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CONNECTED QUANTIZED WEYL ALGEBRAS AND QUANTUM
CLUSTER ALGEBRAS

CHRISTOPHER D. FISH AND DAVID A. JORDAN

ABSTRACT. For an algebraically closed field K, we investigate a class of noncommutative
K-algebras called connected quantized Weyl algebras. Such an algebra has a PBW basis
for a set of generators {zi,...,z,} such that each pair satisfies a relation of the form
Ti%j = QijxTjx; + 15, where g;; € K* and r;; € K, with, in some sense, sufficiently many
pairs for which 7;; # 0. For such an algebra it turns out that there is a single parameter
g such that each ¢;; = g*'. Assuming that ¢ # +1, we classify connected quantized Weyl
algebras, showing that there are two types linear and cyclic. When ¢ is not a root of unity
we determine the prime spectra for each type. The linear case is the easier, although the
result depends on the parity of n, and all prime ideals are completely prime. In the cyclic
case, which can only occur if n is odd, there are prime ideals for which the factors have
arbitrarily large Goldie rank.

We apply connected quantized Weyl algebras to obtain presentations of two classes of
quantum cluster algebras. Let n > 3 be an odd integer. We present the quantum cluster
algebra of a Dynkin quiver of type A, _1 as a factor of a linear connected quantized Weyl
algebra by an ideal generated by a central element. We also consider the quiver Pr(ir)l
identified by Fordy and Marsh in their analysis of periodic quiver mutation. When n is odd,
we show that the quantum cluster algebra of this quiver is generated by a cyclic connected
quantized Weyl algebra in n variables and one further generator. We also present it as the
factor of an iterated skew polynomial algebra in n + 2 variables by an ideal generated by a
central element. For both classes, the quantum cluster algebras are simple noetherian.

We establish Poisson analogues of the results on prime ideals and quantum cluster alge-
bras. We determine the Poisson prime spectra for the semiclassical limits of the linear and
cyclic connected quantized Weyl algebras and show that, when n is odd, the cluster algebras
of A,,_1 and Prgl are simple Poisson algebras that can each be presented as a Poisson factor
of a polynomial algebra, with an appropriate Poisson bracket, by a principal ideal generated
by a Poisson central element.
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1. INTRODUCTION

This paper is mostly in the context of noncommutative ring theory, in particular skew
polynomial rings, classification of prime ideals and applications to quantum cluster algebras.
The original motivation can be traced back to the classification of mutation periodic quivers
by Fordy and Marsh [11] and to a Poisson algebra P introduced by Fordy [12] in a further
study of some such quivers.

The Poisson algebra P is a polynomial algebra in an odd number of indeterminates
x1,...,T, and it may be helpful to think of these arranged cyclically, so that x; is adja-
cent to x, as well as to x5. Up to a factor of 2, the Poisson bracket is such that

{zi,zim}t =z — 1, 1<i<n, (1)
where z,,1 should be interpreted as x, and, for 1 <i,j <n with 7 > i+ 1,
Til; if j — 1 is odd,
{xi,:vj}z{ T (2)
—z;x; if j —i is even.

In the sense of [4, Chapter II1.5], this algebra is quantized by the algebra Cd generated by
x1,...,T, subject to the relations

TiTiy1 —qripri=1—¢q, 1<1<mn, (3)

where z,.1 should again be interpreted as z1, and, for 1 <i,7 <mn with 7 > 7+ 1,

T if j — 4 is odd,
rim; = {q; L (4)
q wjz; it j —1iis even.
We shall interpret the relation (3) as the defining relation for the quantized Weyl algebra
Al generated by z; and z;,1. This is more commonly written

TiTip1 — qripr; =1, 1 <0 <n, (5)

but, unless ¢ = 1, the two are isomorphic (by a change of variable) and (5) is less satisfactory
both from the point of view of quantization, as it gives a noncommutative algebra on setting
q = 1, and from the point of view of symmetry, as it is equivalent not to x; 2, —q¢ ‘x;z541 = 1
but to 12 — ¢ leiwi = —¢7

It is possible to construct C'? as an iterated skew polynomial algebra in zq,zs,..., 2,
over the base field K. If 1 < m < n the intermediate iterated skew polynomial algebra
in x1,x9,...,2, will be denoted L?. When n is odd, L? and C? both exist and are skew
polynomial rings over L? . As iterated skew polynomial algebras over the base field, L%
and, if n is odd, C are noetherian domains with PBW-bases.

Motivated by the algebras L? and C¢?, we define a connected quantized Weyl algebra to
be a K-algebra with a finite set {z1,...,x,} of generators such that

e cach pair of generators satisfies a relation of the form
QZ'Z'.T]' = Qijxjxi + rij;

where ¢;; € K* and r;; € K,
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e the standard monomials 725> ... 2% form a PBW basis,

e the graph G with vertices x1, xs,...,2,, in which there is an edge between z; and
x; if and only if r;; # 0, is connected.

In Section 2 we shall see that, provided at least one ¢;; # +1, LY and C? are the only
connected quantized Weyl algebras.

In Sections 3 and 4, using a deleting derivations algorithm similar to that applied to
quantum matrices by Cauchon [5], we determine, when ¢ is not a root of unity, the prime
spectra of L4 and, when n is odd, C4. In the case of L, the hypotheses of [16, Theorem
2.3] are satisfied so all prime ideals are completely prime but we shall see that C¢ does have
prime ideals that are not completely prime. In LI there is a sequence of elements z1, ..., z,,
defined by the formula z; = 2z;_12; — 2j_9, where 2y = 1 and z_; = 0, such that z, is central
if n is odd and normal, but not central, if n is even. In the odd case, the non-zero prime
ideals of L2 are the ideals of the form (z, —A\)L2, A € K, and in the even case they are z, L%
and the ideals of the form z,L% + (z,-1 — A\)L%, 0 # XA € K. There is a similar sequence
in C'? but with z, replaced by a central element (2. The prime ideals of C? are the ideals
of the form (2 — A\)C4, A € K, and, for each positive integer m, two prime ideals F,,; and
F,..—1, such that the factors C?/F,, +1 have Goldie rank m. Thus the prime spectrum of Lg
is akin to those of U(sly) and Uy(sly) but, unless n = 3, the exceptional maximal ideals are
not annihilators of finite-dimensional simple modules.

Section 5 determines the K-automorphism groups of L¢ and C¢ when ¢ # £1. Whereas
Autg(L?) is isomorphic to the multiplicative group K*, with each A € K* corresponding
to an automorphism with z; +— A=Yz, Autk(C9) is cyclic of order 2n generated by the
product of the K-automorphism of order n such that each x; — z;,1, where x,,,; = x;, and
the automorphism of order 2 such that each z; — —ux;.

In Section 6 we apply connected quantized Weyl algebras to quantum cluster algebras.
Useful references for such algebras include [2, 19, 20, 26]. Although there are several papers,
for example [19, 20], showing that given noncommutative algebras have quantum cluster
algebra structures, there are not many in which a quantum cluster algebra is determined
given a particular quiver. For two classes of quivers, we relate the quantum cluster algebra
to connected quantized Weyl algebras and obtain presentations in terms of generators and
relations. For an even positive integer m we present the quantum cluster algebra for a
Dynkin quiver of type A,, as a factor of the linear connected quantized Weyl algebra L] ..
For an odd integer n > 3 we present the quantum cluster algebra for the periodic quiver
denoted Pﬁzl in [11] as an extension of the cyclic connected quantized Weyl algebra 032,
requiring one further generator, and also as a factor, by the principal ideal generated by a
central element, of an iterated skew polynomial ring in n + 2 variables over the base field K.

Sections 7 and 8 present Poisson analogues of earlier results. In Section 7 the Poisson
prime spectra of the semiclassical limits of L{ and Cf are determined and in Section & the

cluster algebras of A,,_; and P&)l are presented as factors, by Poisson ideals generated by a
Poisson central element, of polynomial algebras with appropriate Poisson brackets.
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2. CONNECTED QUANTIZED WEYL ALGEBRAS

Throughout K will denote an algebraically closed field and ¢ € K*. We make a fixed choice
of one of the square roots of ¢ in K and denote it by q%.

Notation 2.1. The (co-ordinate ring of the) quantum plane, R,, is the K-algebra generated
by x and y subject to the relation xy = qyx. There is symmetry, up to the transposition of
q and ¢!, as the relation can be rewritten yz = ¢ 'xy. It is well-known that R, is the skew
polynomial ring K[y|[z; a,] where ¢, is the K-automorphism of K]y| such that o,(y) = qy.
As such, it has a PBW basis {y'z7 : i, j > 0}. By symmetry, R, = K[z][y; 8,-1] where 3,-1 is
the K-automorphism of K[x] such that 8,-1(z) = ¢ '« and has a PBW basis {2y’ : 4,7 > 0}.

By the first quantized Weyl algebra A?(K), we mean the K-algebra generated by x and y
subject to the relation xy — qyx = 1 — ¢. With oy and 3,1 as in the above discussion of the
quantum plane, A{(K) has presentations as the skew polynomial ring K[y][x; ay, d], where
d(y) = 1 — ¢, and as the skew polynomial ring K[z|[y; 8,-1, 0], where §'(y) =1 — ¢ '. As
such, it has PBW bases {y'z’ : 1,7 > 0} and {z%y’ :i,j > 0}.

Remark 2.2. The reader may be more familiar with the relation xy — qyx = 1 here. Unless
g = 1, the two give isomorphic algebras. Indeed, if r € K, and 2y —qyx = 1 and 2’ = rx then
'y — qyx’ = r so, by changing generators, the right hand side of the relation xy — qyx = 1
can be replaced by any non-zero scalar r. There are two advantages in choosing 1 — ¢ in this
role. The first is that the relation xy — gy = 1 — ¢ can be rewritten yr — ¢ lay =1 — ¢},
giving symmetry, up to the transposition of ¢ and ¢~!. The second is that setting ¢ = 1
yields the commutative algebra K[z,y], giving rise to a Poisson bracket on K[z,y] with
{z,y} = xy — 1. This Poisson bracket arises from the quantization procedure outlined in
[4, TIL.5.4] with A = K[y, Q*'][z;a, p] and h = Q — 1, where « is the K-automorphism
of K[y, Q*!] such that a(y) = Qy and a(Q) = @, and p is the a-derivation of K[y] such
that p(y) = 1 — @ and 6(Q) = 0, whence @ and h are central, zy — Qyz = (1 — Q),
xy —yr = h(vy — 1), A/hA ~K[z,y] and, if ¢ # 1, A/(Q — ) A ~ A{(K).

Loosely speaking, a connected quantized Weyl algebra is a finitely generated K-algebra
with a PBW basis in which any two generators satisfy a quantum plane relation or a quantized
Weyl relation and there are sufficiently many of the latter. The formal definition is as follows.

Definition 2.3. By a connected quantized Weyl algebra over K, we shall mean a K-algebra

with generators xq, s, ..., z,, n > 2, satisfying the following properties:

1

(i) there are scalars ¢;; € K* and r;; € K, 1 <14 # j < n, with each ¢;; = ¢;; and each

]
Tji = —qiglmj, such that the relation
l’ifﬁj = qijfli'jffi + 7"1']'
holds;
(ii) the standard monomials z{*x5? ... z% form a PBW basis for R;
(iii) the graph with vertices xy, s, ..., z,, in which there is an edge between z; and x;
if and only if r;; # 0, is connected.
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Remark 2.4. The conditions on ¢;; and r;; ensure that the relations z;z; = ¢;;x;2; + 75
and z;z; = q;x;x; + rj are equivalent. The relations x;x; = g;;x;x; + r;; ensure that the
standard monomials x7'x5? ... 2% span R. The PBW condition therefore ensures that the
relations x;x; = ¢;jx;x; + r;; form a complete set of defining relations for R.

When n = 2, up to isomorphism, the quantized Weyl algebra A7 is the only connected
quantized Weyl algebra over K. We can take ¢ =qand ris =1—qor,if¢g=1, ro=1.

Remark 2.5. We can orientate and label the graph in the definition to carry more informa-
tion. As shown in Figure 1, we orientate an edge representing a relation x;x; = ¢;;x;x; + 74j
with r;; # 0 from z; to z; with label ¢;; (or from x; to z; with label g;;, but not both).

qij

ZT;® oL

FI1GURE 1. orientation of edges

Example 2.6. Let n > 1 and let ¢ € K*\{1}. Let L¢ denote the K-algebra generated by
X1, %, ..., Ty, subject to the relations

TiTipyn — T, =1—¢q, 1<i<n—1, (6)
zx; —qrjr; =0, 1=21,1+1<j<n,j—1odd, (7)
rix; —q ‘gz =0, i>1,i+1<j<n,j—1ieven. (8)

In particular LY = K[z4] and L2 = A. Using [9, Proposition 1], one can show, inductively,
that, for n > 2, L7 is the skew polynomial ring L! ,[z,; 7, 0,] for a K-automorphism 7,, and
a T,-derivation 0,, of LY | such that
(-1

To(zj) = ¢ 1 n—1
6n<$j) = 07 1 n—2

(5 (l’n,1) =1- qil.

Informally, it suffices to show that 7,, and d,, respect the defining relations of L! ;. More
formally, one can write L! | as a factor F/I of the free algebra over K on n — 1 generators
and show that 7, and §,, are induced by an appropriate automorphism I',, and I',,-derivation
A, of F such that I',,(I) = I and A, (I) C 1.

L, )

NN
VAR/A

J
J

Y

q q q q
T ) T3 Ty Ty

FIGURE 2. L

As L% is an iterated skew polynomial ring over K, it has a PBW-basis {z{*x5*... 20" :

(a1, as,...,a,) € Ny}, where Ny := NU {0}. Provided n > 2, L4 clearly satisfies the other
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conditions for a connected quantized Weyl algebra, the relevant graph for the presentation
in (6)-(8) being the path graph P,, and we may refer to it as the linear connected quantized
Weyl algebra L. Figure 2 shows the graph for L as presented in (6)-(8).

In the next example, the two ends of the graph are joined up and each vertex is linked to
two others, resulting in the cycle graph, or n-gon, C,.

Example 2.7. Let n > 1 be odd and let ¢ € K*. Let C'¢ denote the K-algebra generated by
X1, %, ..., T, subject to the relations

TiTiv1 —qrir; =1—q, 1<i<n—1, (9)
TpT1 — @17, = 1 — g, (10)
x;x; — qr;x; =0, 121, i+1<j<n, j—1iodd, (11)
rix; —q ‘wgr; =0, 121, 14+1<j<mn,j—1even. (12)

In comparison with the odd case of LZ, the relation z1x, — ¢ 'z,z; = 0 is replaced by the
quantized Weyl relation x,x; — qr1z, =1 — ¢. As in Example 2.6, one can show that C? is
the skew polynomial ring L!_;[2,; 7, 0,] for the same K-automorphism 7,, of LI | as for L¢
and the 7,,-derivation 9,, of L] _; such that

On(z1) =1 -4,
an(xj):()a 2<)<n—2,
On(rp_y) =1—q .
As for L2, the algebra C¢ satisfies the conditions for a connected quantized Weyl algebra,
the relevant graph for the presentation in (9)-(12) being the cycle graph C,. We may refer

to it as the cyclic connected quantized Weyl algebra C4. Figure 3 shows the graph for CY
as presented in (9)-(12).

FIGURE 3. Cf

Remark 2.8. Cyclic connected quantized Weyl algebras with n = 3 are related to the
quantized enveloping algebra U,(slz). Provided q # +1, localization of C§ at {z%};>1, which
is a right and left Ore set by [14, Lemma 1.4], gives U,(sly) in the equitable presentation
21].
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Example 2.9. For a K-algebra R satisfying (i) and (ii) of Definition 2.3, neither the graph
in (iii) nor its connectedness are invariants of the algebra. For example, consider the Weyl
algebra As, generated by x1, xo, y1, yo with relations x;y; —y;x; = 1,7 = 1,2, and commutation
relations for other pairs of generators. The graph for these generators has two connected
components each with two vertices and a single edge. However taking x1, y;, z1+x2, y1 +y> as
generators gives a square and taking 1, y1, 21 + %2, y2 gives the path graph P,. Thus A, is a
connected quantized Weyl algebra although this is not apparent from its usual presentation.

A similar situation exists for higher Weyl algebras A,,, n > 3, with an increasing variety of
possible graphs for different sets of generators. For example, A3 has the hexagonal graph Cg
for the generators x1, Y1, x1 + 22, Y2, 2 + x3, Y1 + y3, the path graph Py for a1, y1, z2, Yo, x2 +
x3,71 +y3 and the complete bipartite graph K3 for x1, 21 + 2, 21 + T2 + 23, Y1, Y1 + Y2, Y1 +
Y2 + Y3

Whenever we refer to the graph for L or C'¢ we shall mean the graph for the presentation
in (6)-(8) or (9)-(12) as appropriate.

Example 2.10. Consider the K-algebra R generated by z1, x2 and x3 subject to the relations

1%y — T2y = 1,
Tol3 — X3y = ]_,
r3x1 — 13 — 1.

This can be obtained from Cf by first changing generators to replace the scalar terms 1 — ¢
in the relations by 1 and then setting ¢ = 1. Writing x, y and z for x1, x5 and x5 respectively,
R is a skew polynomial ring A;[z; 0], where § is the derivation of the first Weyl algebra A,
with §(x) = 1 and 0(y) = —1. As such it is a connected quantized Weyl algebra with the
same graph as Cf{. All derivations of A; are known to be inner [8, Lemma 4.6.8] and § is
the inner derivation induced by —(x + y). Setting ¢ = x + y + z, which is central, R is a
polynomial ring A;[t]. Relative to the generators x,y, ¢, the graph is not connected, having
connected components {z,y} and {¢}. A similar construction reveals the polynomial algebra
Ag[t] over the kth Weyl algebra Ay to be a connected quantized Weyl algebra with the same
cyclic graph as C3, ;. We shall see that the algebra C7, | of Example 2.7 has a distinguished
central element 2 which, loosely speaking, quantizes ¢ so that the quotient C3,_,,/QC3,
quantizes Ay.

The next result tells us that, for an algebra R satisfying Condition (i) of Definition 2.3,
Condition (ii) is independent of the ordering of the generators and that every algebra satis-
fying both is an iterated skew polynomial extension of K.

Lemma 2.11. Let n > 2 and, for 1 <i # j < n, let ¢;; € K* and r;; € K be such that, for
1 # 7, ¢ = qz-;l and rj; = —qiglr,-j. Let R be the K-algebra generated by 1, x2, . .., x, subject
to the n(n — 1)/2 relations

TjTi — QigTiT5 = T4j, 1<i< 7 <n. (13)

The following are equivalent:
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(i) The standard monomials x*x3? ...z form a K-basis for R;
(ii) whenever i, j, k are distinct, r;; # 0 implies gix = qij = qj_kl;
(iii) R is an iterated skew polynomial algebra over K in x1,xq,. .., xy;
(iv) for any permutation o € S, the standard monomials xgl(l)xi@) e x‘;’(n) form a K-
basis for R;
(v) for any permutation o € S,, R is an iterated skew polynomial algebra over K in
Z‘U(l), ZEU(Q), e ,CL‘J(n).

Proof. As (ii) is invariant under permutation and (iv) and (v) are obtained from (i) and (iii)
respectively by permutation, it suffices to prove the equivalence of (i), (ii) and (iii).

(i)=-(ii). Suppose that {z{'z3*...2} is a K-basis for R and let 1 < u < v < w < n.
The element x,,z,z, can be written in terms of this basis by computing either (z,z,)z, or
T (Ty2y). Equating the resulting two expressions and cancelling the term in x,z,z, that
appears in both gives

vaQuwTuvxw + qU’LUT’U,’LU‘T:’U + 7/"UUJ‘CCU, = ruvxw + q’ll,’U,er:CU + qquIuwvaxu

If ry, # 0 or, equivalently, r,, # 0 then comparing coefficents of x,, gives quw = quu. If
rww # 0, or, equivalently, r,, # 0, then comparing coefficents of x, gives ¢, = quo. If
row 7 0, or, equivalently, 7., # 0, then comparing coefficents of x, gives ¢, = qu.. This
covers all six possibilities for the relative order of i, j, k where {1, j, k} = {u,v,w} in (ii).

(ii)=-(iii). Suppose that (ii) holds. For 1 < m < n, let R,, be the subalgebra of R
generated by z1,x9,...,2,,. Let i < 7 < k. Consider the relation

LjLi — QijTilj = Tij
and let 7} = qiv; and 2y = qjrz;. Then

/_

/ o
Ty — Qi = Tij.

This is trivial if 7;; = 0 and follows from (ii) otherwise. This gives rise, inductively, to a
K-automorphism «y of Ry_1 with ag(x;) = qx; for 1 < ¢ < k. To see that there is a
ag-derivation O of Ry_q with dx(z;) = i for 1 <i < k, we need to check that
TjkTi + Oé(xj)ﬁ'k — qijTikTy — Qij@(xi)Tjk =0,
that is,
k(1 — ¢ijGir) T + i@k — ¢j)x; =0,

which is immediate from (ii). Using [9, Proposition 1], it now follows, inductively, that Rj, =

Ry 1[xy; g, 0] and hence that R is an iterated skew polynomial algebra in zq, s, ..., 2,
over K.

(iii))=(i). This is immediate from the fact that, as a left R-module, any skew polynomial
ring R[z; a, d] is free as a left R-module with basis 1,z, 2%, . ... O

Corollary 2.12. Let R be a connected quantized Weyl algebra generated by x1,xo,. .., T,
with parameters q;; and r;;. There exists ¢ € K* such that {q;j : 1 <i#j<n}={q,q '}
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Proof. As R is connected and every finite connected graph has a spanning tree, we can renum-
ber the generators so that, for 1 < m < n, the subgraph corresponding to the subalgebra R,,
generated by z1, ..., x,, is connected. By Lemma 2.11, R,, is a connected quantized Weyl al-
gebra for m > 2. For 2 <m < n,let Q, = {q;; : 1 <i+# j <m}. Then Q2 = {q,¢ '} where
q = qua. Let 2 < m < n, suppose that Q,, = {q,¢"'} and let i = m + 1. There exist j, k
such that 1 <k < j <m, r;; # 0 and 7, # 0. By Lemma 2.11(ii), ¢;; = qu = q;x € {q. ¢ '}
and g = qij € {q,¢ '} for all £ € {1,2,...,m}\{j}. It follows that Qi1 = {¢,¢ '} and,
by induction, that Q,, = {q,q'} as required. O

Corollary 2.13. Let R be a connected quantized Weyl algebra generated by xi,x2,..., %,
with single parameter q as in Corollary 2.12. Suppose that ¢ # £1. If r;j # 0 and 7, # 0
then rjo =0 for £ € {1,2,...,n}\{4,7,k}. In other words, in the graph associated with the
given presentation of R, the mazimum degree of a vertex cannot exceed two.

Proof. Suppose that 7;; # 0, r;, # 0 and rj; # 0. Without loss of generality, assume that
¢;; = ¢- By Lemma 2.11(ii) applied to 4, and either ¢ or k, gjy = ¢jz = q whereas, by
Lemma 2.11(ii) applied to k, j and ¢, q;o = qrj = ¢ '. As q # £1, this is a contradiction. [

The next result is readily checked from the defining relations for L and CY.

Proposition 2.14. Let n > 1 and let ¢ € K*\{1}.
(i) Let v € K*. There is a K-automorphism 1, of L% such that 1,(z;) = vz, for

1<i<n.

(ii) If n is odd then there is a K-automorphism of v of C1 such that «(z;) = —x; for
1< <n.

(i) There is an injective K-homomorphism 0 : L1, — L% such that 0(x;) = x;41 for
1<i<n—-1.

(iv) If n is odd then there is a K-automorphism 0 of C2 such that 0(x;) = xi1 for
1 <i < n, where subscripts are interpreted modulo n in {1,2,...,n}.

(v) There is a K-isomorphism from L% to Lfl_l such that x; — x,_j11 for 1 <i<mn.
(vi) If n is odd then there is a K-isomorphism from C% to C9 ' such that x; — Tp_is1
for1 <i<n.

Remark 2.15. When n is odd and j < n then L] | and L are subalgebras of C} and the
injective K-homomorphism 6 : L7, — LY in Proposition 2.14(iii) is the restriction to Lf_;
of the automorphism € of C? in Proposition 2.14(iv).

Proposition 2.16. Let n > 2 and let R be a connected quantized Weyl algebra generated
by x1,x2,...,x, with single parameter q as in Corollary 2.12. Suppose that ¢ # +1. Then
R~L% or R~C}.

Proof. As in the proof of Corollary 2.12, we can renumber the generators so that, for 2 <
1 < n, the algebra R; generated by x4, ..., x; is a connected quantized Weyl algebra. In view
of Proposition 2.14(v,vi), we can assume that ¢ = ¢. We shall show, by induction on n,
that there exist py,. .., pu, € K* such that if 2 = p;x; then when the defining relations of R
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are written in terms of the generators 2 they become those of L¢ or CZ. This is true when
n = 2, take u; = 1 and po = (1 — ¢)r5'. By induction we may assume that R, ; has a
presentation for which the graph is the same as for L? ; or, if n is even, C!_, and that, for
1<i<j<n-—1,¢;= gtV and, for 1 <i<n—2, Tii+1) = 1 — ¢. All vertices in the
graph for C? | and vertices zs,...,x, 1 in the graph representing L? | have vertex degree
2 so, by Corollary 2.13 and as R is connected, the graph for R,_; must be the same as for
L 1 rin=0forl<i<n—1andr, #0orr,_1,# 0 or both.

First suppose that 7(,—1y, # 0. As 71y, # 0, it follows from Lemma 2.11(ii) that, for

1<i<n, ¢n = qi(i_l) = q( D" Thus Gij = q( D7 for 1 < i < J < n. Now suppose
also that 7,1 = 0. Let o} = z; for 1 <i <n—1andlet 2/, = (1—¢)r (_1 1ynTn- Then 24, ..., 2,
generate R subject to the g-commutation relations z}z/, = ¢\~ = xjxi, 1 < j—1, and the
quantized Weyl relations

a:lxlﬂ qx;Hx; =1—¢q, 1<i<n-—1
Thus R ~ L%. Similar calculations with the generators ordered as z,,z1,...,x,-1 give the
same conclusmn when 7,1 # 0 and r(,_1), = 0.

It remains to consider the case where 71, # 0 # 7(,—1)n. In this case, by Lemma 2.11(ii),
q = Gi2 = Qon = q(*llw1 so, as ¢ # £1, n must be odd. The same change of generators as
above gives the same relations between the 2 but with the ¢g-commutation relation between
x) and 2!, replaced by

Tty — qryx, = (1= q)A,
where \ = 7“(’1 ) Tn1. Let p € K be such that p> = A= and let 2 = p-D"" 2/ for 1 < i < n.

Then 27, ...,z; generate I subject to the g-commutation relations z}z = = ¢V illw}’x’.’

when i < j — 1 unless 1 =1 and j = n, and the quantized Weyl relatlons
wiw]y —quigal =ppT (1-q)=1-¢q, 1<i<n-—1,
and
o' — gl = pP(1— A =1—q.

Thus R ~ C¢ in this case.
O

Remark 2.17. Proposition 2.16 is false when ¢ = £1. If ¢ = £1 and ¢;; is always ¢
when i # j, then, by Lemma 2.11, one can take any connected graph G on x1,xs,..., 7,
and construct a connected quantized Weyl algebra using the relations x;x; — qz;x; = 14 ,
1 <i < j <n, where r;; = 1 if there is an edge between z; and z; in G’ and r;; = 0 if there
is no such edge. In [6] the authors consider the K-algebra W), constructed in this way when
g = —1 and G is the complete graph.

Many ring theoretic properties of C'? and LY follow from the fact that they are iterated
skew polynomial extensions of the field K.
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Proposition 2.18. (i) The connected quantized Weyl algebras C? and L? are right and left
noetherian domains with K* as their group of units.

(ii) If M is a simple module over either C? or L% then End M = K. If R is a prime factor
ring of either C¢ or L for which the centre Z(R) of R is not K then R is not primitive.
(iii) If R is a prime factor of either C¥¢ or LY then the Jacobson radical Jac(R) = 0. If,
further, the intersection of the non-zero prime ideals of R is non-zero then R is primitive.

Proof. (i). C4 and L% are right and left noetherian domains by repeated application of [28,
Theorem 1.2.9(iv) and (i)] or [18, Theorem 2.6 and Exercise 20]. Although explicit references
are elusive, it is well-known and easy to see, using degree, that, for a skew polynomial ring
R[x; av, 0] over a ring R with an automorphism « and a-derivation 0, U(R|z; «,0]) = U(R).
Hence U(CY) = K* = U(LY).
(i) and (iii). By [28, Example 1.6.11], C? and L¢ are constructible K-algebras in the sense
of [28, 9.4.12] so, by [28, Theorem 9.4.21], they satisfy the Nullstellensatz over K as stated
in [28, 9.1.4]. Thus every factor ring has nil Jacobson radical, and for any simple module M,
End M is algebraic over K. Here K is algebraically closed so End M = K. If Z(R) # K and
¢ € Z(R)\K then multiplication by ® induces an endomorphism of any simple module M.
As End M =K, M is annihilated by ® — p for some p € K, whence R cannot be primitive.
As R is noetherian and prime, the nil ideal Jac(R) is nilpotent and hence 0. If the
intersection of the non-zero prime ideals of R is non-zero then, as Jac(R) = 0, the ideal 0
must be primitive. O

Proposition 2.19. If g is not a root of unity then every prime ideal of L1 is completely
prime.

Proof. This is a consequence of [16, Theorem 2.3]. Conditions (a) and (b) of that result
are clearly satisfied. Condition (c¢) holds because, in Example 2.6, 7,0;(x;) = 0 = §;7;(x;)
for 1 <j <i—1and 7,0;(w; 1) =1—q ' = ¢67;(x;_1). Both (d) and the supplementary
condition on the group I', which here is (¢), hold because ¢ is not a root of unity. 0

Remark 2.20. We shall see that the analogue of Proposition 2.19 for C¢ is false. The
conditions of [16, Theorem 2.3] break down in a rather minimal way. When the final generator
x, is adjoined, Condition (c) fails because 7,0, (z;) = 0 = 6,0,(x;) for 1 < j <n —1 and
T0On(Tn_1) =1 — ¢ ' = q0,Tn(xn_1), whereas 7,0, (21) =1 — q = ¢ 10,7 (21).

3. PRIME SPECTRUM OF L¢

The purpose of this section is to determine the prime spectrum of the linear connected
quantized Weyl algebras LI, n > 3. It is well-known, for example [14, 8.4 and 8.5] or [24,
Example 6.3(iii)], that the quantized Weyl algebra A{ has a distinguished normal element
z such that, if ¢ is not a root of unity, the localization of A at the powers of z is simple.
With Af as in 2.1, 2z = 129 — 1 = g(z221 — 1). We shall identify a sequence of elements z;,
—1 < < n, such that, for 1 <i <mn, z is normal in L.

Notation 3.1. Let n > 3. In L%, let z_1 =0, 2o = l and, for 1 <7 < mn, let z; = 2,12, —2;_9.
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The next lemma gives an alternative expression for z; in terms of the K-homomorphism
6: LY | — L% of Proposition 2.14(iii), for which §*(L? _,) C Lg.
Lemma 3.2. For 1 <i<mn, z; = 210(z;_1) — 0*(zi_2).

Proof. The proof is by induction on i. When i = 1, 2,0(2) — 6?(2_;) = z; = 21 and, when
i =2, 110(z1) — 0%(20) = 1179 — 1 = 29.
If 7 > 2 and the result holds for : — 1 and ¢ — 2, then
Ri = Ri—1Ti — Zi-2
= 210(2i_0)x; — 0% (2i_3)w; — 110(2i_3) + 0*(2i_4)
= $1‘9(Zz‘—2$z‘—1 - Zi—3> - 92(%‘—3%‘—2 - Zi—4)
= 110(2_1) — 0*(zi_2).
O
We now seek relations between z; and z;, for 1 < 7,5 < n, and between z; and z; when
i 7.

Lemma 3.3. Let 1 < 1,7 <n. Then

’q(*l)i’lzjxi if 7 1s odd and j <i—1,
2 if j is even and j <i—1,
Jziaxi 4 (g 1)zio if i s odd and j =1 — 1,
Tz = g 'z +(1—q¢ Yzie  ifiis even and j =i — 1,
2T if 7 1s odd and j > 1,
\q(—l)”lzjxi if j is even and j > i.

Proof. This is a straightforward induction on j using the defining relations and the equations
2k = Zp_1%Tk — Zk—2, and applying the previous two cases at each inductive step. The trivial
case j = 0, where z; = 1, can be used along with the case j = 1 in the initial step. Separate
calculations are needed for the cases j <1 —2, j=i—1,j=4,j=i+1land j >1+2. We
give details for the cases j =7 —1, j =7 and j = ¢+ 1 when j is even. The odd cases of
these are similar and the cases 7 < ¢ — 2 and j > ¢ 4 2 are routine. Suppose that j is even
and that the result holds for j — 1 and j — 2. If j =7 — 1 then

Tigi—1 = Xi%i—2Ti—1 — TiZi-3
= Zif2($i71xi - (1 - Q)) — Zi—3%;
= Z-1T; — (1 - Q)Zi—Q-
If 5 =i then
Tizi = XjZi—1T; — TjZi—2
= ¢ 'zixl + (1 —q Nziaw — 20w

-1
= q Z;
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and if j =i+ 1 then

TiZi41 = TiZiTig1 — TiZi—1
qzi(Tip1w; + (1 —q)) — zimwi + (1 — q)zi2
qziTip1T; + (1 — @) 210 — 2215

= Q<Zz'llfi+1l‘i - zz’fl) = gZi+1%;.

Corollary 3.4. For2 <i <n,

qzi1xi + (1 —q)z if 1 is odd,
T;Zi—1 = e .
! ziami+ (gt = 1)z if i is even.

Proof. By Lemma 3.3,

zioiwi + (¢ — 1)zi9 if 7 is odd,
TiZi—1 = _1 _1 e
¢ ' ziqxi+ (1 —q Y)zio  if i is even.

The result follows by using the equation z;_o = z;_1x; — 2; to substitute for z;_5 on the right
hand side. ]

Corollary 3.5. ’ (i) For 1 < i < n, z,x; = pixizn, where p; = 1 if n is odd and
pi = ¢V if nis even. Consequently, the element z, is normal in L2,
(ii) For 0 <i < j <mn, zz; = ¢Miz;z;, where N\jj = 0 if j is odd or if j and i are both
even, and \i; = 1 if j is even and i is odd.

Proof. (i) is immediate from Lemma 3.3 and (ii) follows inductively using the formula z; =
Ri—1Li = Zi—2. -

Notation 3.6. Let n > 2, let ¢ € K*, let A = ()\;;) be the n x n antisymmetric matrix over
K such that, for 1 <1i < j <n, \;; is as specified in Lemma 3.5(ii) and, for 1 <4,j < n, let
¢i; = ¢. Thus ¢;; = %17 gi; = 1 and, for ¢ < j, ¢;; = 1if j is odd or if j and 7 are both
even, and ¢;; = ¢ if j is even and 7 is odd.

Let W1 and T7, respectively, denote the co-ordinate ring of quantum n-space with genera-
tors 21, ..., z, and the co-ordinate ring of the quantum n-torus with generators zlﬂ, e, 2T

subject to the relations z;z; = g;;2;2 for 1 < 7,5 < n. We may also refer occasionally to

the subalgebras W and T generated by 21, 29, ..., 2 or by 2z, 25 ... 2*! as appropriate,

(et}

where 1 < i < n. As is well-known, W? is an iterated skew polynomial algebra over K, and
TY is an iterated skew Laurent polynomial algebra over K.

Lemma 3.7. Suppose that q is not a root of unity. If n is even then T is simple and if n
is odd then T9 is a Laurent polynomial ring T?_,[2F'] over the simple ring T? .

Proof. 1f n is even we apply the criterion given by [27, Proposition 1.3]. Let mq,...,m, € Z
be such that ¢i7'gy* ... g, =1 for all j, 1 < j <n. If j is even then g;; = 1 unless i is odd
and ¢ < 7, in which case ¢;; = ¢. So successive considerations of the cases j = 2,4,...,n
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gives mg = my = -+ = my, = 0. If j is odd then ¢; = 1 unless 7 is even and 7 > j,
in which case ¢;; = ¢~'. Successive considerations of the cases j = n — 1,...,3,1 gives
Mp—1 = -+ =m3 =my = 0. By [27, Proposition 1.3], T is simple. If n is odd then it is
clear from Corollary 3.5(ii) that 79 = T}_,[2£1]. O

The following result of Wexler-Kreindler [31, Proposition 2] on changing the indeterminate
of a skew polynomial ring will be useful.

Lemma 3.8. Let a be an automorphism of a ring R and let § be an a-derivation of R. Let
a € R and let u be a unit in R with inner automorphism vy, : v — uru™'. Let o = v«
and, forr € R, let §'(r) = ud(r) + ar — v (a(r))a. Then 0" is an o' -derivation of R and

Rlz;a, 0] = R[2';d,0'], where ' = ux + a.

The next result allows us to identify LI with an intermediate K-algebra between W and
T4. After the proof of (i) this identification, which is pre-empted by the use of the notation
z; in all three algebras, will be made implicitly.

Notation 3.9. For 1 < j < n, let Z; denote the multiplicatively closed set { f2{" 25> ... z?j ;
feKa € Ng,1 <i<j}of Wi We will make use of the fact that each Z,, is right and

left Ore and that T)! is the localization of W at Z,.

Proposition 3.10. Let n > 2 and q € K*. Suppose that q is not a root of unity.

(i) There are injective K-algebra homomorphisms ¢ : Wi — L% and 1 : LI — T4 such
that Yé(z;) = z; for 1 < i <n. (This allows us to regard W7 as a subalgebra of L3
and to regard each Z; as a subset of L1.)

(ii) The sets Z, and Z,_1 are right and left Ore sets in LL. The localization of L% at Z,
is T2. Ifn is odd then the localization of LY at Z,_4 is the polynomial algebra T, _,[zy]
and if n is even it is the skew polynomial algebra T\ _,[z,; ], where a(z;) = z; if i
is even and o(z;) = q 2 if i is odd.

Proof. (i) By Corollary 3.5(ii), applied to each of the algebras LY, there is a K-algebra
homomorphism ¢ : W4 — L% such that ¢(z;) = z; for 1 <i <n. As L is a domain so also
is the image ¢(W49). Hence ker ¢ is a completely prime ideal of W4. If ker ¢ # 0 then, by
Lemma 3.7, either z; € ker ¢ for some i, 1 < i <n—1or z, — X € ker¢ for some A € K
(with A =0 if n is even). As L? has a PBW basis and the coefficient of z125...2; in 2; is 1,
it follows that ker ¢ = 0 and hence that ¢ is injective.

With z_; = 0 and 2y = 1, let w; = 2z Y2 and v; = w; +w; Y} = 2z (2 + zig) € TY,
1 <i < n. It follows, by Corollary 3.5(ii), that, for 1 <i < j <mn,

¢ lwaw; if i — j is even,
w;w; = o ..
qu;w; if 1 — 7 is odd.
From this it follows routinely that if ¢ > 7 + 1 then

B g tvju;  ifi— j is even,
VU = o .
qu;v; if © — 7 is odd.
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and that

Vig1Vi = qUivip1 + 1 —q.
Thus the v;’s satisfy the defining relations for L2 and there is a K-algebra homomorphism
¥ LY — T4 such that ¢ (x;) = v; and 1(z;) = z; for 1 <i <n. As T? is a domain so also is
(L) so ker 1) is a completely prime ideal of L.

Let D = {r € LY : zr € W{ for some z € Z,_1}. Using Corollary 3.5(ii), it is easy to
see that D is a subalgebra of LI. For 1 < i < n, 2,12, = 2 + 2;_2 so each z; € D and
therefore LY = D. Now suppose that kerty # 0 and let 0 # f € kert. As f € D, there
exists z € Z,_; such that zf € keryyNW4I. As (z;) = z; for all ¢, kerypy "W =0s0 zf =0.
But LY is a domain so f = 0. Hence kert) = 0 and 7 is injective.

(ii) As T is a right and left quotient ring of W4 with respect to Z,, it is also a right and
left quotient ring of the intermediate ring L? with respect to Z,, and hence Z,, is right and
left Ore in LZ. The set Z,_; is a 7,-invariant right and left Ore set in L _,, with quotient
ring 77, so it follows easily from [14, Lemma 1.4] that it is right and left Ore in L% with
quotient ring TY [%n; Tn, On]- AS 2, = 2, 12, — 2,2 and z, 1 is invertible in T)?_,, it follows
from Lemma 3.8 that if n is odd then T)!_,[z,; o, 0n] = T)1_1[2,] and that if n is even it is
the skew polynomial algebra T/, [x,; Tn, 0n] = T/ [2n; 7] where 7(2;) = z; if i is even and
7(2) = q 'z if i is odd. O

Notation 3.11. For m € N and ¢ € K*, let [m], := 14+ ¢+ ¢*+ ...+ ¢™ !, which, if ¢ # 1,
is (¢™ —1)/(g —1).
Proposition 3.12. Let n > 2 and let 2 = f2{'z5*...20"' € Z, 1, where f € K* and

*n—1

a; € Ng for1 <i <mn—1. Let L = L% and suppose that q is not a root of unity. Then
LzL =1L and PN Z,_; =0 for all prime ideals P of L.

Proof. Suppose that LzL # L and let M be a maximal ideal of L containing LzL. By
Proposition 2.19, M is completely prime and so z; € M for some 7, 1 <7 < n —1. By
Lemma 3.3, z; € M for 0 < j <i—1. In particular, 1 = 2, € M which is impossible. Hence
LzL = L and consequently PN Z,,_; = () for all prime ideals P of L. O

We are now in a position to determine the prime ideals of L when ¢ is not a root of unity.

Theorem 3.13. Let L = LI and suppose that q is not a root of unity. If n is odd then the
prime ideals of L are 0 and, for each A\ € K, Py := (2, — A\)L. If n is even then the prime
ideals of L are 0, z,L and, for each A € K*, P} := (2,-1 — A)L + z, L.

Proof. First note that if n is odd then P, is an ideal of L as z, is central. If n is even,
then z,L is an ideal of L, by Corollary 3.5(i), and z,_; is central modulo z,L% in L%, by
Corollary 3.4. So Pj is an ideal of L.

For A € K, note that z, — A = 2z, 12, — 2,_2 — A has degree one in z,. Using [22,
Proposition 1] and Corollary 3.5, it is easily shown by induction that (z, — )L is completely
prime if n is odd or if n is even and A = 0. If A # 0, x, = A 'z, o mod P}, so L/P}
is generated by the images 7;, 1 < i < n — 1, and there are inverse homomorphisms ¢ :
L/P, — LY /(zn—1 — AN)LL_yand 0 : LY /(2,1 — A)LL_| — L/P5 such that o(7;) = 7;
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and 0(7;) =T; for 1 <i <n—1. Thus L/P{ ~ L! /(2,1 — A)L!_, and hence P4 is also
completely prime.

Let T be the localization of L at Z,_; and let P be a non-zero prime ideal of L. Suppose
that n is odd. By Proposition 3.10 and Lemma 3.7, T is the polynomial ring 7)Y ,[z,] ~
T! | @k K[z,] over the simple ring T)7_,. By [27, Proposition 1.3], the centre of T)!_, is
K. It is then a consequence of [28, Lemma 9.6.9(i)] that PT = P,\T for some A € K. By
Proposition 3.12 and [28, Proposition 2.1.16(vii)], P = Pj.

Now suppose that n is even. By Proposition 3.10 and Lemma 3.7, T is a skew polynomial
ring T ,[zn; @] and T? ,[2EY; o] is simple. It follows that PT contains z, and hence has the
form @ + z,T for some prime ideal Q of T? | = T? ,[2F',]. By [28, Lemma 9.6.9(i)], every
such prime ideal of T)!_; has the form 0 or (z,,_1 — A\)T,_, for some A € K* so PT = z,T or
PT = P{T. The result in the even case now follows as in the odd case using [28, Proposition
2.16(vii)] and Proposition 3.12.

O

Recall from [7] that a noetherian domain R is called a unique factorization domain (UFD)
if every non-zero prime ideal of R contains a non-zero completely prime ideal of the form pR
where p is normal in R. The following is immediate from Theorem 3.13.

Corollary 3.14. Suppose that q is not a root of unity. If n > 2 then the linear connected
quantized Weyl algebra L is a UFD. If n is odd then every height one prime ideal of L1 is
mazximal. If n is even then there is a unique height one prime ideal z,L% and L% /z,L% is a
UFD in which every height one prime ideal is maximal.

Corollary 3.15. Let L = L% and suppose that q is not a root of unity. If n is odd then the
primitive ideals of L are the prime ideals (z, — A\)L, A € K. If n is even then the primitive
ideals of L are 0 and, for each A € K*, (2,1 — A\)L + 2, L.

Proof. Suppose that n is odd. The ideal 0 of L is not primitive, by Proposition 2.18(ii), due
to the existence of the central element z,. All the non-zero prime ideals are maximal and
hence primitive.

Now suppose that n is even. The ideal 0 of L is primitive, by Proposition 2.18(iii), because
L has a unique height one prime ideal. The ideal z, L is not primitive, by Proposition 2.18(ii),
as z,_1 is central modulo z, L. The remaining prime ideals are maximal and hence primitive.

O

4. PRIME SPECTRUM OF (Y

Throughout this section, n > 3 is an odd positive integer. Recall that the cyclic connected
quantized Weyl algebra C? has the form L _,[x,; 7,,d,] and contains L?, as a subalgebra for
1 <m <n-—1. Let 6 be the K-automorphism of C? specified in Proposition 2.14(iii). Thus
O(z;) = xi4q for 1 <i <n-—1and 6(z,) = z;. For 1 <m < n, (L%) is the K-subalgebra
of C?¢ generated by xq,x3,...,2,+1. The relations that the elements zq,29,...,2,-1 € C¢
satisfy with each other, and with zy,2s,...,x,_1, are as in Lemma 3.3 and Corollaries 3.4
and 3.5. The next lemma gives the relations between x, and each of 2, 25,...,2,_1 in
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C? and, by modifying the formula that defined 2, in LY, identifies a distinguished central
element of CY.

Lemma 4.1. Let Q = 2z, 12, — 22 — ¢0(2,_2) € C% and let O be the K-automorphism of
C4 specified in Proposition 2.14(iii).

(i) For 1 <j<n-—2,

oy = )@ + (1 —q)0(zj_1) if j is odd,
") e + (1= q)0(221)  if j s even.

(i) zpzn-1 = zn—12n + (1 — @) (0(2—2) — 2n—2).
(iii) 6(Q) = Q.
(iv) Q is central in C4.

Proof. Recall that C¢ = L! |[x,;7,,0,] for the K-automorphism 7, of L{ | such that
To(z;) = ¢z for 1 < j < n—1 and the 7,-derivation 8, of L%_, such that 8, (z;) = 1—g,
On(zj)=0for2<j<n-—2and dy(z,—1)=1—¢q "

For (i), let 1 < j <n —2. It is a routine matter to check, by induction, that 7,,(z;) = gz;
if j is odd and 7,(z;) = z; if j is even and that 0,,(2;) = O0n(zj_17; — 2j—2) = (1 — q)0(zj_1).
The result (i) follows.

Using (i), we see that 7,(z,-1) = Th(2n—2Tn_1 — 2n_3) = 2,_1 and that

On(zn—1) = On(zn—2mpn_1— 2n_3)
= (1= 9)0(zn-3)0(xn2) + (1 =g )q202 — (1 — 9)8(2,-4)
= (1=¢)(0(2n—2) — zn—2).

Thus (ii) holds. For (iii),
0(Q) = 0(zp_12n) — 0(2n—2) — q0*(2n—2)
= 0(xpzn—1 + (1 — @) (202 — 0(21-2))) — 0(zn—2) — QQQ(ZTL—2) (by (ii))
= 110(2n-1) — ¢0(2n—2) — ez(zn—2)
= 210(2p_2)Ty — 110(25_3) — 0% (20_3)Tp + 0*(2p_4) — q0(2n_2)

= Zn-1Tn — Zn—2 — q0(2p_2) (by 3.2)
= Q.

For (iv), first note that, by Lemma 3.3, 2, 12,2 = ¢ *2p_27,_1 + (1 — ¢ *)2,_3 so that

qmng(zn—Z) - Q(Q‘rn—lzn—Q) - H(Zn—an—l + (q - 1)271—3)- (14>
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By (ii), (i) and (14),
Q) = Ty (2p_12n — 2n—2 — q0(2,2))
= (zp_1Tn + (1 — @) (0(2n—2) — 2n—2))Tn — qZn—2%n — (1 — Q)0(2p—3) — qrp0(z,_2)
= zn 122+ (1= )0(2p—2)T0 — 2n—2Tn — (1 — @)0(2n_3) — q2p0(2n_2)
= Zn 172 — Zp_oTn — q0(2n_2)Tn
= Qx,.
By (iii), ;02 = Qu; for 1 <1i <mn, so Q is central in C4.

Proposition 4.2. Let ¢ € K*. Suppose that q is not a root of unity. The subsets Z,_;
and Z,_5 of LY | are right and left Ore sets in C1. The localization of CI at Z,_1 is the
polynomial ring T1_,[Q] over the simple algebra T, .

Proof. By Proposition 3.10, Z,_; is a right and left Ore set in L! , and it is clearly
Tp-invariant. By [14, Lemma 1.4], Z,_; is right and left Ore in C¢ with quotient ring
T2 [xn; Tn, Oy). Similarly, Z,,_» is a right and left Ore set in L!_; and in CZ.

As Q = ux, +a, where u = z,_1, which is invertible in 72 |, and a = —(2,_2+¢0(2,_2)) €
LI, it follows from Lemma 3.8 that T, [z,; T, 0,) has the form T, [ 7, 0.]. As Qis

central, 7/, must be the identity automorphism on L! ; and 0/, must be the zero derivation.
O

The next lemma will be significant in identifying the localization of C? at Z,_, as an
ambiskew polynomial ring. Our notation for such rings and the related generalized Weyl
algebras will be essentially as in [24]. Given a K-algebra A, commuting K-automorphisms
a and 7y of A, an element v € A such that va = y(a)v for all @ € A and v(v) = v, and
a scalar p € K\{0}, the ambiskew polynomial ring R = R(A, «,v,p) is the iterated skew
polynomial ring A[y; a][x; 3, 6], where 8 = a1y is extended to a K-automorphism of Aly; a]
by setting 5(y) = py and ¢ is a [-derivation of Aly;a] such that 6(A) = 0 and d(y) = v.
Thus zy = pyz + v and, for all a € A, ya = a(a)y and xa = B(a)z.

If v is regular, as will be the case in all examples considered here, then v determines ~.

If there exists u € A such that ua = y(a)u for all @ € A and v = u — pa(u) then the
element z := xy — u = p(yx — a(u)) is such that 2y = pyz, zo = p~txz, za = y(a)z for all
a € A and zu = uz. If such an element u exists then R is a conformal ambiskew polynomaial
ring, u is a splitting element and z, which is normal in R, is the corresponding Casimir
element of R. The factor R/zR, which we denote here by W (A, o, u), is then generated by
A, X ==z + zR and Y := y + zR subject to the relations XY = u, Y X = a(u) and, for
alla € A, Ya = a(a)Y and Xa = f(a)X. In the case where u is central this is one of the
algebras named generalized Weyl algebras in [1] and we use the same name here.

Lemma 4.3. Forqe K* and 1 <i:<n—1,
1—1

quQ(Zz‘—z) - Zz‘—19(zi—1) =—q?

if 1 1s odd and

Zig(zi—Q) - Zi—le(zz‘—l) =—q 2

if 1 1s even.
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Proof. When @ =1, z; o = 0 and z;_1 = 1 so the result holds. Let ¢ > 1 and suppose that
the result holds for ¢ — 1. If ¢ is odd then
qzi0(zi—2) — 2i-10(zi-1)
= Q<Zi71xi - 2172)9(2’172) - 21'719(21'72371‘71 - 21'73)
= 2i10(qri—12i-2 — zi2Ti 1 + 2i-3) — qzi—20(2i2)

= qzi,lﬁ(zi,g) — qzi,29(2i72> (by 33)

= —q 2
If 7 is even then
zie(zi—2) - Zi—le(zi—l)
= (Zz'—lxz' - Zz‘—2)9(zi—2) - Zz'—le(zz'—ﬂi—l - Zz’—S)

= 2 10(Ti—12im2 — Zio®io1 + 2i—3) — 2i—20(2i_2)

= qzi_lé’(zi_g) — ZZ‘_20<ZZ'_2) (by 33)
The result follows by induction on . ([l

Proposition 4.4. Let n > 3 be odd and let ¢ € K*. Suppose that q is not a root of unity.
Let o be the K automorphism of T)! ., such that, for 1 <i <n —2, a(z;) = z; if i is even
and o(z;) = q¢ 'z if i is odd.

(i) The localization S of C’q at Z,_o is the ambiskew polynomial algebra R(T!

1o, a,v,1)
where v = (1 — q)(¢" 2,1, ~ Zn- 2) x—G Yopo1) and y = 2, 20 1.
(ii) For any A\ € K, the element ¢ = zn 9 + A+ qzn_o is splitting, 2 — X is a central

Casimir element and S/(Q2 — N\)S is a generalized Weyl algebra over T _,.
Proof. (i) By [14, Lemma 1.4], T)' y[Zn—1; Tn—1, On—1][Tn; Tn, On] is the localization of C? at

Z,_5. Observe that y =, 1 — z;_12,zn,3 and that, by Lemma 3.2,
Tr = 0_1(217,—1) = Tpin-2 — Q(Zn—ii)
= qZn—2%n + (1 — @)0(2n—3) — 0(2n—3) (by 4.1(1))
= q(zn—an - H(Zn—?)))

As gz, o is a unit in T/ -2 it follows from Lemma 3.8 that S is an iterated skew polynomial
ring of the form T ,[y;7) 4,0, _ ][x,fn,an] over T¢ ,. By Corollary 3.5, yz; = ¢V z;y
for 1 <7< n-— 2 and it follows that 7,_; = a and 9;,_; = 0. Also by Corollary 3.5,
a1zt = ¢V 21z for 1 < i < n— 2. Applying 071, we see that za; = ¢V 2
for 1 < i < n — 2 and hence that the restrictions of 7, and d! to T! , are = and 0
respectively. It remains to show that 7/,(y) = y and that (97’1( ) =v.

By Lemma 4.1(i), 7,(2p—1) = 2n—1 and 7,(2—2) = qzn—2 and, by 3.5, gz, »(Zn-1) = qZn—_1.
It follows, by Lemma 3.8, that 7/(y) = v.
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We have seen that 9/ (t) = 0 for all t € T ,,, s0 0, (y) = 0! (xn_1 — 2, 92n_3) = O (7,_1).
Applying 67! to the equation in Lemma 4. 1(11) we obtain

TTp_y = Tp1Z + (¢ — 1) (2nz — 0 (2,_2)).
Here 07 '(z,2)) & T} ,[y; 7} _1,0.,_4] but, using Lemmas 3.2 and 4.1(i),
0~ (an2) = Tpin-3 — 9(2n74)
= Zn-3Tn — q@(Zn_4)

= 2p3(q7 " 2, 5 (2 + g0(2n—3)) — q0(2—4)

SO

Tpo1 = (-’Enfl + (07" = Dznszyls)r + (0 — 1) (202 + q0(20-1) — 20-32,250(2n-3)).-
As x4 + (' — Dzy_sz, by and (¢ — 1)(2n—2 + q0(2n—4) — 2n_32, 50(2,_3)) are both in
T7 oly; 74,0, _1], and as z,_o is central in T)_,, it follows that

0, (y) = O (xn-1) = (g = D(2n-2 + a0(20-1) = 2, 2520-30(20-3))
=(q—1)(zn2+ Zr:—12(qznf26(zn74) — 2n-30(2n-3)))
=(q—1)(zp—2— an,gZ;_12> (by Lemma 4.3)
= .
This completes the proof of (i).

(ii) Let A € K and let u = ¢z z 'y + A+ qzn_o. Then u is central in T , because 2, o
is central. Also

U_O‘()_q22 L+ A+ gz z—qq2z P A
= (g~ (22— ¢"7 2,%)
=0

so u is a splitting element.
As z, o is central in L] _,, the corresponding Casimir element is

zi=ay —u=0""2n 1) (Tn_1 — Zn_32, ) — ¢ 2 = A= qzna.
Recall that Q = z, 12, — 2,2 — ¢0(2,—2) € C? and, from Lemma 4.1(iii), that 6(Q2) = Q.
Hence 071 (2,_1)zn_1 = Q+ 071 (2,_2) + qzn_2 and it follows that
=0 = A+ 0"z 0) — 0 (20 1)2n32, 5 — q 232 L
By Lemma 4.3 with i = n — 2, 2z, 20(2z,-2) = z,-10(2,_3) + ng so, applying #~! and
postmultiplying by z, %,
9_1(271—2) = 9_1(271_1)2”_32;_12 + an_SZ’;_l2

Hence z = Q — X is a Casimir element and S/(2 — A\)S is a generalized Weyl algebra over
qu_Q‘ |:|
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Proposition 4.5. There is a bijection between Spec C! and Spec S given by P +— PS, for
P € SpecCl, and Q — QNCY, for Q € SpecS.

Proof. Forall z € Z,,_o, L! _zL1 | = L! |, by Proposition 3.12, and so C4zC? = C%. Hence

PNZ, 5=0forall Pe SpecC4. The 711re;ult follows by [28, Proposition 2.1.16(vii)]. O
The ambiskew polynomial ring S is the main example of [10], where its prime spectrum

is computed. It consists of

o (;

e a height one prime ideal (2 — A)S for each A € K;

e for each positive integer m, two maximal ideals F,; and F,, _y such that S/F,

and S/F,, —1 have Goldie rank m.

Here F),; contains the height one prime ideal (€ — A)S, where A = (¢" + 1)qn72ZH, and
F,,_y contains (2 + A)S. Also, if m,¢ € N are such that m # ¢ then (¢™ + 1)¢" & #
+(q¢* + 1)q#. For details, see [10, Examples 2.8 and 3.12 and Corollary 4.7], where
p=n—2.

Proposition 4.6. For all A € K, the ideal (2 — N\)C2 is a completely prime ideal of CZ.

Proof. As z, 1L _, is completely prime in L? | and z, o+ q0(z,_2) ¢ z,_1L?_,, this follows

on applying the last part of [22, Proposition 1] to Q@ — A = z, 12, — 2,2 — ¢0(z,—2) — A. O

Lemma 4.7. Let R be a right and left noetherian ring with a right and left denominator
set S and let P be a prime ideal such that P NS = 0. Then the elements of S are reqular
modulo P and their images in R/ P form a right and left Ore set with right and left quotient
ring Rs/PRs.

Proof. et J = {r € R : rs € P for some s € §}. By a standard argument on the right
Ore condition, J is an ideal of R. As R is left noetherian, J = Rj; + --- + Rj, for some
J1y---,Jn € R such that j;s; € P for some si,...,s, € S. By [28, Lemma 2.1.8] with
ry =---=r, = 1, there exists s € § such that each j;s € P and hence such that Js C P.
As J is an ideal containing the prime ideal P and s ¢ P, it follows that J = P. By symmetry,
{r € R:sr € P for some s € S} = P, whence the elements of S are regular modulo P. For
the rest, it is easy to check that S = {s + P : s € S} is a right and left Ore set in R/P and
that Rs/PRs is a right and left quotient ring of R/P with respect to S. O

Theorem 4.8. Suppose that q is not a root of unity. The prime spectrum of C% consists
of 0, the height one prime ideals (2 — \)C4, X € K, and, for each positive integer m, two
height two prime ideals M, 1 and M, _ for which the factors C%/M,,, and C?/M,, _1 have
Goldie rank m.

If X # +(¢"+ 1)q% for allm € N then (2 —\)C? is mazimal. If X = (¢ + 1)(171721'17l
then (2 — X\)C2 C My,1 and (2 + X\)CL C My, 4.
Proof. 1t follows from Proposition 4.5, the above specification of Spec S and [28, Proposition

2.1.14] that the prime ideals of C? are as listed. Lemma 4.7 ensures that [28, Lemma 2.2.12]
is applicable to show that S/F,, 11 and C?/(F,, +1 N C?) have the same Goldie rank m. O
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Corollary 4.9. Suppose that q is not a root of unity. If n > 3 then the cyclic connected
quantized Weyl algebra C s a UFD in which all but countably many height one prime ideals
are maximal.

Corollary 4.10. Suppose that q is not a root of unity. The primitive spectrum of C2 consists
of the non-zero prime ideals listed in Theorem 4.8.

Proof. By Proposition 2.18(ii), the ideal 0 of C'¢ is not primitive due to the existence of the
central element 2. All other prime ideals of C'? are primitive. For the non-maximal height
one prime ideals this is a consequence of Proposition 2.18(iii) and the fact that each of the
non-maximal height one prime ideals is strictly contained in a unique height two prime ideal,
F,, 1 or F,, _; for an appropriate value of m. O

5. AUTOMORPHISMS

In this section we determine the automorphism groups of the algebras L? and C'? when
q # £1. We have already observed, in Proposition 2.14, the K-automorphisms ¢, of L such
that ¢, (z;) = v, for 1 < i < n, v € K*, and, when n is odd, the K-automorphisms ¢ and
0 of C? such that «(z;) = —x; and 0(x;) = ;41 for 1 < i < n, where indices are interpreted
modulo n. Clearly 60 = 6.

Theorem 5.1. Ifn > 3 is odd and q # +1 then Autkx(CY) is cyclic of order 2n, generated
by 6.

Proof. We interpret the indices in the x;’s modulo n. As 6t = (0, 6 has odd order n and ¢
has order 2, the subgroup (¢, 6) of Autx(C9) is cyclic of order 2n, generated by ¢6.

Let ¢ € Autg(C?). As ¢ must send height 1 primes to height 1 primes and U(C?) = K
it follows from Theorem 4.8 that ¢(Q) = p(2 — A) for some p € K*, A € K. As 2 has total
degree n and degree 1 in each x;, there must be a permutation © € S,, and scalars p; € K*
and \; € K such that, for 1 <@ <n, ¥(2;) = pixre) + A

For r,s € CZ, let [r,s], = rs — qrs. The possibilities for [zy,z¢],, 1 < k,¢ < n, are as
follows. If ¢ = k+1 then [zy, /], = 1—q, if = k—1 then [z}, 2], = (1—¢*)xpa)1+¢*—q =
(¢! = q@)ap_12p + 1 — ¢, otherwise, [zg, 24, € Kapr, = Kzypzy. For 1 <i<n,

1—q = [z italy)

= [¥(xi), Y(@it1)]q

= Wilis1[Tr(i), Ta(irnlg + (1= QNiftir1Ta(ivr) + N1 iy + Xidig)-
From the possibilities listed above, we see that A; = 0 for all i so 1 —q = ptifti1(Zx (i), Tr(it1)lq-
Thus [@r3), Zx(i+1)lg € K* but, as ¢ # %1, the only possibility is that 7(: + 1) = 7(i) + 1.
Hence each g1 = land 7 = (123 ... n)™W=L Also py = g = p,by = ftno =
... pty =gy so pp = 1 and either y; = 1 for all i or p; = —1 for all 4. Thus ¢ = 7M1 or
Y = 10"~ whence ¢ € (1,0) = (10) and therefore Auty (C?) = (16). O

Theorem 5.2. Ifn > 2 and q # +1 then the map T' : K* — Autg(L%) given by v+ 1, is a
group isomorphism.
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Proof. Certainly I is an injective homomorphism. We proceed as in the proof of Theorem 5.1
with z,,, which has total degree n and degree 1 in each x;, replacing 2. The height one primes
have the form (z, —A)L%, with A = 0if n is odd, so if ¢ € Autg (L2) then ¢ (z;) = pxru)+ i
for some permutation 7w € S, and some scalars p; € K*, \; € K. Proceeding as in 5.1, we
find that 1 — ¢ = piphis1[Tr(), Tr(ig1)lq but only for 1 < i <n—1. If 1 <k < n —1 then
[T0, 2], & K\{0}, as ¢ # %1, so m(i) # n for 1 < i < n —1. Hence n(n) = n and it

follows successively that m(n — 1) = n —1,...,7(1) = 1, so 7 is the identity permutation.
Although, unlike the cyclic case, it is not necessary that u,pu; = 1, we do have ;1 = 1
for 1 <i<mn—1andso =, where v = p;'. Thus I is an isomorphism. U

6. QUANTUM CLUSTER ALGEBRAS

In this section we present two classes of quantum cluster algebras in terms related to
the connected quantized Weyl algebras L? and C'? when n is odd. We shall not give a full
account of the theory of quantum cluster algebras. Helpful references include [3], where the
theory was first developed, [20] and, although we will not exploit its multiparameter aspect,
[19]. The quantum cluster algebras that we consider here will have no frozen variables. In
published definitions of uniparameter quantum cluster algebras, the base ring may be the
ring Z[qi%] for an indeterminate ¢, as in [3], or a field which may be either @(q%), with ¢
as before, as in [20], or, more generally, an arbitrary field K with a distinguished element ¢
that has a square root in K and is not a root of unity, as in [19]. We shall take the last of
these approaches..

Let n > 3 be odd. Consider the Dynkin quiver A,,_; of type A, _1, oriented as shown:

l1-+2=23—=---—=n—-2—=n-—1

It is known that all quivers with the Dynkin diagram of type A, _; as underlying graph are
mutation equivalent, see [13, Lemma 3.23]. The adjacency matrix is B = (b;;) where, for
1<i<j<n-1,b;=1ifj=i+1andb; =0if j #i+ 1. The inverse of B is the skew
symmetric (n —1) x (n —1) integer matrix A = (\;;) where, as in Corollary 3.5, A;; = 0 if j is
odd or if j and ¢ are both even, and \;; = 1 if j is even and 7 is odd. Hence there is a quantum

cluster algebra A? | on A, and, with each z;z; = ¢*iz;z;, (An_1,{21,22,...,2,_1}) is an
initial seed, where z1,...,2, 1 are as in Notation 3.6. It will be convenient to amend the
quantum cluster {z1,2,..., 2,1} to {Y1,¥2,- .., Yn—1}, Where y; = q%zi if 7 is odd and

y; = q 7 z if i is even. By the Laurent phenomenon [3, Corollary 5.2], A? is a K-subalgebra
of T? | = K[y, ...,y,]. By Proposition 3.7, T?_, is simple and 79 = T?_,[2F!]. The
linear connected quantized Weyl algebra L4 is a subalgebra of T/, [z,].

Proposition 6.1. The quantum cluster algebra A?_, is isomorphic to LY /(z, — q%)L%.

Proof. Let ¢ denote the composition of the K-homomorphisms

n—1

L} — Tg—l[zn] - Tg—l['zn]/(zn - qT)Tg—l[zn] = Tq—l'

n
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Note that ¢(z;) = z; for 1 <i <n—1and ¢(z,) = (24 (zn-2 + 2)) = 2.4 (202 + ¢ 7).
By [3, Theorem 7.6], A? | is generated by y1,v2,...,Yn_1, Wa, W3, ..., w, where, for 1 <
1 < n, w; is the quantum cluster variable obtained by mutation at vertex ¢+ — 1. Note that
y1 = 21 = x1. By the exchange relations (see, for example [20, 2.2, p702])

1
wy =y (1 +q2y2) = 27 (14 22) = 22 = p(a2)
and, for 3 <71<n-—1,

yi_—ll(q_%yi—Q +y;) if 7 is odd
w; = P
Y (oo + q7ys) if 7 is even.
In both cases, w; = 2z, (zi_2 + %)) = 2; = @(x;). Finally,
_ _1 _ n—1
Wo = Yp (0 22+ 1) = 2.5 (22 + ¢ 7 ) = ().
For 1 < i < n, y; is a K-linear combination of y; jw; and y;_5, where yo = 1, so A?
is generated by yp,ws, w3, ..., w,, that is by p(z1), p(z2),...,o(x,_1) and p(z,). Thus
A? = o(L%). Clearly z, — ¢"T € kery so A?_, is a homomorphic image of L4 /(z, —
q%)L%. As ¢ is not a root of unity, L?/(z, — q%)L% is simple, by Theorem 3.13, so
hor = L8/ (= g™ LG, 0

n—1 —
Corollary 6.2. The quantum cluster algebra Al | is simple noetherian.

Proof. The noetherian condition is immediate from Proposition 6.1 and Proposition 2.18(i)
while simplicity is immediate from Proposition 6.1 and Theorem 3.13. 0

Remark 6.3. It can be deduced, either from Theorem 6.1 or directly using a similar proof,
that LY is the quantum cluster algebra of A, if the vertex n is frozen.

We continue to fix an odd integer n > 3 and a scalar ¢ € K* that is not a root of unity.
We now aim to explain the connection between the cyclic connected quantized Weyl algebra
C;lf and the quantum cluster algebra ), of the quiver denoted P,Ei)l in the classification of
periodic mutation by Fordy and Marsh [11]. We shall express this quantum cluster algebra
as a quotient U/AU of an iterated skew polynomial extension U of K, with A central in U.
Both U and U/AU contain C¢ as a subalgebra.

The quiver Pﬁzl has n + 1 vertices, which we label 0 to n, and adjacency matrix

0 1 0 0 0o 0 1
-1 0 1 0 0 0 0
o -1 0 1 ... 0 0 O
B = o 0 -10 ... 0 0 0]= (bij), where

=)
[
o O
o O
OO...
=
—_
=)
[S—
O =
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1 if0<i<nmn—1land j=i+1ori=0andj=n,
bij=q—-1 ifl<i<nandj=i—1lori=nandj=0,
0 otherwise.

The labelling from 0 will also be applied to the rows and columns of the matrices B above

and A below and has been chosen to fit with the notation xy,...,x, in a cyclic connected
quantized Weyl algebra.
Figure 4 shows P6(1). In general there are n + 1 vertices 0, 1,...,n with a source at 0, a

sink at n and a single path from 1 to n. Mutation at the source gives the same diagram but
rotated so that the source is at 1 and the sink at 0.
wy W2 wy Wa
Wo w3 We W3

Ws Wy Ws Wy

FIGURE 4. Pﬁ(l) before and after mutation at 0

Let A = (\ij)o<ij<n be the (n+ 1) X (n + 1) skew-symmetric matrix
0o 1 0 1 1 0 1
-1 0 1 0 0 1 0
0o -1 0 1 1 0 1
-1 0 -1 0 0 1 0
-1 0 -1 0 ... 0 1 0
o -1 0 -1 ... =1 0 1
-1 0 -1 0 ... 0 -10
Thus
0 if 24 7 is even ,
Aij =141 if i < jand ¢+ jis odd,
—1 if¢>jand i+ 7 is odd.
Let T}, be the co-ordinate ring of the quantum (n+1)-torus with generators wf)tl, wit, ..., wit
and relations w;w; = inJ’iji for 0 < i < j < n. Thus wyw; = ww; if ¢ + j is even and
w;w; = qu;w; if i < j and i + j is odd. Then BTA = 21,14, so, with w := (wq, w1, ..., wy),

the triple (w, B, A) is a quantum seed for the quiver Pﬁ)l with exchange matrix B, quasi-
commutation matrix A and initial quantum cluster w.
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Notation 6.4. With A and T as above, let P, denote the subalgebra of T}, generated by
Wo, Wy, . . . , Wy, that is the coordinate ring of (n + 1)-dimensional quantum affine space with
quasi-commutation matrix A. Let D, denote the quotient division algebra of T}, (and F,).

The quantum cluster algebra (), for Pﬁgl is the subalgebra of D, generated by all possible
cluster variables and, by the Laurent phenomenon, it is a subalgebra of Tj.

Our next step is to use the exchange relations, [3, (4.23)] or [20, 2.3], to identify some
further quantum cluster variables. The mutation illustrated in Figure 4 is in the direction
of wy, where the quiver has its source, and yields the new quantum cluster variable w1,
and the seed {wy,ws, ..., w,11}, where, by the exchange relations,

Wp+t1 = w()_l(l + qwlwn) = (1 + q_lwlwn)wo—la (15)
so that
WoWny1 = 14 quiwy, Wppwo = 14+ ¢ twiw, and wow,1 — wniiwo = (¢—q Hwiw,. (16)

Similarly, mutation in the direction of w,, where the quiver has its sink, gives rise to the
quantum cluster variable w_1, and to the seed {w_1,wq, wy, ..., w,_1}, where

w_y = w, (14 ¢ wow,_1) = (1 + quow,_1)w, "

Here the source moves to n — 1 and the sink to n.

A sequence of mutations where we successively mutate in the direction of the sources
wop, W1, . . ., respectively the sinks w,,, w,_1, ..., will rotate the quiver clockwise, respectively
anticlockwise. This gives rise to a countable set {w; };cz of cluster variables and a countable
set of seeds {w;, wa, ..., wiin}, i € Z, with a source at w; and a sink at w;y,. For i > n,

1

w; = w;—ln—l<1 + qui_pw;_1) = (1 + qilwifnwifl)wii—n—lv
generalising the formula for w, 1, and, for ¢ < 0,
w; = w;—i}n+1(1 + q71w1+1wi+n) =(1+ qwi+1wi+n)w;—i-1n+17
generalising the formula for w_;. Straightforward calculation shows that, for ¢ < j < i+ n,
wiw; if 2 4 7 is even,
w;w; = ! o +j. . (17>
quw; it i 4 j is odd.

Next we consider mutat}ons in di%"ections of vertices that are neither sources nor sinks.
For i € Z, let z; = w; l(q_iwi_l + qZw;y1). This is the new cluster variable obtained when
a seed {wj, wjt1,..., Wit} With j <1 < j 4+ n is mutated in the direction of w;.

Lemma 6.5. For i € Z, let w; and x1 be as specified above.
(i) For alli € Z and k > 0,

2 2
(a) ixip1 — ¢ w1z = 1 — 7,
9

(b) &iiqor — ¢ “Tiyorx; =0,

9
(€) Ti%itok+1 — ¢ Tipopt12; = 0.
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(ii) Forie Z,

Wity = § Wiy + qEw, Tiw; = q2wimy + ¢ 2w, (18)
Lo 1

rw; — quiz; = q2(¢ — qQwi and (19)

rw; —q twir; = q% (1 —q Hw_;. (20)

(iii) For 1 <i<mn and0<j <n with j #1,

1

N L if1 <7 and i+ 7 is even ori > j and i+ j is odd,
Y ¢ wjx;  ifi<jandi+jis odd ori > j and i+ j is even.

(iv) Foralli € Z, xpy; = ;.
Proof. (i)(a) Using (17),

1, 1 1 1, 1 1
rivip = (w; l(q 2Wi—1 + q2wz‘+1))(wi+11(q 2w; + q2Wiy2))
= wi_.|_11wi_1(wi—lwi + qW; 1 Wiq 0 + WiW;iq + qzwz‘+1wi+2)
whereas

1, -1 1 —1, 4% 1
Tinr; = (Wi (¢ 2w + 2wige))(w; (¢ 2wy + q2wig))
1, —1/ 2 -1
= wnw; (¢ Wim 1w + ¢ Wim Wi + WiWig + Wit Wigo)
2 _ 2
SO TiTiy1 — ¢ Tip1x; = 1 —¢q°.
(b)
-1, -1, —1 -1 1 _1 1
TiTivok = q "W wi+2k(q 2wi—1 + @2 wis1) (¢ 2w; + P Wita)
1, -1, -1 -1 1 1 1
= q w wi+2k(q 2w; + q2wiy2)(q 2Wi1 + q2wig)
—2 1 _1 1 1, -1 1
= ¢ W (¢ 2w + Rwipp)w; (¢ 2wim1 + g2 wig)
—2
= q Tiy2krT;-

A similar calculation establishes (c¢) but it will be redundant given (iv), for example, as
n— 318 even, T;Ti13 = TitnTits = TitsTisn = ¢ Tit3T;.

(ii) and (iii) are straightforward from the definition of z; and (17).

(iv) We show that zg = z,,. For the general case, add i to all the subscripts.

4, 1 1
Ty = wol(q 2w_y + q2wy)

1 1
= wy (¢ 2w, (1 + quow,_1) + q2w;)

= q%w;1w()—1(1 + quown—1) + q%wo_lwl
1

1 1 1
i -1,-1_, ~1 -1 i -1
= qPw, Wy +q W, Wp1+q2wy Wy
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and

1, -1 1
Tp = W, (q an71+q2wn+1)

w;l(q_%wn_l + q%wo_l(l + quiwy,))

_1 4 1 1 1 31, -1
= q 2w, Wy,—1 +q2w, Wy + q2w, Wy wWiWy,

1

1 1 1
—2.,-1 11 —1 1,-1
= q 2W, Wp—1 t+q2w, Wy + q2w, w; = Tp.

O

Remark 6.6. By (i)(a)(b) and (ii), the subalgebra C' of the quantum cluster algebra @,
generated by x1,xs,..., 2, is a homomorphic image of the cyclic quantized Weyl algebra
ng. We shall see later that C' = C’ff.

Theorem 6.7. The quantum cluster algebra @, is generated by wo, w1, 1, T2, ... T, and,
indeed, by wi,x1, 2o, ... Ty.

Proof. Let S be the subalgebra of (), generated by the cluster variables wy, wy, 1, 2, . .. Tp.
As the quiver Pﬁr)l is acyclic, it follows from [3, Theorem 7.6] that @, is generated by
W_1,Wo, Wi, . - ., Wy, Wy, L1, To, ... and x,. Although quantum cluster algebras are defined
over Z[g*/?] in [3], the result in that case implies the result for quantum cluster algebras
defined over K. Recall that w_; = q%(ngn — q%wl) so w_; € S. Also, for i > 1, it follows
from Lemma 6.5(ii) that w; 41 = q%(wixi — q%l w;_1), from which it follows, inductively, that
Wa, W3, . ..y Wy, Wyp1 € S. Therefore @, = 5. Finally, by (20) with ¢ = 1,

=

Wy — ¢ lwyry = q2(1— q_2)w0

so wy may be omitted from the list of generators of S. U
Theorem 6.8. (i) The subalgebra S of T, generated by wo,wq,x1, %2, ..., Ty 1S an
iterated skew polynomial extension Klwo|[wi, po[x1; P, 0] -+ [Tn—1; Pl_1, 00 1]

(ii) There is a skew polynomial extension U = S[z’; B',0'] of S with a central element A
such that there is a surjective K-algebra homomorphism I' : U — Q, with I'(x) = x,,
and T'(A) = 0.

(iii) AU is a completely prime ideal of U.

(iv) AU is a mazimal ideal of U and Q, ~ U/AU.

(v) Qg is simple and (right and left) noetherian.
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(vi) Q, is generated by wy, w, X1, Ta, . .., T, subject to the relations
WoWy = qu1wWo
Tjwy = q(’l)leOa:j, if 1 <j<mn,
Tjwy = q(’l)jwlxj, if 1 < j <mn,
zywy = ¢ wyay + q%(l — ¢*)w,
LpWo = qUoTy, + ¢ 72 (1 — ¢}y,
Tty = ¢ T @ + 1 — ¢, fl<i<n—1,
Tpty = P12, + 1 — ¢,
T = T, ifi>l,i+1<j<nandj—iis odd,
21

Tix; = q’zxjxi, if 1 A+ 1<j<nandj—1is even,

Woln 41 = quiwy, + 1.

Here wy, and wy41 are defined recursively using the formula w; = q_%wj_lxj_l +
¢ 'w;_a, 7 > 2, and are linear combinations of standard monomials of the form
wiwdr Pz .. x% where a =1 and b=0 ora=0 and b= 1 and each d; < 1.

n )

Proof. For 0 < i < n, let Tq(Z be the subalgebra of T, generated by woﬂ,wfl, e ,wiﬂ, let
R; be the subalgebra generated by wy, wlﬂ, ...,wFl and, for i > 1, let S; be the subalgebra

generated by wo,wl,xl,xg, .. .xi,l. Thus, as z;_1 = wl-__ll(q’%wi,g + q%wi), we have S; C
R; C T for i > 1. Also T =T, and, for 0 <i <n -1, Tq(iH) and R, are, respectively,
the skew Laurent polynomlal rings Tqi [w; pi] and R;[wi'; p;], where the automorphism p;
of qu‘ or R;, as appropriate, is such that, for 1 < j <, p;(w;) = w; if i + j is even and
pi(w;) = ¢ 'w; if i 4 j is odd. Here, and elsewhere in the proof, we abuse notation in using
the same notation for p; and its restriction to a subalgebra.

(i) Let 1 < i < n — 1. In the skew polynomial ring R;[w;,1; pi], z; has degree one and
invertible leading coefficient. It follows from Lemma 3.8 that R;[w;1; pi] = R;[zi; p}, 0f] for an
appropriate automorphism p; of R; and pj-derivation d;. By Lemma 6.5(i), for 1 < j <i—1,
pi(z;) = ¢*2x; and 8l(z;) = 0 or 1 — ¢~2. By Lemma 6.5(ii) and (iii), p}(wo) = ¢©" wy,
(5§1(w0) =0, pi(wy) = ¢"V'w; and & (wy) = 0 unless i = 1 in which case, by (20), & (w;) =
q2 (1 — ¢ %)wp. Thus pi(S;) = S; and 6/(S;) C S, for x € {wy,wy,x1,...,7;_1} and it follows
inductively that, for 1 <i <n,

Si = Klwol[w, po][1; £, 1] -+ [i-1; i1, 6]
In particular, this holds for i = n where S,,_; = 5.
(i) Let A be the quantum n-torus generated by wi',... w*' and let a be the K-

automorphism of A such that a(w;) = w; if i is even and a(w;) = qu; if i is odd. The K-

subalgebra R, of T¢ has the form Afwo; a] while the K-subalgebra generated by wi', ... w*!

n
and wy, 11 is Afw,,1;a71]. Observe that wyw, is central in A and that a(w,w,) = ¢wiw,.
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Let u = 1+ ¢ twyw, so that v := u —a(u) = (¢7' — ¢)ww,. Form the conformal ambiskew
polynomial ring R = R(A, o, v, 1), with wy in the role of y. Thus R = A[wo; o|[z; 8, §] where
B(wo) = wo, §(wo) = (¢7" — @Jurw, and, for 1 <i < n, f(w;) = a ' (w;) and §(w;) = 0.
Note that z; € Aif 1 <i<n—1and z; = w; (¢ wy + g2wy) € Alwp: a]. The Casimir
element A := 2wy — ¢ luww, — 1 = 2wy — ¢ 'w,w, — 1 is central in R.

As Wy wj = B(wj)wyyq for 1 < j < n, and, by (16), w1 wo—wowyi1 = (¢—¢~ Hwiw,—1,
there is a K-algebra homomorphism ¥ : R — T, such that U(w;) = w; for 0 < i < n,
U(z) = wy41 and W(A) = 0. Note that W(x;) =x; for 1 <i<n—1.

Let 2/ = w; (g2 + ¢ 2 wp_y), so that (') = x,. By Lemma 3.8, R = Afwy; a[2'; 3/, &]
for an appropriate K-automorphism £’ of A[wg;a] and an appropriate (’-derivation ¢ of
Alwo; a.

The next step is to show that (S) = S and 0'(S) C S so that ' and ¢ restrict,
respectively, to an automorphism and (’-derivation ¢’ of S, which we also denote by 4’ and
', giving rise to a subalgebra U of R of the form S[z’; §’,d'].

Let 0 < i < n. Using the formulae in Lemma 3.8, we see that 3'(w;) = ¢V w,; and

8 (wi) = qrwy 0 (w) + g 2wy wnyw; — g2 B (wi)wy fw.
As §(w;) = 0 if i > 0 and &(wy) = (¢! — q)wywy, it follows that & (we) = ¢2(¢~* — ¢)w,
§'(w;)) =0for 1 <i<n—1and §(w,) =q2(1— q_Q)wn_ll. 1
Now let 1 <i<n-1 and recall that xz; = w[l(q_ﬁwi_l + g2 )w;y1. It follows that
B'(z;) = D" a;. Also 8'(z;) = 0 for 2 < i < n — 2 whereas

§'(21) = g2 (wy )8 (wo) = 1 — ¢
and
0 (wn1) = q2 B (w1 )0 (wn) = 1= q >

The above calculations establish that for each generator g € {wq, wy,x1,..., 2,1} of S, g
is an eigenvector of f’, with non-zero eigenvalue, and ¢'(g) € S. Hence there is an iterated
skew polynomial extension U = S[z'; #',6'] C R as described above. As U is generated by
Wo, W1, T1, - .., Ty—1 and 2, the image W(U) is generated by wg, wq, 1, ..., 2,1 and z,. By
Theorem 6.7, U(S) = @,. Note that = ¢ 2wt — ¢ wpg € Uso A € U. As Ais in
central in R and A € U, A is central in U. So (ii) holds with I" being the restriction to U of
v,

(iii) As x = q’%(wnx’ — q%lwn,l) and A = 2wy — ¢ lwyw, — 1 = wor — quyw, — 1,
A= q_%wownx’ + d where d = —q¢ *wow,,_1 — qu,. Both wy and w,, are normal in S, with
S/wyS and S/w,S isomorphic to skew polynomial rings over domains, so wyS and w,S are
completely prime ideals. Note that d ¢ wyS and d ¢ w,S by easy degree arguments. If
r,s € S are such that rd = wow,s then r = wge for some e € S, ed € w,S and e € w,S,
whence r € w,wyS. Thus d is regular modulo wow,S. By [22, Proposition 1], AU is a
completely prime ideal of U.

(iv) Note that R/AR is the generalized Weyl algebra W (A, a,u). We shall apply [24,
Theorem 5.4] to see that W (A, a,u) is simple. Criteria (i) and (ii) of that theorem hold
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because the skew Laurent polynomial ring A[z*!;a] is simple, by [27, Proposition 1.3],
whence A is a-simple and o™ is outer for all m > 1. Criterion (iii), the regularity of w, is
clear and (iv) holds because, for m > 1, uA + a™(u)A contains the unit (1 — ¢*™)ww,. By
24, Theorem 5.4], W (A, o, u) is simple.

Let P be the subalgebra of A generated by wy, ..., w,. The automorphism « of A restricts
to an automorphism of P, which we also denote «, and v is central in P so we can form the
ambiskew polynomial ring B := R(P,«,v,1). Thus B C U C R. The multiplicatively closed
set S generated by K* U{w; : 1 <1i < n} is a right and left Ore set of regular elements in P,
with ring of quotients A, and it follows from [14, Lemma 1.4], that S is a right and left Ore
set of regular elements in B, with ring of quotients R. As B C U C R, R is also the ring of
quotients of U with respect to S. Let ) be the completely prime ideal AU of U. By degree,
w; € Q for 1 <i<nso ARNU = AU, by [18, Theorem 10.20] or [28, Proposition 2.1.16].

Let J be a proper ideal of U strictly containing AU. By [28, Proposition 2.1.16], JR is
an ideal of R containing AR. If JR = AR then J C ARNU = AU so AR C JR. By
the simplicity of R/AR, it follows that JR = R and hence, by [28, Proposition 2.1.16(vi,iv)]
J contains a monomial w]"wy? ... w for some non-negative integers mq, mo, ..., m, with
at least one m; non-zero. Define the weight of a monomial w{™ w5y ... w™ to be Y | im;
and let w = wi"wy? ... wy be a monomial of least weight in J. Let i, 1 < i < n,
be maximal such that m; # 0. Suppose that ¢ = n. In the skew polynomial ring U,
B'(wy) = ¢ Ywy) and & (wy,) = pw,_1, where g = ¢2(1 — ¢~2) € K*. We claim that, for
k> 1,0 (wk) = [k],~2ppwp,—1wE~t. This holds for k =1 and if it holds for k¥ =m — 1 then

0'(wy) = AWy ) (wn) + 8 (wy ™ w,

_ 1-m_,m
= q w,

p(fm — 1]y + q_Q(m_l))wn—lwn

w4+ m— 1]q*2,uwn—1wnm_2wn

m—1

= u[m]q_zwn,lwnm’l

By induction, it holds for all m. With w as above and v’ = w{™wy? ... w, """, so that w =
ww, B'(w') = ¢“w’ for some ¢ € Z and ¢'(w') = 0. Hence §'(w) = ¢°w’ pu[my,)-2wp—ywi»1.

Now &' (w) = 2'w — f'(w)a’ € J as f'(w) = ¢“ ™ w. But ¢“u[my),~2 # 0 and w'w,_qw™

has weight one lower than that of w so, by minimality of w, m, = 0. Repeating the
argument with U, 2’, 5,0’ replaced by S;, x;, p;, 0, i = n —1,...,2,1, for which, by (20),
pi(w;) = ¢ (w;) and 8)(w;) = pw;_1, we see that m,_; = --- = my = 0, so that w = wi™,
and that wow{"rl € J. Recall that A = 2wy — ¢ 'w,w; — 1 € J from which it follows that
zwow™ ! — ¢ tw,w! —w™ ' € J and hence that w™ ! € J, contradicting the minimality

of w. This contradiction shows that AU is a maximal ideal of U. But AU C kerI so
AU =kerI" and U/AU ~T'(U) = Q.
(v) The simplicity of @, is immediate from (iv) and the noetherian conditions follow from
(i), (iv) and Hilbert’s Basis Theorem for skew polynomial rings [18, Theorem 2.6].
(vi) Follows from (ii), (iv) and [9, Proposition 1].
U
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Corollary 6.9. There is a K-automorphism 6 of Q, such that, for i € Z, 0(x;) = %41,
9_1($i> = Ti—1, Q(wl) = Wi+1 and 9_1(wi) = W;—1.-

Proof. This follows easily from Theorem 6.8(vi) and Lemma 6.5. U

Remark 6.10. The automorphism € in Corollary 6.9 lifts to a K-automorphism © of the
iterated skew polynomial ring U in Theorem 6.8(ii) with O(x;) = ;41 for 1 < i < n —1,
O(z') = 1, O(wo) = wy, O(wy) = ¢ 2 (w1, — ¢ 2wp) and O(A) = A. We leave the proof
to the interested reader.

Remark 6.11. The cyclic connected quantized Weyl algebra ng embeds in U in an obvious
way with z, — /. As € — X\ cannot, by degree, be in AU, it follows from Theorem 6.8
that this induces an embedding C’f — (. Also C’;{z is a homomorphic image of U, being
isomorphic to U/, where I = woU + w,U, which, by Theorem 6.8(vi), is an ideal of U.

Remark 6.12. It will be shown in the PhD thesis of first author that the set of quantum
cluster variables in ), is the union of n -orbits, namely the infinite orbit {w; : i € Z} and
the n — 1 finite f-orbits {67(2;,) : 0 < j <n—1},1 <k < n— 1}, where the elements z;, are
as in Section 5.

7. POISSON STRUCTURES

The connected quantized Weyl algebras L? and C? are quantizations, in the sense of [4,
I11.5.4], of Poisson algebras. In other words there are Poisson brackets on the polynomial
algebra K[zy,...,z,] that are semiclassical limits of the families L4 and C?. The Poisson
algebra that is the semiclassical limit of C,ZQ was introduced by Fordy [12] and this sparked
our interest in C?. In this section we shall present results of an analysis of the Poisson prime
spectrum of the semiclassical limits of LI and CZ. This analysis was carried out in parallel
with that of the prime spectra of L and C¢ and the methods in the two mirror each other.
Good references for Poisson algebras, Poisson ideals, Poisson prime ideals, Poisson cores and
the Poisson centre include [17] and [17].

In the remainder of the paper, we assume, as before, that the field K is algebraically
closed but also that it has characteristic 0. Let n € N and let F,,, H, denote, respectively,

the polynomial algebra K[z1,...,,] and the Laurent polynomial algebra K[zF!, .

ey n

Definition 7.1. Let A = ()\;;) be an n xn skew-symmetric matrix over K. On each of F}, and
H,,, there is a Poisson bracket, the log-canonical Poisson bracket, such that, for 1 < 1,5 < n,

{JZZ‘,[E]‘} = )\ijfL’in.
Note that, for mq,...,m, € Z,
{zg, 2 a™} = (mydiy + -+ mp i)z (21)

The simplicity criterion for quantum tori given by [27, Proposition 1.3] has the following
Poisson analogue, where PZ(H,,) denotes the Poisson centre of H,.
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Proposition 7.2. Let A = ()\;;) be an n x n skew-symmetric matriz over K. Then, for
the log-canonical Poisson bracket determined by A on the Laurent polynomial algebra H, =

K[z, ..., 2], the following are equivalent.

(i) If my,...,m, € Z are such that miAqg + - +muAin =0 for 1 <i <n thenm; =0
for alli.
(i) PZ(H,) =K.

(iii) H, is Poisson simple.

Proof. This follows from [30, Lemma 1.2}, the proof of which, although presented over C, is
valid for any base field of characteristic 0. U

Lemma 7.3. Let S be a simple Poisson algebra over K with Poisson centre K and extend
the Poisson bracket to the polynomial algebra S[t] with {t,s} = 0 for all s € S. Then the
non-zero Poisson prime ideals of S[t] are the ideals of the form (t — X)S[t] for some A € K.

Proof. As char K = 0 it follows from [15, Lemma 6.2] that the Poisson core I of any maximal
ideal of S is prime. By Poisson simplicity, I/ = 0 so S is an integral domain. It is clear that
the ideals (¢ — A)S|t] are Poisson prime, with S[t]/(t — X\)S[t] ~ S. Let P be a non-zero
proper Poisson prime ideal of S[t] and let d be the minimal degree in ¢ of non-zero elements
of P. Then d > 0 as PN .S is a Poisson ideal of S and must be 0. It is easy to verify that

J ={s¢€ S st 4 sy 1t oo+ 59 € P for some Sg_1,...,S0 € S}
is a Poisson ideal in S. By Poisson simplicity, 1 € J so there exist s4_1,..., 59 € S such that
f;:td+3d_1td_1+---+30 c P

For each s € S, deg({s, f}) < dso s4_1,...,50 € PZ(S) = K. Thus the prime ideal P NK[¢]
is non-zero and, as K is algebraically closed, (t —A)S[t] C P for some A € K. By the Poisson
simplicity of S[t]/(t — A\)S[t], P = (t — \)S[t]. O

In Remark 2.2, we observed that the semiclassical limit of the relation zy — qyer =1 — ¢
is {z,y} = zy — 1. A similar discussion shows that the semiclassical limits of the relations
ry — qyr = 0 and zy — ¢ 'yx = 0 are given by {z,y} = xy and {z,y} = —xy respectively.
The semiclassical limit of L¢ is the polynomial algebra F), with the Poisson bracket given by

{Ii,xi+1}:$il’i+1—1, if 1 <Z <7’L—1,
{zs,2;} = vz, ifi>1li4+1<j<nandj—iisodd,
{z;,x;} = —wz5, ifi>1i+1<j<nandj—iiseven.
This can be made formal by applying the quantization procedure described in [15, 2.1] and [4,
I11.5.4] to the algebra obtained from LZ on replacing the parameter g by a central invertible
indeterminate () and taking h = () — 1. The Poisson algebra obtained on equipping F,, with
this bracket will be denoted FL.
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Similarly, for odd n > 3, the family C?, ¢ € K*, has semiclassical limit F}, with Poisson
bracket given by

{$i,l’i+1} = XiTijy1 — 1, if 1 < 1 < n — 1
{z;, x;} = 25, ifi>1,i+1<j<n, and j —iis odd,
{z;,2;} = —xizy, ifi>1,i+1<j<n, and j — i is even,

{zp, 1} = xpmy — 1.

The Poisson algebra obtained on equipping F,, with this bracket will be denoted F¢. There
is a Poisson automorphism 6 of F¢ analogous to the automorphism 6 of C? in 2.14(iv),
given by 0(x;) = x;41, where subscripts are taken modulo n in {1,2,...,n}.

Notation 7.4. We specify n distinguished elements 21, 2y, ..., z, of FL by the same re-
currence formula as in Section 3: 21 = 0,290 = 1 and, for ¢+ > 0, 2,01 = z;Ti1 — 21
Note that, if T}, is the localization of F at the multiplicatively closed set generated by
21,22, ..., 2, then T = K[zlﬂ,zfl, oo, 25 because, for 1 < j < n, z; = (2 + zj_g)zj_fl
It follows that 21,29, .., 2, are algebraically independent. Let S; = K|z1, 22, ..., 2,] and
U =Kz, 2, ..., 25, ] and note that U[z,] is the localization of F, at the multiplicatively
closed set generated by 2y, 29,..., 2,_1.

The formulae listed in the following result can be deduced from Lemmas 3.2, 3.3 and 3.4
and Corollary 3.5 by passing to the semiclassical limit or by direct calculation.

Lemma 7.5. In the Poisson algebra FL, the following hold.
(i) For1 <i<mn, z;=210(z_1) — 0*(zi_2).
(i) For1<i,j<nmn,

(

(—1)i+1$12j if 7 is odd and j <1 —1,
0 if 7 is even and j <1 —1,
Ziog — Ziax; = —2z ifjis odd and j =1 — 1,
{xivzj} = e .
Zio if 7 is even and j =1 — 1,
0 if 7 is odd and j > 1,
(=) 1z if 7 is even and j > i.

(iii) For1<i<j<nm,
{ ) iof 7 4s odd or i, j are both even,
! zizj if j is even and 1 is odd.

Thus Sy, is a Poisson subalgebra of FL with the log-canonical Poisson bracket deter-
mined by the n X n skew symmetric matriz A,, = (\;;) such that, for j >,

N 1 if 7 is even and i is odd,
Y10 otherwise.
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Lemma 7.6. If n is odd then the ideals (z, — \)F,,, X € K, are Poisson prime ideals of FL.
If n is even then z,F,, and the ideals z, Iy, + (zn—1 — A F,,, A € K* are Poisson prime ideals
of FL.

Proof. 1t follows easily from Lemma 7.5(ii) that the listed ideals are all Poisson.

As z, — A=z, 12, — 2,2 — A and, by degree, z, 2 — A & 2, 1 F,_1, it is readily checked,
by induction, that z, — A is irreducible in F,,. It follows, as F,, is a UFD, that (z, — A\)F,, is
prime for all \. Thus (z, — A\)F,, is Poisson prime for all A if n is odd and when A\ = 0 if n
is even.

Suppose that n is even and that A # 0. As z, = A\ 'z, o mod (2,F,, + (201 — A\)F}),
there is a Poisson isomorphism between F,,/(z,F,, + (z,-1 — A\)F,) and F,,_1 /(21 — A\) F,,1
s0 zpFy + (2p—1 — A\)F,, is Poisson prime. O

Proposition 7.7. Forn > 2, let Sp, T, and U be as in Notation 7.4.

(i) If n is even then Ty, is Poisson simple.

(ii) If n is odd then Ty, = UlzEY], U is a Poisson simple subalgebra of Ty and z, is Poisson
central.

(iii) The non-zero proper Poisson prime ideals of X are the ideals (2, — \)F,,, N € K, if n
is odd, and z,F, and the ideals z, F,, + (zn,_1 — A\ F,, A € K*, if n is even.

Proof. (i) This follows from Lemma 7.5(iii) and Proposition 7.2. In the application of the
latter, which is analogous to the proof of Lemma 3.7, the rows of A, should be considered
in the order 2,4,6,...,n,n—1,n—3,n—5,...,1.

(ii) If n is odd, z, is Poisson central by Lemma 7.5(iii) and U is Poisson simple by the
even case.

(iii) By Lemma 7.6, the listed ideals are Poisson prime. Let P be a non-zero Poisson prime
ideal of F,,. By Lemma 7.5(ii), if 2, € P for some m < n then z; € P for 0 < j < m and,
in particular 1 = zy € P. So z, ¢ P for m < n and PU|z,] is a Poisson prime ideal of
Ulzy,], which, as observed in 7.4, is the localization of F,, at the multiplicatively closed set
generated by 21, 29, ..., 2,1

Suppose that n is odd. By (ii), U is Poisson simple so, by Lemma 7.3, PU|z,] = (2, —
AU |z,] for some X € K. As (z, — A\)F, is prime in F,, it follows from standard localization
theory, for example [29, Theorem 5.32], that P = (z, — \)F,.

Now suppose that n is even. By (ii), 77, which is the localization of U|[z,| at the powers of
Zn, is Poisson simple so z, € PU|z,]. If PU|[z,| = z,U|[z,] then P = z,F, by [29, Theorem
5.32], so we can assume that PU|z,] D z,Ulz,]. As Ulz,]/2,Ulz,] >~ U, it follows from the
odd case that PU|[z,| = z,U[z,] + (2,1 — A)U|z,] for some A € K*. By [29, Theorem 5.32],

P=2z,F,+ (zn-1 — N F,. O

We now turn our attention to the Poisson algebra F¢. Note that, for 1 < i < n, the Pois-
son subalgebra K[z, ..., ;] coincides with Fi'. The Poisson brackets among the elements
21,29, .., Zn_1 and xy, X, ..., T,_1 are as before. The following Lemma can be deduced from

Lemma 4.1 by passing to the semiclassical limit or by direct calculation.

Lemma 7.8. Let n > 3 be odd and let Q = z,_1x,, — 22 — 0(2,—2) € F),.



36 CHRISTOPHER D. FISH AND DAVID A. JORDAN

(i) For 1 <j<n-—2,

{xn;Zj} = {Z]an B Q(Z]_l) ij 18 0dd7

—0(2j-1) if j is even.

(11) {ZL‘n, Zn—l} = Zn—2 — e(zn—2>-
(iil) 6(Q2) = Q.
(iv) Q is Poisson central in FC.

One might expect that, by analogy with F'X when n is odd, the non-zero Poisson prime
ideals of F¢ would be the ideals (2 — A\)F,,. However there are two exceptional non-zero
Poisson primes My, A = +1, such that FS /M, ~ FL /(2,2 — \)FL ,. To establish the
existence of these, we shall need to calculate {z,_3,0(z,—3)}

Lemma 7.9. Let n > 3 be odd. The following hold in FC.

(1) {.%'1, Q(Zn_g)} = —92<Zn_4) = —I19<Zn_3) + Zn_'g.
(i) Let 2<i<n—2. Then {x;,0(z,-3)} = (—1)"z;0(z,_3).
(iii) Let 0 <i<n—3. Then

—07 Y (z,_i3) if 1 18 odd,
2i0(2n_3) — 0" (z_i_3)  if i is even.

{2i,0(2n-3)} = {

(iv) {2zn_3,0(zn_3)} = 2n30(z,_3) — 1.

Proof. (i) By Lemma 7.8(i), {n, 2n—3} = —0(z,—4). The result follows by applying ¢ and
using Lemma 3.2.

(i) By Lemma 7.5(ii), {z;_1, 2,3} = (—1)'z;_12,_3 and the result again follows on apply-
ing 6.

(iii) The result is true when ¢ = 0, in which case z; = 1, and, by (i), when 7 = 1, in which
case z; = 1. Let ¢ > 1 and suppose that the result holds for ¢ and for ¢ — 1. If 7 is even then

{zi+1,0(2n-3)}
={2iTiy1 — 2i—1,0(2n—3)}
= — 2i%i410(2n_3) + 2i2i110(2n_3) — 0" (2n_i_3)Tis1 + 0" (24_i_o) (by (ii) and induction)
= — 0"(0(2n—i—3)T1 — Zn—i—2)
— — 0'(6*(2n_i_4)) (by 7.5(1))

= - 9i+2 <2n7i74>7
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which is the result for 7 + 1 in this case. If 7 is odd then
{#i41,0(2n-3)}

={2iTit1 — 2i-1,0(2n-3)}
= — 2107 (2n—is) + 2ii10(2n—3) — 2i-10(2n—3) + 0" (24—i—2) (by (ii) and induction)
=0'(—210(2n—i—3) + Zn—i—2) + 0(2n—3)(2iTiz1 — 2i1)
= — 92'(62(2”71;4)) + 9(2n73)zi+1 (by 75(1))
= — 0" (2p—i—a) + 0(2n—3)2i11,
which is again the result for ¢ + 1 in this case. The result follows by induction.
(iv) This is the special case of (iii) when i = n — 3. O
Lemma 7.10. (i) Let X = %1, let 7\ : F,, — F,_o be the K-algebra homomorphism
such that T(x;) = z; for 1 <i<n—2, T\(Tp_1) = Azn_3 and Tx(x,) = N(z,_3), let
7 Fuo — F_o/(2n_2— A)F,,_5 be the canonical epimorphism and let py = 7y 0Ty.
Then py: FS — FL /(2,0 — N FE , is a Poisson homomorphism.
(i) For A = £1, let My = kerpy. Then M) is a Poisson prime ideal of FC and is
mazimal as a Poisson ideal of FC. As an ideal of F,,, M) is generated by z,_o — A,
Tpo1— Azn_3 and x, — N0z, _3. Also z,_1 € My, 0(z,—2) — X € My and Q+2\ € M,.
Proof. (i) Write 7, m and p for 7, my and p) respectively. We need to show that p({z;,z;}) =
{p(x;), p(z;)} for 1 <i < j <n. Thisis clear when j <n—2. Let j=n—1. Ifi <n—3
then 7({z;,z,_1}) = (—1)"'A\z;2,_3 and, by Lemma 7.5(ii),
{T(Ii>,T($n,1)} = )\{SL’“ Zn,3} = (—1)i71)\$i2n,3.
It follows immediately that p({z;, z;}) = {p(z:), p(z;)}.
Also
T({xnf27‘rn71}> = T<xn72xn71 - 1) = )\xanan?; —1= )\(Zn72 + an4) —1

whereas, by Lemma 7.5(ii)

{T(%’n,2>, T(znfl)} = )\{xn727 an?)} = )\an4-
As T(A(zn—2+4 2n-4) =1 — Azp_g = A2 — 1 = 0, it follows, in this case also, that p({z;,z,}) =
Lo, ply)}-

Now let 7 =n. If 2 < i < n—2 then a calculation similar to that in the case j =n—1, i <
n—3, but with Lemma 7.9 rather than Lemma 7.5, shows that 7({z;, z;}) = {7(z;), 7(z;)} =
(=1)"Az;60(z,—-3) and hence that p({z;, z;}) = {p(x:), p(z;)}. This leaves the cases i = 1 and
i =n—1. In the latter, 7({z,_1, 0 }) = T(Tn_1Zn—1) = N22, 30(2,_3) — 1 = 2,_30(2_3) — 1,
as A2 = 1, and, by Lemma 7.9(iv), {7(z,_1), 7(2n)} = A2{2_3,0(20_3)} = 2, 30(2,_3) — 1.
It follows that p({z,_1, 2, }) = {p(zn_1), p(xn)}.

Finally, 7({z1,7,}) = 7(1 — m12,) = 1 — A10(2,_3) = 1 — M2p_2 + 0%(2,_4)), by 7.5(),
whereas, by Lemma 7.8(i),

{7(@1), 7(z0)} = Mx1,0(20-3)} = M0({n, 20-3}) = _)‘02(271—4)~
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As (1 — Mzn—a + 0*(2n—4)) + A% (2,_4)) = 1 — A% = 0, it follows again that p({x;, z;}) =
{o(z:), p(z;)}-

(ii) It is clear that p, is surjective and hence, by Lemma 7.7 and the First Isomorphism
Theorem for Poisson algebras, that M) is Poisson prime and maximal as a Poisson ideal.
Clearly 2z, o — A € My, ©,_1 — Az,_3 € M, and x,, — Nz, 3 € M,. Also, M N F,,_5 is
Poisson prime in Fan2 and, by Lemma 7.7, must be (2,9 — A\)F,,_2. Let w = 2,1 — Az,_3
and y = x, — Mz, 3. Then F,, = F,, s[w,y] and so My = M\NF, o+ wF, o+ yF, o =
(Zn—2 — N Fyo+wF, 5+ yF, 5. Also

Zpn—1 = Zp—2Tp—1 — Rpn-3 = (Zn72 - )\)l’n,1 + )\l’n,1 — Zp—3 € M)\a
Q(Zn—Z) —A= Zn—2 — A— {xna Zn—l} € M)\a
by Lemma 7.8(ii), and

Q4+2\ =z, 12, — (2n2 — A) — (0(zn_2 — A\) € M.

O
Proposition 7.11. Let n > 3 be odd and let S¢ be the polynomial algebra Klzy, ..., z,-1, Q]
and To be the Laurent polynomial algebra K[z', ... 251 QF1.

(i) Sc is a Poisson subalgebra of FC and the Poisson brackets on Sc and Tg are the log-
canonical Poisson brackets determined by A,,.

(i) Te = U[Q*] where U = K[z, 25, ..., 221, is a Poisson simple subalgebra of To and
Q s Poisson central.

(iii) The non-zero proper Poisson prime ideals of FC are the ideals (2 — N\ F,, A € K, and
the two ideals My and M_y from Lemma 7.10.

(iv) For p € K, the Poisson algebra FS/(Q — u)ES is Poisson simple if and only if p # 42.

Proof. The proofs of (i) and (ii) are completely analogous to those of the odd part of Propo-
sition 7.7, with  replacing z,.

(iii) The ideals My, are Poisson prime by Lemma 7.10. The ideal (2 — \)F¢ is Poisson,
as ) is Poisson central by Lemma 7.8(iv) and prime, as for (z, — A)F, in the odd part of
Proposition 7.7. So all the ideals listed are Poisson prime.

Let P be a non-zero Poisson prime ideal of F¢. By Lemma 7.5(ii), if 2,, € P for some
m < n—1then z; € P for 0 < j < m and, in particular 1 = 2z, € P. So z, ¢ P for
m<n—1. Ifalso 2z, ; ¢ P then P = (2 — \)F¢ for some A € K as in the proof of the odd
part of Proposition 7.7(iii), with €2 replacing z,. So we may assume that z, | € P.

By Lemma 7.8(ii), zp—2 — 0(2zn—2) = {&n,2n-1} € P. S0 22 — 0(2p—2) € PN F,_.
By total degree, z,_o — 0(z,_2) ¢ z,_1F,_1 so, by Proposition 7.7(iii), P N F,_1, which is
Poisson prime in F¥ | must have the form z, 1 F, + (2,2 — p)F,,_; for some pu € K*. As
Zn—o — 0(z,_2) € P, we also have that 6(z,_o) — pu € P.

Let A\ = p~!. Note that 2z, oZp_1 — 2p-3 = 2p_1 € P 80 T_1 — A2p_g3 € P. Also
{2y, A\zn_a—1} € P so, by Proposition 7.8(i), A(z—22,—0(2,—3)) € P. Hence z,,—\0(z,_3) €
P. Therefore {x, 1,2, — \(z,_3)} € P and, as x, 1 = \z,_3 mod P,

{2p_1, 20} — XN{2n_3,0(2n_3)} € P.
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Using Lemma 7.9(iv),
Tp1Ty — 1 — A (2,-30(2p_3) — 1) € P. (%)
But we also have that x,,_1(z, — A0(2,_3)) € P s0 x,_ 1T, — ATp_10(2,—3) € P and z,,_1x,, —
A2, 30(2,_3) € P. Combining this with (*), A2 =1 € P so we must have A = +1 and \ = p.
We now know that P contains z — A\, x,_1 — Az,_3 and z,, — A0(2,_3) and it then follows
from Lemma 7.10 that M, C P. By the maximality of My, P = M,.
(iv) This is immediate from (iii) and the fact that, by Lemma 7.10(ii), Q@ +2X € M,. O

8. COMMUTATIVE CLUSTER ALGEBRAS WITH POISSON STRUCTURE

Let n > 3 be odd. Let n > 3 be odd. In this section we aim to present the commutative

cluster algebras A of the quivers A,,_; and pU +1 considered in Section 6 as Poisson simple
algebras J/AJ, where J is a polynomial algebra with a Poisson bracket and A is a Poisson
central element of J.

We first consider Pn( +)1 If wg,ws,...,w, are the initial cluster variables then A is a

Poisson subalgebra of the Laurent polynomial algebra R := Klwi!', wi', ..., wF!] with the
log-canonical bracket such that, for 0 <4, j <n, {w;,w;} = \jjw;w; where, if j > 1,

,wy, ]
N 1 if j — 7 is odd, (22)
Y00 if j —d s even.

With the matrices B and A as in Section 6, [13, Theorem 1.4] ensures that the above
Poisson bracket {—, —} is compatible with the cluster algebra A, in other words, for each
seed {y1, Y2, - -, Yn} and for 0 <, 5 < n, {y;, y;} = Aj;y:y; for some antisymmetric (n + 1) x
(n + 1) matrix A" = (\};).

Lemma 8.1. The Poisson algebra R is Poisson simple.
Proof. Let mg, mq,...m, € Z be such that mgl;o+ -+ +mpAy,, = 0 for 0 <7 < n. From the
cases i =0 and 1 =n —1,
my+msg -+ +my_o+my, =0=—my —mg--—Mp_2+ My,
whence m,, = 0. Similarly the cases ¢ = 1 and i = n give
—mo+mo -+ +my_1=0=—myg—mag+--—Mmy_1,

and mg = 0. Repeating the argument, deleting the first and last columns at each stage,
gives 0 = my_1 = m; = Myu_o = Mg = -+ = Mpy1),2. By Proposition 7.2, R is Poisson
simple. 0

As in the quantum case, there are new cluster variables w; and xz;, ¢ € Z, such that, for
1> n,
I
w; = wi_n_l(l -+ wi,nwi,l)
for i < 0,

Wi = wz+n+1(]‘ + wH‘an-l)
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and, for i € Z,
z; = w; (wi—1 + wit).

The following can be deduced from the quantum counterpart, Lemma 6.5, by taking the
semiclassical limit or directly from (22). Parts (i) and (iv) were observed by Fordy in [12].

Lemma 8.2. With xy,xs,...,x, as specified above,
(i) For alli € Z and k > 0,
(a) {zi, i1} = 2(ziwi0 — 1),
(b) {zi, Tiror} = —2Tiq 012,
(¢) {@s, Tivort1} = 22itopt1;.
(ii) Forie€ Z,
W;T; = Wi—1 + Wi+1 (23)
and
{%‘, wi} = T;w; — 2Wip1 = 2Wiq 1 — Tw; (24)
(i) For1<i<n and0<j <n with j #1,

{ ) W, if i <jand i+ 7 is even ori > j and i+ j is odd,
! —z;w;  ifi<jandi+jis odd ori>j and i+ j is even.

(iv) For alli € Z, xpyi = ;.

Lemma 8.3. Fori < j <1i+4n,

0 if 1+ j is even,
wyw;  if i+ 7 is odd

and

{wo, Wp11} = 2wiw,. (26)
Proof. These are straightforward calculations and are omitted. U

By [2, Corollary 1.21], the cluster algebra A is the subalgebra of R generated by the
cluster variables w_1,wg, wy, ... Wy, Wyyi1,T1, T2, ... T,. By Lemma 8.2(iv), o = x, so, by
(23), w_1 = wox, —wy and, for j > 2, w; = w;_1x,_1 —w;_o. Hence the list of generators can
be reduced to wg, wy, 1, Ta, . .. z,. By Lemmas 8.2(iv) and 8.3, A is a Poisson subalgebra of
R.

Notation 8.4. Let D = K[W,, Wy,...,W,41] be a polynomial algebra in n + 2 variables
and let £ = KWL, Wi ... W* W, 1]. Let J be the subalgebra of E generated by
WO,W17X17X27...,Xn, Where7 for 1 S 1 S n, Xz = I/Vfl(I/V,-_l —+ VVH—I)‘ Observe that

Wiy = W; X; —W,;_1 from which it follows that D C J C E and hence that J is a polynomial
algebra in n + 2 indeterminates Wy, W1, X1, Xo, ..., X,,.
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Lemma 8.5. There is a Poisson bracket on D, and hence on E, such that, for 0 <i < j <
n+1,
WiW; if 7 — 1 s odd,
{W;,W;} =<0 if j—iis even and j —i <n+1,
2WiW,,  ifi=0and j =n+ 1.

Also J 1s a Poisson subalgebra of D.

Proof. Note that the given rules for {W;, W,,} determine log-canonical Poisson brackets
on each of K[Wy, ..., W, 1] and K[Wy, W4,...,W,]. To establish the Jacobi identity on
D, it suffices to check it on the triples (Wo, Wi, Wy41), 0 < @ < n+ 1. If ¢ is odd
then {{Wo,Wi},WnH} = WoWiW, 1 + 2W W, W, {{I/Viywn—i-l};WO} = —WoWiW, 11 —
2WW W, and {{W,41, Wy}, Wi} = =2{W W,,,W;} = 0 so the Jacobi identity holds.
If 7 is even then {{Wo, W;}, Wy1} = 0 = {{W;, Wy}, Wo} and {{W,41, W}, W;} =
—2{W W,,W;} = 0 so the Jacobi identity holds again. Also, for 1 < i < n, {W;,—} is
a derivation on D and {W, 1, —} is the restriction to D of the derivation Z?:OI f:0;, where
each 0; = aim, fo==2W1W,, fi =0ifi > 0is even and f; = —W W, if i is odd. As
{r+s,—}={r,—}+{s,—} and {rs,—} = r{s, =} + s{r, =} for, {p, —} is a derivation for
all p € D. So we have a Poisson bracket on D and hence, by [25, Lemma 1.3], on E.
The following can be deduced from the Poisson bracket on D.

{Xi7Xi+1}: 2(X1X1+1 — 1) if i < n,
(X, X1 )= 2(X, X, — 1),

DN DN
oo

(27)

(28)

{Xi, Xivar}= —2X; 10 X ifl1 <i<i+2k<n, (29)
{Xi, Xivors1}= 2Xirok1Xi if1<i<i+2k+1<n, (30)
(X, Wi= W1 — Wip (31)

= X;W; —2Wi (32)

— oW, — X,W,, (33)

(X0, Wol= X, Wy — 2W, (34)
{X;, W;}= X;W; ifi+jisoddand j=0orj=1, (35)
{X;, W;}= =X, W, if i+ jiseven, j#iand j=0or j=1. (36)

It follows that J is a Poisson subalgebra of D.
O

Proposition 8.6. Let A = WyW,, .1 — W W,,—1. Then A is Poisson central in D, E and J.
Also AD,AE and AJ are Poisson prime ideals of D, E and J respectively and both E/AE
and J/AJ are Poisson simple.

Proof. For 1 < i < n either i is even and {W;, W, .1} = 0 = {W;, Wy} and {W;, W,,}W; =
—{W;, W1}W,, or i is odd and {W;, W, 1}Wy = —{W;, Wo}W, 11 and {W;, W,,} = 0 =
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{W;, Wi }. In both cases, {W;,A} = 0. Also
(Wi, A} = Wit (—2W,Wh) + 2Wo iy W W = 0 and
(Wo, A} = Wo(2W, W) — 2WoW, W, = 0.
Hence A € PZ(D). Tt follows that A € PZ(FE) and A € PZ(J).

As A is irreducible and Poisson central in D, AD is a Poisson prime ideal of D. Observe
that E is the localization of D, and also of the intermediate ring J, at the multiplicatively
closed set W generated by Wy, W1, ..., W,, and that W N AD = (). It follows that AFE is a
Poisson prime ideal of F so that A is irreducible in E. As Wy, Wy, ..., W, are, by an easy
induction using the formula W; ., = W; X; — W;_4, prime elements of J, it follows that A is
irreducible in the UFD J. Hence AJ is a Poisson prime ideal of J.

There is a Poisson algebra homomorphism ¢ from R to E/AFE given by w; — W, + AE
for 0 <i<n. As W,_; +AE = ¢(wy 'wiw,), ¢ is surjective and as R is Poisson simple, by
Lemma 8.1, ¢ is an isomorphism. Thus F/AFE is Poisson simple.

Suppose that J/AJ is not Poisson simple. By [23, 3.3(ii)], J has a Poisson primitive, and
hence Poisson prime, ideal @) such that AJ C @ C J. Recall that F is the localization
of J at W so QF is a Poisson prime ideal of F strictly containing AF. By the Poisson
simplicity of E/AFE, QF = E and therefore Q N W # (). As Q is prime, W; € @ for some
i with 0 < i < n. By (34), {X,,Wo} = X,,Wy — 2W; and if i > 0 then, by (32) and (33),
{X;, Wi} = X;W; — 2Wiyy = 2W,_; — X;W,. It follows that W; € @ for 0 < j <n+ 1. But
WoWpir —WiW,, —1 = A € @ so 1 € Q, contradicting the fact that @) is proper. Thus
J/AJ is Poisson simple. O

Proposition 8.7. The cluster algebra A is isomorphic to the simple Poisson algebra J/AJ.

Proof. Recall the Poisson isomorphism ¢ from R to E/AFE such that w; — W; + AE and
note that z; — X; + AE. We have observed that A is the subalgebra of R generated by
Wo, W1, T1, Te, . .. T, and is a Poisson subalgebra of R. Hence A ~ ¢(.A) which is generated
by Wo + AE, Wi + AFE and the n elements X; + AE, 1 < i <n. As JNAE = AJ by
standard localization theory, J/AJ embeds in E/AFE by b+ AJ — b+ AFE and J/AJ is
generated by Wy + AJ, Wi + AJ and the n elements X; + AJ, 1 <i <nso J/AJ ~ ¢(A).
Thus A~ J/AJ. O

Remarks 8.8. In accordance with the quantum case, A has a Poisson automorphism 6 such
that 0(w;) = w;;1, giving rise to an infinite orbit {w;}icz, and O(x;) = x;11, giving rise to
a finite orbit {w;}1<i<,. The full set of cluster variables in A is the union of n #-orbits,
namely the infinite orbit {w; : i € Z} and the n — 1 finite f-orbits {6(2;) : 0 < j < n — 1},
1 <k <n—1}, where the elements z; are as in Section 7.

The Poisson analogue of Theorem 6.7, where wy could be omitted from the generators, is
more subtle. Here wy = ({1, w;} +21w;)/2 so the omission of wy from the generators would
require an appropriate definition of generators of a Poisson algebra.

In the case of the Dynkin quivers A,,_; we have the following result. The proof is omitted,
as is that of the subsequent analogue of Corollary 6.2. It is parallel to that of Proposition 6.1.
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The change of initial cluster variables from z; to y; is redundant and Poisson simplicity of
F%/(z, — 1)F*, from Proposition 7.7(iii), replaces simplicity of L /(z, — ¢*~™/?)La.

Proposition 8.9. Let n > 3 be odd and let FL be the polynomial algebra Klxy, ..., x,]
equipped with the Poisson bracket corresponding to Li. The cluster algebra A,_1 of the
Dynkin quiver of type A,_1 is isomorphic, as a Poisson algebra, to F/(z, — 1)FL.

Corollary 8.10. Let n > 3 be odd. The cluster algebra A, _1 is a simple Poisson algebra.
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