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Abstract—

Real-time embedded systems increasingly need to process and
store large volumes of persistent data, requiring fast, timely and
predictable storage. Traditional methods of accessing storage
using general-purpose operating system-based file systems do
not provide the performance and timing predictability needed.
This paper firstly examines the speed and consistency of SSD
operations in an embedded Linux system, identifying areas where
inefficiencies in the storage stack cause issues for performance
and predictability. Secondly, the CharIO storage device driver is
proposed to bypass Linux file systems and the kernel block layer,
in order to increase performance, and provide improved timing
predictability.

I. INTRODUCTION

In modern real-time embedded systems, the demand for

access to large amounts of persistent data is increasing, for

example, for the storage of modifiable data to prevent loss due

to low power or malfunction, or when the size of data exceeds

that of main system memory. This is supported by solid-state

storage devices (for example, SSDs) that offer improved speed,

predictability, reliability, space efficiency and energy efficiency

compared to traditional mechanical storage media (such as

hard disk drives). However, a key challenge for operating

systems is to provide efficient and predictable access to

persistent storage. The usual approach is to provide file system

abstractions, with complex and inefficient supporting software

within the operating system. Whilst file system performance

in real-time operating systems such as FreeRTOS [1] and

RTEMS [2] is improving, for embedded Linux, provision of

predictable, efficient access to storage remains an open issue,

despite improvements to Linux for real-time use [3]. This

paper provides and evaluates the CharIO storage device driver,

which bypasses the file system and the Linux block layer to

provide increased timing predictability and improvements in

performance.

In the majority of computer systems, persistent storage is

accessed via a file system and the block device layer of

the operating system, which maps a file name into a list of

blocks on disk that are transferred to and from main memory.

Whilst this approach offers the benefit of abstraction over the

storage, it is relatively complex and inefficient as it provides

many additional services (for example, checking data integrity,

enforcing file permissions and disk space quotas, file sharing

between processes, and file caching), as well as a non-specific

interface to many different storage device types [4], [5].

For real-time embedded systems, timing predictability is a

core requirement, in order to guarantee all necessary deadlines

in a system can be met, as well as having sufficient perfor-

mance to meet these deadlines [6]. Initially in this paper we

show that using the standard Linux file system provision does

not lead to sufficiently predictable storage access. The paper

then proposes a new approach that removes the complexity

of the Linux file system to provide applications with fast,

predictable access to persistent storage. We propose to bypass

the file system and block layer entirely, thus removing a

number of obstacles to loading and storing data, at the expense

of conveniences such as a file hierarchy and system-wide

caching. We further extend this method to support physical

memory addressing for storage commands from user applica-

tions, bypassing extra levels of Linux such as virtual memory

and cache management, and allowing the direct transfer of

stored data from addressable areas outside of main memory.

We also propose a potential management interface through a

simple user-space file system, which can be used to load data

for a specific task into a storage buffer with minimal reliance

on the operating system.

The remainder of the paper is structured as follows. Sec-

tion II introduces appropriate background and related work.

Section III describes the CharIO storage interface, which is

evaluated along with other storage access methods in Sec-

tion IV. Conclusions and ideas for further work are offered in

Section V.

II. BACKGROUND AND RELATED WORK

In recent years, the evolution of persistent storage devices

has outpaced improvements in CPU speeds, leading to ever-

increasing pressure for efficiency in the way operating systems

handle storage. Whereas a typical hard-disk drive might leave

software routines responsible for less than 1% of the latency

and energy usage of storage operations, this can increase to

around 20% of latency and over 75% of energy usage for

solid-state storage devices, and even higher when considering

future non-volatile memory technologies [7]. This divergence

of hardware and software performance is even more apparent

in embedded systems, whose limited power and processing

resources throttle software even further.

A large amount of this energy usage and latency can be

caused by the file system, with modern file systems becoming

ever more complex in pursuit of high-level user features that
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may not be appropriate for some systems [5]. These systems

include those where efficiency is particularly important, such

as the embedded domain. This complexity can also cause

issues with timing consistency and predictability, especially

when the range of configuration options is so large [8], and

when pairings between file systems and storage device types

can have an extreme effect on how well each performs [9].

Alongside suggestions to reduce the ‘obesity’ of file systems

by tailoring them to be more appropriate to the systems they

serve [4], more-extreme suggestions for improving storage

performance include replacing operating system support with

a more efficient in-memory user-space file system [10], or

offloading file system functionality entirely into a custom

hardware accelerator core [11].

Accessing storage in Linux, and in most other operating

systems, involves several interacting layers of software, as

shown in Figure 1. Storage interfaces designed specifically

for accessing high-speed solid-state storage, such as NVMe,

can offer efficiency improvements over older options such as

AHCI or PATA, but overall performance and predictability is

still limited by the rest of the storage stack. Storage hardware

will also perform its own operations on top of the software

stack, which are largely beyond the control of the operating

system, however systems are emerging such as open-channel

SSDs [12] that give more control to software drivers.

The interactions between these layers can be hard to predict,

as they are designed for fast best-case performance, rather

than predictability or simplicity. For example, the number of

times that a single-block read from an open ext4 file actually

accesses the storage device is variable: it could be once if the

physical block is known, twice if extent information has to be

looked up first, or not at all if the block is already cached by

the operating system. Additionally, control may potentially be

returned to the user application at any time before the transfer

is complete, if the storage request is processed asynchronously.

Linux provides a number of ways to simplify the layers

between an application and storage, such as ‘direct I/O’ and
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raw devices, both of which bypass the kernel page cache,

and opening block devices directly with no file system. The

effectiveness of these methods is ultimately limited, however,

due to their reliance on the kernel’s block layer and associated

scheduler, as well as the fundamental principles of accessing

files in Linux [13].

III. THE CHARIO STORAGE INTERFACE

To investigate a simpler interface to storage from Linux

that bypasses file systems and the block layer, a driver was

created that presents an NVMe SSD to user-space applications

as a basic character device. Using a character device has the

advantage of conforming to the standard model of device

nodes being accessible through the VFS, while removing

complex block layer features such as the I/O scheduler, request

queueing mechanisms, page cache, and asynchronous requests.

At a high level, the CharIO kernel module acts as a wrapper

around a modified version of the standard Linux NVMe device

driver, creating a /dev/chardiskX character device node

instead of a /dev/nvmeXnX block device node when an

SSD is attached. This device node can then be accessed from

user-space applications, supporting the standard open, close,

read, write and seek system calls, and translating these into

commands sent directly to the underlying storage device. This

is shown against the standard Linux storage stack in Figure 2.

For efficiency during a read or write, all data is directly

transferred by the storage hardware to or from buffers within

the user-space application, similar to how ‘direct I/O’ func-

tions. This requires transfers to be aligned to the block

structure of the underlying storage device, for example, a

transfer size must be a multiple of 4096 bytes if that is the

block size used. Each transfer is completed atomically and

sequentially, with system calls blocking as data is transferred,

after which control is returned to the calling application.

A. Low-level Operation

When a read or write system call is triggered from user-

space on /dev/chardiskX, control is passed through the



VFS to the CharIO driver, which creates and sends requests on

to the NVMe driver layer for processing. Any large transfers

are split into 4MiB chunks, in order to remain compatible with

existing NVMe and kernel Direct Memory Access (DMA)

functions. Seek system calls work the same as for any block

device, changing the current file pointer appropriately, but with

the caveat that the seek must be aligned to the start of a storage

block.

Once control is passed to the NVMe driver, the pages of

memory specified by the user are set up for DMA transfer.

This involves pinning the pages in memory so they will remain

available throughout the transfer, translating virtual memory

addresses to physical addresses, and flushing or invalidating

cache lines for the memory area.

When these DMA preparations are complete, the request

is split into 32-block chunks to comply with the format of

NVMe commands. A command structure is then created for

each portion of the transfer, and each is sent sequentially to

the storage device. The driver takes advantage of the hardware

command queues present on the storage device, sending each

new command as soon as the previous one has been accepted,

rather than waiting for the command to be complete. This

reduces the time spent waiting for the device, while also

eliminating the need for software queues in the kernel. The

completion of each command is indicated by an interrupt,

which is forwarded through the PCIe driver to the CharIO

NVMe layer. Once the overall transfer has completed, control

is returned to the application that originally made the system

call.

1) Physical Memory Addressing: An additional method of

reading and writing data with CharIO is through using a

physically-addressed memory location, which may be within

or outside the memory area managed by the Linux kernel.

To accept physical addresses, the CharIO device node uses

custom ioctl read and write commands that relay the start block

number and the transfer size to the kernel driver. In contrast,

the standard Linux virtual file system read and write functions

operate using the virtual address space of the calling process,

and do not allow I/O operations that bypass the page cache to

access addresses mapped outside of paged system memory.

Using the physical addressing mode means the kernel does

not set up or manage page mappings or cache lines for the

memory region, which can save significant processor time.

This mechanism can also be used to transfer data from physical

addresses of other devices in the system, such as a network

controller, sensor interface, or scratchpad memory, entirely

avoiding copying data through main memory. While the kernel

module is capable of running on a variety of system architec-

tures, physically-addressed transfers introduce the restriction

that PCIe-attached storage is on a cache-coherent interconnect

with the CPU, in order to maintain data consistency.

2) Potential Driver Enhancements: For every read or write

call to the module, the user-space pages of memory containing

the buffer for the transfer, along with the area of kernel

memory containing the NVMe command structure, are freshly

set up for DMA. As the module has full control over memory

allocations, it would be possible to set up DMA regions ahead

of time and re-use them across requests, further reducing the

amount of unpredictable activity involved in I/O operations.

This would, however, reduce the flexibility of individual

transfer buffer locations, cause a small amount more memory

to be held active while the driver is loaded, and mean further

departures from the standard Linux kernel methods of handling

memory.

B. User-space Library

In addition to accessing CharIO devices directly through

/dev/chardiskX device nodes, a simple user-space

pseudo-file system has been developed, allowing more-

structured access to the storage. To maintain the ideas of

simplicity, efficiency and predictability from the CharIO kernel

module, the library supports associating contiguous areas of

storage with basic file identifiers, which can then be loaded,

unloaded, or flushed to disk as required.

Internally, the library supports either standard read and

write system calls for accessing the character device node,

or specifying a physical memory address to use as a buffer

location with the CharIO ioctl commands. This allows for

buffers outside of kernel-managed memory to be used, such

as sections of unmapped DDR RAM or specialised high-speed

or predicable buffers.

IV. EVALUATION

To evaluate the CharIO driver, we set up an experimen-

tal platform around an Avnet Zynq Mini-ITX development

board [14]. This contains a Xilinx Zynq-7000 system-on-chip

with 1GiB of DDR3 SDRAM. The Zynq contains a dual-core

800MHz ARM Cortex-A9 CPU [15], connected to an FPGA-

based PCIe interface via the Zynq’s Accelerator Coherency

Port, with the PCIe connected to an NVMe SSD (Intel SSD

750 [16]). The Linux kernel is deployed on the ARM cores –

specifically version 4.1.15-rt17, with PREEMPT RT real-time

patches [17] applied.

A custom profiling timer component was developed for

high-accuracy, unobtrusive timing of events from the FPGA

logic. The profiling timer ‘tags’ an event when software

issues a write to a register in the peripheral, or when a

specific hardware interrupt occurs, recording the time that the

event happened. The only interference when collecting timing

information are two 32-bit register writes to the core for each

event tag. Events can then be read back from an FPGA buffer

after the experiment is complete, ensuring measurements can

be achieved consistently and without interruption (unlike with

software timing functions). Kernel modifications allow events

to be timed within kernel code, with these profiling points

dynamically controlled through system calls.

A. Storage System Performance

We performed a series of experiments to examine how the

low-level implementations of existing file systems and the

block layer perform in the Linux kernel, and how this com-

pares to the simpler alternative of CharIO. To measure this,
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TABLE I
COMPARISON OF STORAGE ACCESS TRANSFER SPEEDS AND CPU USAGES

Speed (MiB/s) System CPU Usage (%) Speed/CPU Ratio
Device and operation 4KiB 128KiB 1MiB 16MiB 4KiB 128KiB 1MiB 16MiB 4KiB 128KiB 1MiB 16MiB

CharIO read 51.0 154.2 152.0 151.6 100.2 82.8 83.4 82.2 0.51 1.86 1.82 1.84

Block device read 130.6 136.4 125.4 126.0 151.4 154.0 155.4 158.4 0.86 0.89 0.81 0.80
Block device read (direct I/O) 44.5 88.7 146.8 146.5 105.3 92.0 143.1 148.3 0.42 0.96 1.03 0.99
ext4 read 114.2 119.9 112.8 112.8 143.4 152.1 155.7 152.7 0.80 0.79 0.72 0.74
ext4 read (direct I/O) 43.2 146.3 130.8 146.2 107.0 83.6 143.5 145.2 0.40 1.75 0.91 1.01

CharIO write 48.7 148.4 169.3 188.8 99.1 81.6 82.3 79.6 0.49 1.82 2.06 2.37

Block device write 36.8 36.0 35.2 42.8 126.1 125.8 129.2 161.0 0.29 0.29 0.27 0.27
Block device write (direct I/O) 43.1 93.3 157.3 180.6 102.8 85.9 105.5 106.5 0.42 1.09 1.49 1.70
ext4 write 85.0 85.3 80.5 81.0 160.0 169.1 165.6 165.7 0.53 0.50 0.49 0.49
ext4 write (direct I/O) 21.5 132.8 143.5 175.2 102.5 85.6 104.9 107.0 0.21 1.55 1.37 1.64

we performed simple periodic file read and write operations

from user-space, in a process set up with a real-time priority

on an idle system. During the tests, the timing of key points

in the data transfer was measured using the profiling timer

component.

CharIO was tested against an ext4 file system (set-up using

default parameters), as well as the block device created by the

standard NVMe driver for the SSD. The ext4 and NVMe block

device transfers were run using the O_SYNC flag set (ensuring

the write operation blocks until data has been physically

written to underlying hardware), and both with and without

the O_DIRECT flag set (enabling and disabling ‘direct I/O’

transfers). CharIO was tested both as a standard character

device, and in its physically-addressed mode to a buffer in

DDR outside of Linux’s memory space.

The results displayed in Figure 3 show the mean times

across 10,000 experimental runs, taken when performing se-

quential read operations with transfer sizes of 40KiB and

80KiB. Timing measurements are plotted for when: the system

call is entered, the I/O command is submitted to the SSD, the

hardware interrupt is triggered, the kernel begins handling the

interrupt, and the user-space application is resumed.

The results show that CharIO spends less time performing

computation in the kernel than ext4 or the block device, with a

further significant reduction measured when using the physical

addressing mode.

The results also highlight the efficiency of ‘direct I/O’ com-

pared to standard cached file transfers, with no time wasted

copying data via the cache. There is also little difference

between the 40KiB and 80KiB transfers when using the page

cache, due to the block layer caching more data than is

actually requested for the smaller transfers, demonstrating the



unpredictable nature of standard file access methods.

In addition to performing less work in the kernel, CharIO

is far more predictable in how it interacts with the storage

device compared to ext4 or the NVMe block device node.

The CharIO driver produces a consistent, calculable number of

device operations for every high-level command, based solely

on the number of blocks read or written. In contrast, for large

transfer sizes, the number of low-level commands involved

in completing an ext4 or block device operation is extremely

unpredictable, even when using direct I/O. This was found

to be more exaggerated when writing, due to the file system

sporadically writing additional metadata, as well as creating

extra activity with features such as journaling. This behaviour

meant calculating meaningful average results was impossible

when testing larger transfers, as the number of commands sent

to the SSD varied so greatly.

B. Evaluating CharIO Performance

The basic read and write performance of the CharIO driver

was evaluated by measuring transfer speed and CPU usage

compared to an ext4 file system and an NVMe block device

node operating through both standard and direct I/O on the

same storage device.

The dd utility was used to perform 100GiB sequential

transfers, with /dev/zero used as a low-overhead source

of data for disk writes, and data read from the disk being

discarded to /dev/null. During I/O operations, kernel CPU

usage was periodically sampled using dstat to give an

indication of the system load caused by the different storage

interfaces. As the specific block size of a transfer can have a

large effect when bypassing the page cache [13], a range of

block sizes were tested.

Results from these experiments are shown in Table I,

including a ratio of speed/CPU usage, to give an indication of

I/O operation efficiency. CPU usage is shown as a single-core

percentage, with 200% indicating full utilisation of both cores

in the system. From these results, CharIO shows the highest

speeds for larger block sizes (for those tested over 4KiB), and

uses the least kernel CPU time for all transfers. For 4KiB block

transfers, CharIO outperforms direct I/O speeds for both other

methods, and is also faster than standard I/O on the block

device when writing. This highlights how the complexity and

inefficiencies in file systems and the Linux block I/O layer

can have a considerable impact on storage performance in an

embedded system due to high CPU usage.

V. CONCLUSION AND FURTHER WORK

Efficient access to persistent storage is an important issue

for embedded and real-time systems, in which processing re-

sources are limited, and guarantees about timing predictability

are as important as data throughput. The storage architectures

of modern operating systems involve many complex inter-

actions, which can perform well in many general-purpose

scenarios, but more straightforward access is preferable in

these systems.

CharIO, our proposed interface for bypassing a number

of the complexities associated with operating system storage

management, shows promise in improving the performance

and predictability of accessing storage in embedded Linux.

While these improvements come at the cost of some conve-

niences and features offered by traditional file systems, they

may not be required for many real-time and embedded tasks,

where a simpler method of accessing storage can be more

appropriate.

As well as further analysis work and expanding the func-

tionality and compatibility, one major area for further work is

to examine hardware acceleration of storage access functional-

ity, which could be an effective way to increase performance.

Hardware support may include constructing commands to

be sent to the SSD controller, managing the storage buffer

memory, and monitoring of dirty blocks for flush operations.

This could lead to similar behaviour as a standard cache

controller, but extended to a large storage device, effectively

with block-sized cache lines, DDR memory as the cache

storage, and backed by an SSD.
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