVu) - nly—o = g3(2,0,t), on z € (0,,4),te (0,7] (2.5)

—(KVu) - nly—, = ga(x,la,t), on x € (0,01),t € (0,T] (2.6)
u(z,y,0) = uo(z,y),  (v,y) €Q (2.7)

where (g;);—17 are prescibed heat flux functions, n = (n,,n,) is the outward unit normal
vector to the boundary 02, and the co-normal derivative is given by

—(KVu) - n = —(k110,u + k120yu, ko1 Opu + kaadyu) - (ng, ny).

This Neumann model for isotropic media with thermal conductivity K(x,y,t) depending also
on the time variable has been solved by Huang and Chin (2000) using the conjugate gradient
method (CGM). In contrast to that problem, our formulation considers the identification of
the time-independent but orthotropic media with thermal conductivity tensor given by

_ k11<x7 y) 0
K(z,y) = ( 0 oo (2, ) ) . (2.8)

3 The numerical solution of the direct problem

In this section, we describe the finite-difference method (FDM) used for solving the direct
problem (2.1), (2.3)-(2.8), when the thermal conductivity K is given. For this purpose we
rewrite equation (2.1) as

C@tu = k:n@gxu -+ k’ggasyu + kauawu + Gykm@yu + S. (39)
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We start from the standard finite difference notation and discretize the computational
domain Q = (0,{;) x (0,l2) into uniformly spaced grid points such that z; = (i — 1)h, and
yj = (j—1)h, fori =1,...,n, +1,j = 1,...,n, + 1, where h, = l1/n, and h, = ly/n,.
Let n; be a positive integer and ¢, = nr, 7 = T//n; for n = 0,...,n;. Denoting by u; the
approximate solution w(z;,y;,t,), the FDM can be used to discretize the equation (3.9) as

n+1 _n

u; ; u;'s w5 2w+ ul g uli g — 2wl g
C($iayj)diﬁ _ (kll)i,j +1,5 27] 1,3 + (k22)i,j J+1 27j J—1
T hZ h;
Uit q = U ult g —ul
+(8mk:11)l-7j +17j2h L + (ayk22>i,j% + S<xlu yj7 tn)7 (310)
x Yy
where
(F11)iv1y — (b1n)ic1y (k22)ij+1 — (Ka2)ij—1
a$k: i — 5J 5J a k: i — 5J 5J .
(Ork11)i,5 T o (Oykan)i oy

The boundary conditions (2.3)-(2.6) and the initial condition (2.7) are approximated as

u Tt —
—(kn)l,j % = gl(Oujhy7tn+1>7 (3-11)
“Zjilvj — Zﬁ _ -
_<k11)nz+1,j h = 92(11,]hy7tn+1)7 (3-12)
uitt =yt .
—(k92)in — . =— = g3(ths, 0, tpy1), (3.13)
Y
n+1 n+1
2 i,:erl - z:y B o 14
_< 22)i,ny+1 h— - g4<Z T 27tn+1)7 (3 )
Y
ug s =ug(ws,y;), i=1,..n.+1, j=2,..n, (3.15)

The explicit FDM scheme (3.10) is conditionally stable, see Ozisik (1993), and the con-

dition reads as
11 1 ki (z,9)|
— < = = — 7 .16

T<hi +h§)ﬁ_ > gl,}?{{(aﬁ% C(z,y) (3.16)

We simulate the problem (2.1), (2.3)-(2.8) by taking the initial and boundary conditions
(2.3)-(2.7) with data given by:

ug(z,y) =0, (z,y) €, (3.17)

91(0,y,t) = =1, go(ls,y,t) =1, g3(x,0,t) = =1, gu(z, s, 1) =1. (3.18)

We now present below test cases for an isotropic and an orthotropic conductivity and, for
simplicity, we take the source term to be absent, i.e. S = 0. The space increments in x and



y axes are equal h, = h, = 0.1 with [; =l = 1. This gives that n, = n, = 10. Moreover,
we take 7' =1 and n; = 100 which gives 7 = 0.01.

In the first instance we solve the direct problem (3.10)-(3.15) with isotropic heterogeneous
thermal conductivity K(z,y) given by

1+x+vy

19 ) km(%?/) = le(xay) =0, (3-19)

kll(xvy) = k?zg(l',y) -

and constant heat capacity taken, for simplicity, to be unity. It is easy to observe that our
chosen mesh size h, = h, = 0.1, time step 7 = 0.01, C(z,y) = 1 and thermal conductivity
(3.19) with § = 1/4 satisfy with equality the stability condition (3.16). In addition, it is
sufficiently fine to ensure that any further decrease in this mesh size did not significantly
affect the accuracy of the numerical results.

Figure 1 displays the contour lines of constant temperature (isotherms) at various snap-
shots ¢ € {0.10,0.20, 0.40, 1.0}.

Next we consider an orthotropic heterogeneous medium with conductivity tensor (2.8)
given by

1+z+y
12

1+052+y

12 y ]{le(ﬂf, y) = kzl(ﬂf, y) = 0. (320)

kll('rvy) = k22<x7y> =

Figure 2 displays the contour lines of constant temperature (isotherms) at various snapshots
t € {0.10,0.20,0.40, 1.0}.
4 Nonlinear optimization of the inverse problem

Notice that if K is unknown the problem (2.1)-(2.7) is an ill-posed problem and additional
information should be added. The overspecified data is given from the measurement, which
in this study is assumed to be given by the interior temperatures

U(!Ez‘,yj,tn) =U! 1= lanara j - 17ny7 n = lan;fa (421)

7/7]’

where n; represents the number of instants at which the measurements are recorded and it
can vary from 1 to n,. It is not necessary that the locations (x;,y;) and the times ¢, coincide
with the nodes of the FDM mesh, but we consider so for simplicity. In computation, the data
(4.21) is numerically simulated by solving first the direct problem with known conductivity
K, as described in the previous section.

This inverse formulation is similar to the aquifer identification problem investigated by
Yakowitz and Duckstein (1980) which consists of estimating the transmissivity K(z,y) from
the piezometric head noisy observations (4.21) at the wells (z;,y;) and sampling times t,.
Also, a similar formal identification of isotropic conductivity on the basis of internal temper-
ature data measured at a single time step, say u(x;, y;, t1), or at the steady state, u(x;, y;, t~)
has been described in Carrera and Neuman (1986a).

The determination of optimal locations (z;,y;) and times ¢,, of measurements (4.21) be-
longs to the area of network design, see e.g. Carrera and Neuman (1986b), and is beyond the
scope of this paper. We look however, at how increasing the number of time measurements
n; from 1 to ny improves the accuracy of the numerical solution.
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The number of unknowns in the inverse problem (2.1), (2.3)-(2.8) and (4.21) is n,n, and
2ngn,, in the isotropic and orthotropic cases, respectively, while the number of measurements
is nyn,n,. Since in general n; is much greater than 3 the identification problem is greatly
overdetermined and hence we expect a unique solution. We should also mention here the
very interesting work of Huang and Chin (2000) who considered recovering an isotropic both
space- and time-dependent conductivity from the full internal temperature data (4.21) with
ny = ny.

The unknown thermal conductivity in the model is estimated in such a way that the
following regularized least squares objective function is minimized:

minJ(K) = 33 Y (u, (K) - 02)* + A3 S K (i, )1 (4.22)
n=1 i=1 j=1 i=1 j=1

where A > 0 is a regularization parameter to be prescribed and u;; is the computed tem-
perature obtained from the solution of the direct problem (3.10)-(3.15) at each iteration. In
the second term of (4.22) the norm is computed as ||K(z;, y;)||* = ki (zi,y;) + k3o(x4, y5).
Incorporating the regularization term in (4.22) eliminates the effects of non-identifiability of
the solution’s instability, see e.g. Cooley (1982).

Several Matlab toolbox solvers are available for minimizing various types of objective
functions, e.g. Isqnonlin, fmincon. These toolboxes depend on several algorithms, e.g.
trust-region-reflective, Levenberg-Marquardt, interior-point and others which can be used
according to the minimization problem under consideration. It is also worth mentioning
here the conjugate gradient method (CGM) of Alifanov (1974), see Jarny et al. (1991),
whose numerical implementation for the isotropic case was undertaken by Huang and Chin
(2000), but its extension to anisotropic heterogenous conductivity identification is yet to be
performed. This will be the subject of future work.

For minimizing (4.22) in our problem, we suggest to use the Isqnonlin which is designed
for linear and nonlinear constrained minimization of a sum of squares. It depends on trust-
region-reflective algorithm [4, 8], based on the idea that the region is extended in case that
the objective function is well-approximated otherwise, is contracted.

5 Numerical experiments

In this section, we solve the inverse problem iteratively for simultaneously estimating the
unknown thermal conductivity K(z,y). We will illustrate the behavior and the convergence
of the iterative minimization for functional (4.22) in terms of the number of iterations using
the routine Isqnonlin. Before embracing the numerical experiments it is worth mentioning
that the most challenging problem in the identification is how to treat the error or the noise
in the measurements. Therefore, the interplay between the noise and regularization is crucial
in order to obtain a stable and accurate solution.

5.1 Example 1: Isotropic thermal conductivity

In this example we consider the problem (2.1)-(2.7) and (4.21) with unknown isotropic scalar
function kii(x,y) = koa(z,y) = K(x,y). The data in (4.21) is numerically simulated and
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obtained by solving first the direct problem (2.1)-(2.7) with the zero initial temperature
(3.17), the heat flux specification (3.18) and the thermal conductivity (3.19). Snapshots of
which have been illustrated in Figure 1. In the inverse analysis we take the initial guess

K (z,y) = 1/12 (5.23)

and solve the inverse problem (2.1)-(2.7) and (4.21) iteratively by minimizing the regular-
ized least squares functional (4.22) from the initial guess (5.23), as described in Section 4.
Simple bounds on the conductivity kyi(x,y) are specified as the lower and upper limits 0
and max, ,)cq |k} (2, y)| = 1/4, respectively. This way we ensure that during the iteration
procedure the explicit FDM described in Section 3 is always stable, see criterion (3.16).
The convergence of the functional (4.22), as a function of the number of iterations, is
shown in Figure 3(a). From this figure, it can be seen that only a few iterations ensure the
convergence of the objective function. Figure 3(b) illustrates the comparison between the
exact and the estimated conductivity values and very good agreement can be observed.
Next, we add noise to the direct problem solution, as follows:

I
—
S

g

n __ N - _ /
Ul'y = u(®i, yj, tn) + €ijry Jj=1,ny, n=1n;, (5.24)
where ¢; ; , = normrnd(0, o, nyn,n;) are random variables generated from a Gaussian normal

distribution with mean zero and standard deviation
o = p x max{|u(z,y,t)]; (z,y,t) € 2 x [0,T]}

using the Matlab command normrnd and p is the percentage of the noise. Adding random
noise in (5.24) also ensures that an inverse crime (of using the same data as that generated
from the direct solver) is not committed.

Since the inverse problem is ill-posed when we add noise in (5.24) the resulting mini-
mization of the ordinary non-linear least squares functional (4.22) with A = 0 will produce
an unstable solution. Therefore, in order to overcome this instability we regularize (4.22) by
including the positive regularization parameter A in it.

We estimated the function ky; from the noisy temperature measurements (5.24) for vari-
ous levels of noise p € {1,2,3}%. Note that from the numerical implementation for this case
we have seen that nj = 3 is sufficient to yield an accurate and convergent solution.

Figure 4 shows the numerical results for the thermal conductivity obtained with various
regularization parameters A € {0,2,3,4,6} and noise levels p € {1,2,3}%. As expected, the
numerical results approximate better the exact solution, as the amount of noise p decreases
provided that a suitable regularization parameter A (depending on p) is selected. Generally,
the graphs illustrated in Figure 4 reflect the behavior of the numerical solutions for various
regularization parameters A whose choices depend on the amount of noise p with which the
data (5.24) is contaminated. In our numerical investigations the appropriate values for the
regularization parameter A\ have been chosen, for simplicity, by trial and error. This is done
by observing the numerical results for several small and large values of A\, gradually increasing
and decreasing them until any seemingly unbounded oscillation in the solution obtained has
been removed hence, giving a compromise balance between accuracy and stability which is
commonly encountered when solving ill-posed problems. Of course, one could also use more



sophisticated criteria for choosing A such as the L-curve method, see Hansen (2001) or the
discrepancy principle, see Morozov (1966). By inspecting Figure 4 one can observe that
appropriate values for A are A = 2 or 3 for p = 1% noise, and A = 3 or 4 for p = 2% and
3% mnoise. We also remark that the numerical estimates for p = 2% and 3% are qualitatively
similar in behavior.

We finalize this subsection by presenting in Figure 5 the lines of constant kq;(z,y). From
this figure it can be seen that reasonably stable numerical solutions are obtained when
regularization is enforced and that, as expected, the accuracy increases as the level of noise
decreases.

5.2 Example 2: Orthotropic thermal conductivity

In this example, we consider an orthotropic planar material whose middle plane is taken as
the coordinate system Oxy and the z- and y-axes are coincident with the principal directions
of thermal conductivity. Thus, the general tensor (2.2) has the second diagonal equal to zero,
i.e. kio = k9=0, and is given by (2.8). In the inverse analysis we take the initial guess

and try to retrieve the orthotropic tensor (3.20). Note that from the numerical implemen-
tation for this case we have seen that nj = 5 is sufficient to get accurate and convergent
numerical solutions. All the other numerical details are the same as those for example 1.

The numerical results for no noise are presented in Figure 6. Compared to Figure 3(a)
of the isotropic case, Figure 6(a) shows a larger number of iterations being required to
achieve the convergence of the objective function (4.22). This is to be expected because in
the orthotropic case we have two functions ky; and ko to estimate in comparison with the
isotropic case in which only a single function k;; = koy is estimated. Even so, the accuracy
of the numerical results illustrated in Figures 6(b) and 6(c) is excellent.

Next we investigate the performance of the numerical inversion of noisy data (5.24)
contaminated with p € {1,2,3}% noise.

The numerical results for k11(0.5,y) and ks (0.5, y) obtained by inverting p € {1,2,3}%
noisy data (5.24) with various regularization parameters A € {0,0.5,1.5,2.0} are illustrated
in Figures 7 and 8, respectively. As expected, the results are unstable and inaccurate for
A = 0, but the stability can be restored through the inclusion of appropriate regularization.

In the next section we consider an application of our study in numerical heat transfer.

6 Cure modelling in composite materials

The model concerns the curing of a carbon fiber reinforced composite in a resin transfer
mold (RTM) after the fiber preform has been completely wetted out by the resin. It is a
temperature dependent procedure as the reaction changes with temperature. When forced
convection does not occur heat conduction is the only heat transfer mechanism relevant
to composites cure. The degree of cure, o is generally used to express the resin chemical
reaction. Accordingly, the governing equations are given by, see Lim and Lee (2000):



e Thermal model:

d
pc,0u — V- (K(x,y)Vu) = qﬁAHd—(Z, (x,y,t) € Q x (0,77, (6.26)

e Kinetic model: The more applied model for a variety of resins is Kamal’s model (1974),
see also Dusi et al. (1987),

‘fl_‘;‘ - <A1 exp (%) + Aj exp (_R—Ef)am) (1-a)™, a0)=0,  (6.27)

where the heat capacity pc, and thermal conductivity K, assumed for simplicity to be
isotropic, are defined as

Plp = (bprcpr + (1 - (b)pfcpf and K = ok, + (1 N (b)kf’

p is density, ¢, is specific heat, AH is heat of reaction, « is the current degree of cure, ¢
is the porosity of the fiber preform, A;, A5 are the reaction rate constants, F;, E5 are the
activation energies, the exponents my, mo are the reaction orders, where the total reaction
order my + my = 2, see Michaud et al. (2002), and R refers to the universal gas constant.
The subscripts r and f denote the resin and fiber, respectively.

6.1 Numerical approximation

In this section, we describe the FDM used for discretising equations (6.26) and (6.27). This
is given by

pCp (T4, Yj) ?JHT_ Uiy _ Kij Uity ~ 2;:? tula, i Ui 1 — QZ? Ui
+(8;,;K)z,j—uyﬂ’g;mu?_l’j + (8yK)i,j—u2j+12;yqu_l + ¢AHCCZZ—(;(:ci7yj,tn), (6.28)
where
0 ) = =%
_ (A1 exp ( - Rﬁ%) + Ayexp ( - Rﬁzj)(agj)ml) (1—am)m. (6.29)

These equations are solved with the boundary and initial conditions (3.11)-(3.15). We have
performed some numerical simulations for the cure model parameters given in Table 1. The
numerical results for the degree of cure obtained by solving the direct problem with the
FDM mesh size h, = h, = 0.1 and the time step 7 = 2 minutes for the isotropic constant
conductivity K = 0.5372W/mK and 7" = 15 hours are shown in Figure 9. The initial
temperature (2.7) has been varied for ug € {30°C, 40°C, 50°C}. This figure indicates that as
up increases the profiles for the degree of the cure (and also for temperature - not illustrated
for brevity) are getting steeper.



We consider next the identification of the thermal conductivity K as well as the cure
degree parameters my, Ay and Ey/R which are assumed unknown; note that it not necessary
to retrieve A; as the second term in (6.27) is nearly zero. In this case, the objective functional
(4.22) will depend on all these unknown parameters to read as

Ny 2
mmJ(KAQ, ,m ZZZ( KAQ,R, 1)—U;}j)

n=1 i=1 j=1
HZZ 5 (s, )1 (6.30)

i=1 j=1

The upper and lower bounds for the unknowns (K(zi,y;));—1ms,j=Tmy» M1, A2 and Ey/R
have been taken as 0.1 < K(z;,y;) < 1.5 fori = 1,n,, j = 1,n,, 02 < my < 0.8,
1.0 x 10Y < Ay < 4.0 x 10! and 0.94 x 10° < Ey/R < 10°. The initial guesses for the
unknowns were taken to be K%(x;,y;) = 0.1 fori = 1,n,, j = 1,n,, mJ = 0.2, A = 1.0x 10"
and (Fy/R)? = 0.94 x 10°. We also take n, = n, = 10, 7 = 2 minutes, 7" = 15 hours and
ny = ny = 450. Table 2 shows an excellent agreement being obtained between the numerical
and exact values of these parameters. Furthermore, Figure 10 illustrates the good accuracy
and stability of the numerical solution for the isotropic thermal conductivity for both exact
and noisy data.

7 Conclusion

The identification of the heterogeneous and orthotropic thermal conductivity which may also
include constant unknown parameters related to the degree of cure has been undertaken.
The proposed inversion method was based on the penalised least-squares minimization of
the sum of squares of differences between the measured and the calculated (by the FDM)
internal temperatures in both space and time. Numerically, this was accomplished using
the Matlab toolbox routine lIsqnonlin. Numerical results show high accuracy for exact data
and reasonable stability when noisy data are inverted. Physical insight and significance has
been further added by considering a cure modelling application in numerical heat transfer.
Future work will consist of extensions to three dimensions.
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Table 1: Cure model parameters from Lim and Lee (2000). We also have ¢ = 0.4 and
AH = 2.79 x 10°J/kg for vinylester.
(Parameters of cure kinetics)

El/R EQ/R A1 A2 mq mo
100048.4 9480.58 1.2483 x 101 2.0433 x 10"t 0.693  1.327
K K min ! min !
(Parameters of fiber) (Parameters of resin)
P Cpf ky Pr Cpr ki
2540 835 0.76 1030.4 1900 0.193
kg/m?  J/kgK W/mK kg/m?  J/kgK W/mK
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Table 2: Parameter identification of the cure model.
ma A2 EQ/R
Exact 0.6930 2.0433 x 10" 9.4807 x 10°
p=0 0.6930 2.0433 x 10* 9.4807 x 10?
p=1% 0.6960 2.0433 x 10'* 9.4766 x 103
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