
This is a repository copy of Memory-Aware Genetic Algorithms for Task Mapping on Hard 
Real-Time Networks-on-Chip.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/126159/

Version: Accepted Version

Proceedings Paper:
Still, Lloyd Robert and Soares Indrusiak, Leandro orcid.org/0000-0002-9938-2920 (2018) 
Memory-Aware Genetic Algorithms for Task Mapping on Hard Real-Time Networks-on-
Chip. In: 26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP). 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Memory-Aware Genetic Algorithms for Task

Mapping on Hard Real-Time Networks-on-Chip

Lloyd Robert Still and Leandro Soares Indrusiak
Real-Time Systems Group, Department of Computer Science

University of York

York, United Kingdom

Email: lloyd.still@alumni.york.ac.uk, leandro.indrusiak@york.ac.uk

Abstract—The problem of mapping hard real-time tasks onto
networks-on-chip has previously been successfully addressed by
genetic algorithms. However, none of the existing problem for-
mulations consider memory constraints. State-of-the-art genetic
mappers are therefore able to find fully-schedulable mappings
which are incompatible with the memory limitations of realistic
platforms. In this paper, we extend the problem formulation
and devise a memory architecture, in the form of private local
memories. We then propose three memory models of increasing
complexity and realism, and evaluate the impact these additional
constraints pose to the genetic search. We conduct extensive
experiments using tasks and communications from a realistic
benchmark application, and compare the proposed approach
against a state-of-the-art baseline mapper.

Index Terms—Real-time systems, Multi-core processing

I. INTRODUCTION

As real-time systems continue to adopt multi-core and

many-core processors, end-to-end time-predictability has be-

come a necessity. In hard real-time systems, it is imperative

that tasks are guaranteed to meet their deadlines, and this must

include both computation over cores as well as communication

over on-chip interconnects. This is vital in avoiding the failure

of safety-critical features of such systems, which are often

found in the automotive, aerospace and health domains.

The Task Mapping Problem (TMP) is a crucial stage in the

development of any multi- and many-core system. Given a set

of n tasks and a set of m cores, a task mapping dictates which

tasks are allocated to execute on which processing core out

of the mn different possible mappings [16]. The solution to

the TMP greatly influences system performance, determining

how inter-core communication is performed. Interconnect ar-

chitectures such as Networks-on-Chip (NoCs) make the TMP

more complex, as system performance can highly depend on

communication latency. A poor mapping could result in heavy

congestion over the NoC, causing tasks to miss their deadlines,

which could manifest as undesired or even unsafe behaviour.

Existing works consider a variety of optimisation metrics

when solving the TMP. These include, but are by no means

limited to: real-time schedulability, communication latency,

energy dissipation, system utilisation, and load balancing

[15]. However, these approaches all make critical assumptions

regarding the amount of memory available to each local core.

Surprisingly, these approaches all rely on the unrealistic and

unreasonable assumption that each processing core within a

NoC has access to unbounded local memory. The conse-

quences are severe, potentially resulting in the production of

mappings that are infeasible – processing cores may require

substantially more memory than is physically available.

This paper addresses the application of genetic algorithms

(GAs) to evolve task mappings that minimise the overall

memory requirement, whilst maintaining the hard real-time

schedulability of the system. Previous work has shown that

such algorithms are able to evolve fully-schedulable task

mappings for hard real-time NoCs, and this paper aims to

establish to what extent GAs can cope with an additional

dimension over their objective space, namely the amount of

memory available to each processing core. To achieve this, we

propose suitable extensions to hard real-time analytical models

for NoCs, and then integrate them as fitness functions in a GA

pipeline. The pipeline will then evolve task mappings in terms

of their schedulability and memory requirement.

II. BACKGROUND

Search algorithms are widely used to statically solve the

TMP for NoC platforms. Ascia et al. [2] were among the

first to propose a genetic algorithm to minimise energy and

average performance of NoC communications. They used

system simulation as their fitness function, i.e. as the way

to accurately obtain average performance figures for each

mapping alternative, and thus guide the genetic search towards

optimised results. Their extensive set of experiments provided

important insights on the potential of such technique, but

also highlighted the heavy cost of performing thousands of

simulations, which could take several hours or even days.

Mesidis and Indrusiak [9] focused on genetic algorithms

coupled to schedulability models as their fitness function,

aiming to find mappings that fulfil hard real-time constraints

(i.e. tasks and packets never miss their deadlines). Besides

showing the successful application of the technique, they have

also shown that schedulability models are more suitable as

fitness functions to search heuristics, as they perform orders

of magnitude faster than simulation. They can therefore easily

be applied to thousands of individuals across hundreds of

generations. Following this trend, Ayari et al. proposed the

use of custom genetic operators to make better use of schedu-

lability models as search guides in GAs [3], and Nikolic et al.

proposed the minimisation of NoC virtual channels by using



schedulability models to guide a simulated annealing heuristic

[10]. The possibilities of multi-objective optimisation of search

heuristics were investigated in [12], which combines a schedu-

lability model based on [13], and the energy macromodel from

[11]. The heuristic was able to evolve task mappings that fulfil

hard real-time constraints and simultaneously minimise NoC

energy dissipation.

Among the works referenced above, most of them either

consider hard real-time constraints over task computation

latencies [3] or over NoC communication latencies [9], [10].

Sayuti [12] was the first to consider constraints over end-to-end

latencies (i.e. both task computation over cores and packet-

based communication over the NoC). None of the approaches

consider constraints on the amount of memory available to the

cores to store code and data. They assume that local memories

are sufficiently large to hold the code of all tasks mapped to a

given core, as well as all the data they hold, send and receive.

III. GENETIC TASK MAPPING

Figure 1 depicts the typical genetic algorithm pipeline

proposed in [9], which has been extended in several sub-

sequent works. Chromosomes encode task mappings using

a list structure, where each gene represents a task, and its

value refers to the core that the task maps to. The initial

population is randomly generated, and is then diversified

by a pipeline of genetic operations (selection, crossover and

mutation), producing an offspring population. The offspring

population is evaluated according to a fitness function based on

a schedulability metric (e.g. the number of fully-schedulable

tasks and packet flows [3], [9]). The fittest chromosomes then

become a part of (or replace) the parent population for the

next iteration, until some termination criteria is met.

Fig. 1. Chromosome representation and genetic task mapping pipeline.

There are several schedulability analyses for priority-

preemptive NoCs [7], [8], [17], predominantly derived from

Shi and Burns [13]. These metrics rely on a number of NoC

parameters (e.g. router and link latencies, routing protocol,

number of virtual channels) and application parameters (e.g.

which tasks send and receive packets, time intervals, packet

sizes). The analyses each calculate the worst-case end-to-end

latency for each packet from its source to its destination, and

then compare that value with the respective packet deadline.

In a fully-schedulable mapping, all packets are guaranteed to

meet their deadlines. Typical fitness functions are based on

maximising the percentage of schedulability or minimising the

number of unschedulable tasks and packet-flows. Some genetic

mappers also consider secondary objectives such as energy

minimisation in their fitness functions [12]. The composition

of multiple objectives can be achieved through simple weight

factors, or the notion of Pareto dominance [5]. In the experi-

ments reported in section V, we adopt the analysis presented

in [7], for its convenience and improved tightness. However,

we could use any of the previously cited analyses without

significantly changing our proposed approach.

IV. MODELLING MEMORY CONSTRAINTS

This paper extends the state-of-the-art genetic task mappers

by making them aware of constraints imposed by the memory

subsystem in NoCs. Figure 2 shows a typical 2D-mesh NoC

architecture, where the NoC routers P and links Λ interconnect

a set of tiles Π, each of them including a processing core and a

private local memory. Processing cores use the local memory

to store code, data or both. They use the NoC infrastructure to

perform block transfers to/from the private local memories of

neighbouring cores, or to/from external memories via memory

controllers connected to the NoC.

Fig. 2. Typical NoC platform, arranged in a 3×3 2-D regular mesh topology.

As reviewed in Section II, existing genetic task mappers take

into account the computational capacity of the core in a given

tile when considering mapping tasks onto it. Mapping multiple

tasks to the same core will eventually force some tasks to

become unschedulable, as they won’t have enough time on

the core to finish their computations before their deadlines.

However, none of the existing mappers takes into account the

constraints imposed by the amount of private local memory



available at each tile. By mapping multiple tasks to the same

tile, it is possible that there will be insufficient memory to

hold the code, data and communications required by the tasks

during execution. In order to investigate the impact of such

constraints, we propose a number of memory models that can

be used as secondary objectives in genetic mapping pipelines.

We therefore aim to minimise the amount of memory required

by each NoC tile, whilst ensuring the system remains fully-

schedulable.

We define a NoC platform Ψ as a set of s homogeneous

processing cores Π = {π1, π2, ..., πs}, a set of r routers

P = {ρ1, ρ2, ..., ρr}, and a set of unidirectional links Λ =
{λπ1,ρ1

, λρ1,π1
, λρ1,ρ2

, λρ2,ρ1
, ..., λπs,ρr

, λρr,πs
}. An applica-

tion consists of a set of t tasks T = {τ1, τ2, ..., τt}, which

we assume to be either periodic or sporadic. Tasks commu-

nicate over the NoC by sending communication messages

Φ = {ϕ1, ϕ2, ..., ϕt}, each of them concisely defined by a

3-tuple ϕi = 〈τ si , τ
d
i , zi〉, where τ si and τdi are respectively

the source and destination tasks of the communication, and zi
is the size of the communication message, measured in bytes.

The function map(τi) = πα is defined as the processing core

πα on which task τi is executing. The set of tasks mapped to

a specific processing core can be obtained using the inverse

function: map−1 : Π → T.

The described architecture and application models are

adopted by most of the works reviewed in Section II. In

this paper, we require further definitions relating to memory

constraints. We define µα to denote a block of private local

memory associated with each processing core πα ∈ Π. The

private local memories within the platform form a set: M =
{µ1, µ2, ..., µs}. The function cap(µα) is used to represent

the size (in bytes) of the private local memory available to a

processing core πα. We must distinguish between the amount

of private local memory available to, and the amount required

by, a specific core. We therefore also define req(µα) to

represent the memory required by a processing core πα. Since

our platform has homogeneous processing cores, the amount

of memory available to each core is identical: cap(µ1) =
cap(µ2) = ... = cap(µs).

The memory requirement req(µα) for each processing core

is derived using a memory model associated with the platform.

This model defines what system and application properties

contribute to the memory requirement. The properties that will

influence the memory requirements are the tasks executing on

each core, and the communications they send and receive.

In order for the memory system of a NoC to be feasible, the

amount of memory required by each core must not exceed the

amount of memory available to it. The notion of feasibility

allows us to ensure that the task mappings produced have

realistic memory requirements. Infeasible mappings may have

unrealistic memory requirements when compared with the

memory capacities offered by commercially available NoCs

[4], [1]. The task mapping search space can be pruned by

removing any mappings that are clearly infeasible. In a homo-

geneous platform, the memory system is feasible if and only

if the memory capacity cap(µα) of any one of the processing

cores πα is greater than the maximum memory requirement

of all processing cores, as defined below, in Equation 1.

feas(Ψ) = cap(µα) ≥ max
x∈M

req(x) (1)

We also define a utilisation performance metric which, for

a given µα ∈ M, calculates the fraction of memory allocated

to the processing core that is actually required for execution:

U(µα) =
req(µα)

cap(µα)
(2)

We next propose three memory models which are able

to determine the minimum amount of private local memory

req(µα) required by each core πα. Each one relaxes restric-

tions placed on previous model(s) and therefore the final,

most sophisticated model aims to provide the most realistic

treatment of memory within our assumed NoC platform.

A. Memory Model A: Receiving

Memory Model A is the simplest memory model of the

three we consider, and is founded in the assumption that each

task is able to begin execution immediately upon its release.

In order for this to be possible, it is necessary that the task has

received all data from communications destined for it prior to

its release. This implies that each communication it receives

must be stored in the private local memory until the task is

released, justifying the need for it to be considered in our

memory model.

We therefore design Memory Model A to account for

the memory required to store incoming communications. We

define recv : Π → Φ to be the set of communications

whose destination tasks are mapped to core πα, more formally:

recv(πα) = {ϕi ∈ Φ | map(τdi ) = πα}. For a given core πα,

we can calculate the amount of required private local memory

req(µα) using Memory Model A as follows:

req(µα) =
∑

ϕi∈ recv(πα)

zi (3)

This model does not consider the memory mi required by

each task τi that is mapped to the core. It is assumed both the

memory required to store the code executed by the task and

any dynamic memory allocation required during execution are

negligible in size, and therefore small enough to fit in currently

unallocated memory. Since this approach is widely used by

the studies reviewed in II, we argue that the omission of mi

is reasonable.

Furthermore, the task model assumes that the communi-

cation of a message occurs after execution of the task has

finished. We might therefore assume that the communication

has a storage requirement of zi – the size of the outgoing

communication. However, without loss of generality, we pro-

pose that communications are not generated during execution

of the task, but instead are generated on a flit-by-flit basis

after execution, and immediately transmitted. The result is

that it is not necessary to store the communication prior to

sending, alleviating the need to consider the size zi of outgoing

communications in our memory model.



B. Memory Model B: Receiving and Sending

The memory requirements as derived under Memory Model

A provide a sound starting point, but are largely unrealistic

because of the assumptions made regarding the treatment of

outgoing communications. While some tasks may generate

their communications using the assumed flit-by-flit method,

it is unrealistic to assume all tasks will behave this way. It

is likely that most tasks will need to store and process their

communication before it is sent.

Memory Model B is an extension of Memory Model A, and

adopts a more sophisticated approach to handling communica-

tions. Specifically, Memory Model B accounts for the memory

required to store both incoming and outgoing communications.

We define send : Π → Φ to be the set of communications

whose source tasks are mapped to core πα, more formally:

send(πα) = {ϕi ∈ Φ | map(τ si ) = πα}. For a specific

core πα, we can calculate the amount of required private local

memory req(µα) using Memory Model B as follows:

req(µα) =
∑

ϕi∈ recv(πα)

zi +
∑

ϕj∈ send(πα)

zj (4)

As before, this model does not consider the memory mi

required by each task τi that is mapped to the core, and the

size of the code and any dynamic memory allocation required

for tasks to execute is assumed to be negligible.

C. Memory Model C: Receiving, Sending and Code

The final model, Memory Model C, is the most sophisticated

of the three models, and therefore provides the most realistic

representation of memory. This model relaxes the assumption

made in both of the previously defined models that the memory

requirement mi of each task is negligible. This is an obvious

extension – it is reasonable to assume that tasks require

both memory to store their code and access to a heap/stack

during execution. While some simple tasks such as comparison

operators will require very little code and dynamic memory

to execute, more complex real-time tasks may have memory

requirements in the order of kilobytes, or even megabytes [14].

Memory Model C accounts for incoming and outgoing

communications, in addition to the memory requirement of

each task. For a specific core πα, we can calculate the amount

of required private local memory req(µα) using Memory

Model C as follows:

req(µα) =
∑

ϕi∈ recv(πα)

zi +
∑

ϕj∈ send(πα)

zj +
∑

τk∈ map−1(πα)

mk (5)

V. EXPERIMENTAL WORK

A. Experiment Setup

We conduct an in-depth scenario-based experiment using the

Autonomous Vehicle Application (AVA) benchmark, proposed

in [14]. The AVA benchmark models several subsystems of

an autonomous vehicle, including 39 communicating tasks

performing functionality such as navigation control, vibration

control and obstacle detection through stereo photogrammetry.

Task periods vary between 0.04 and 1 second, and communi-

cation volumes vary between 1 and 76 kilobytes.

We use the AVA benchmark as a baseline genetic mapper

similar to those reviewed in Section II (referred as SOGA,

for Single-Objective Genetic Algorithm), aiming to primarily

minimise unschedulable tasks and packet flows. We compare

this against the proposed genetic task mapper, which also

includes a secondary objective that aims to minimise the

amount of local memory required by each NoC tile (referred as

MOGA, for Multi-Objective Genetic Algorithm). We assume

a homogeneous NoC architecture, so the processing cores

and private local memories of all tiles must have identical

properties (e.g. the amount of available memory). We use

Equation 6 as our secondary objective, which minimises the

maximum memory requirement of a given task mapping.

O2 = max
x∈M

req(x) (6)

For each of the SOGA and MOGA, we perform an experi-

ment using Memory Model A, Memory Model B and Memory

Model C. These combinations form our six experimental runs,

which we refer to as: SOGA-A, SOGA-B, SOGA-C, MOGA-

A, MOGA-B, and MOGA-C.

The parameters for both the SOGA and MOGA remain

identical for the experiments with each of the different memory

models, and are shown in Tables I and II, respectively. As

discussed, we aim to keep the differences between the SOGA

and MOGA minimal, with the only changes being the fitness

functions and selection operators that they implement.

TABLE I
EXPERIMENTAL PARAMETERS FOR THE SOGA

Parameter Value

Population Size 100
Number of Generations 100
Fitness Function (1) # Unschedulable Tasks and Flows
Selection Operator Binary Tournament Selection
Crossover Operator One-Point Crossover
Crossover Probability 0.8 (per individual)
Mutation Operator Uniform Integer Mutation
Mutation Probability 0.01 (per gene)
Elitism 1 Individual
Benchmark AVA

TABLE II
EXPERIMENTAL PARAMETERS FOR THE MOGA

Parameter Value

Population Size 100
Number of Generations 100
Fitness Function (1) # Unschedulable Tasks and Flows

(2) Memory Requirement of the Platform
Selection Operator Binary Tournament Selection (Dominance)

NSGA-II
Crossover Operator One-Point Crossover
Crossover Probability 0.8 (per individual)
Mutation Operator Uniform Integer Mutation
Mutation Probability 0.01 (per gene)
Elitism 1 Individual
Benchmark AVA



We select a population size of 100, large enough to promote

a diverse population. The initial population is generated ran-

domly, with each gene selected randomly and independently

from a uniform distribution. We allow the algorithm to evolve

for 100 generations, with no early stopping criteria. This

should provide enough generations for the genetic operators

to effectively search the solution space. Previous studies have

shown that most GAs are able to find mappings of the

AVA benchmark in under 50 generations [6]. However, we

argue that with additional constraints, 50 generations may

be too optimistic to obtain a schedulable mapping. This is

supported by [12], where by considering schedulability and

energy dissipation, more generations are required to obtain a

schedulable mapping.

The evolutionary process is inherently stochastic – the

initial population is randomly generated, the selection operator

randomly selects tournament participants, and the crossover

and mutation operators are applied probabilistically. Each ex-

periment that implements Memory Model C has an additional

random element. Namely, before each evolution, each task is

assigned a random memory requirement, chosen uniformly be-

tween 2048 and 16384 bytes. To account for this stochasticity,

we conduct 100 repetitions of each of the six experimental

configurations, over which we average our results.

The parameters of the NoC platform that we use for each

experiment are summarised in Table III. All NoC parameters

are identical in each experiment with the exception of the

memory model, which we set as Memory Model A, Memory

Model B, or Memory Model C, depending on the experiment.

TABLE III
EXPERIMENTAL PARAMETERS FOR THE NOC

Parameter Value

Topology 4× 4 2D Regular Mesh
Homogeneity Homogeneous Cores, Routers and Links
Core Clock Speed 100MHz
Routing Algorithm XY Static Routing
Switching Mechanism Wormhole Switching
Arbitration Policy Priority-Preemptive Arbitration with Virtual

Channels and Credit-Based Flow Control
Router Latency 1 cycle
Buffer Size 2 flits
Link Width 1 byte (8 bits)
Link Latency 1 cycle
Network Clock Speed 100MHz
Memory Model A, B or C

For each of the 100 evolutions, we log certain performance

metrics of the population at each generation. To achieve this,

for each generation we first calculate the value of each metric

on a per-individual basis, before averaging over the population.

This process yields a set of 100 independent results that will

form the basis of our analysis: providing us with sufficient data

to compare the performance of the two genetic algorithms, and

examine the effect of our three proposed memory models. We

collect the following performance metrics:

• Mean Memory Requirement: We keep a record of the

mean memory requirement per core according to the

respective memory model used in the experiment.

• Mean Schedulability: We log the number of unschedula-

ble tasks and flows, that may miss their deadlines.

• Mean Memory Utilisation: We log the memory utilisation

of each processing core of the NoC using Equation 2.

B. Results

This section presents the experimental results for our six

different algorithm configurations. Specifically, we consider

the memory requirement, schedulability and memory utili-

sation. For each of these performance metrics, we analyse

the results and suggest potential causes of our findings. The

genetic mappers were allowed to run for 100 generations,

as we employed no early stopping criteria. The values were

obtained by taking the average across 100 repetitions.

1) Memory Requirement: The first aspect we considered

was the mean memory requirement of the system. Figure 3

shows how the mean memory requirement of all individuals

in the population varied over the course of the evolutionary

process. Figure 4 shows the distribution over 100 runs of mean

memory requirements for the final population.

We next considered the best individual at each generation,

rather than taking the mean value of the entire population.

The best individual is defined as the one having the lowest

memory requirement in the population. Figures 5 and 6 show

the evolution of the best individual in the population, and the

distribution of best individuals in the final population over the

100 repetitions, respectively.

In all experiment configurations, the mean and minimum

memory requirement of individuals in the population de-

creased significantly as evolution progressed. By the final gen-

eration, the average mean memory requirement for the SOGA-

A, SOGA-B, and SOGA-C configurations had decreased by

approximately 50kB, 90kB and 100kB respectively – despite

the fact that the fitness function did not consider memory when

selecting individuals. As expected, the MOGA configurations

resulted in substantially lower mean and minimum fitness val-

ues by the final generation. In fact, the distributions presented

in Figure 4 were so distinct that our attempts to apply Kruskal-

Wallis H tests resulted in extremely small p-values.

There were evident differences between the MOGA-A,

MOGA-B and MOGA-C configurations in the number of gen-

erations it took for the evolution to plateau. It appeared that in-

creasing the complexity of the memory models also increased

the amount of time it took to reach this plateau. In the case

of MOGA-A, the algorithm was able to identify the minimum

possible memory requirement for the AVA benchmark – an

optimum value of 90,112 bytes. Eventually, the population

in the MOGA configurations consisted almost exclusively of

solutions with the same memory requirement. The minimum

memory requirement for the SOGA configurations fluctuated

during evolution, not converging to a minimum.

We had expected to see that, as the evolution progressed,

the SOGA configurations would not experience any significant

reduction in memory. Surprisingly, both the average and mini-

mum memory requirements experienced noticeable reductions,

albeit not to the same extent as their MOGA counterparts. The



Fig. 3. Average mean memory requirement of all individuals in the popula-
tion, for each of the six algorithm configurations.

Fig. 4. Distribution of mean memory requirements of all individuals in the
final population, for each of the six algorithm configurations.

AVA benchmark is computationally intensive, and therefore

to maintain schedulability, tasks are forced to spread across

cores. The memory requirement was reduced as an indirect

consequence of this more even distribution. However, recall

that we still take into account memory for the communications

even if the tasks are mapped to the same core – because

communications are copied from one memory space to an-

other. If we elected not to include this (instead using shared

memory), then we anticipate that our expectations would have

been realised. While it was disappointing to see that the

more sophisticated memory models took longer to plateau, this

was to be expected. Intuitively, this is because more memory

factors are taken into consideration by the fitness function,

making it more challenging to find optimal solutions.

The standard deviation of MOGA configurations was un-

expectedly low. Since the selection operators for the MOGAs

relied on the notion of Pareto dominance, it quickly becomes

difficult for weaker individuals to remain in the population,

and they are weeded out at an earlier stage. We might attribute

the small standard deviation to the fact that increased pressure

means that diversity is lost, and the population stagnates.

This is not a significant issue, because we still arrive at a

Fig. 5. Average minimum memory requirement of all individuals in the
population, for each of the six algorithm configurations.

Fig. 6. Distribution of minimum memory requirements of all individuals in
the final population, for each of the six algorithm configurations.

satisfactory task mapping and reduced memory requirements.

2) System Schedulability: We next explored system schedu-

lability: the number of unschedulable tasks and flows of all

individuals in the population. Once again, the values we

report were obtained by averaging over 100 repetitions of

the experiment. The plots in Figures 7 and 8 reveal how the

mean and minimum number of unschedulable tasks and flows

decreased as evolution progressed, respectively.

The results reveal that all six configurations found schedula-

ble solutions early in the evolution process. In other words, the

minimum number of unschedulable tasks and flows reached

zero quickly. For all memory models, the MOGA configura-

tions appeared initially to converge more quickly to a schedu-

lable solution compared to their SOGA counterparts. How-

ever, both SOGAs and MOGAs discovered fully-schedulable

solutions by approximately epoch 30. On average, the simpler

memory models took less time to schedule in the MOGA con-

figurations. Differences between the models were less apparent

when considering the minimum number of unschedulable tasks

and flows. We had expected to observe a difference in the

amount of time it took the algorithm to find schedulable

mappings. Specifically, we anticipated that since the MOGAs



Fig. 7. Average mean number of unschedulable tasks and flows of all
individuals in the population, for all of the six algorithm configurations.

Fig. 8. Average minimum number of unschedulable tasks and flows of all
individuals in the population, for all of the six algorithm configurations.

have more factors to consider, these configurations would

take extra time. The results we obtained were unexpected.

Not only did both the SOGAs and MOGAs find schedulable

solutions after approximately the same number of epochs, but

taking memory into consideration actually appeared initially

to accelerate the rate of convergence. Intuitively, by forcing

the tasks to conform to a reduced memory requirement, they

are forced to spread out across the NoC earlier on in the

evolutionary process. In turn, the schedulability of the system

actually improved, likely owing to the fact that the AVA

benchmark is computation-bound, rather than communication-

bound. Earlier we found that even when the fitness function

only considered schedulability, the evolutionary process was

able to compress the amount of required memory somewhat.

It transpires that the inverse is also true: considering memory

as part of the fitness function also has a positive effect on

schedulability.

3) Memory Utilisation: We next measured how memory

utilisation changed during evolution. Figure 9 shows how the

mean memory utilisation of the population varied as evolution

progressed, when averaged over 100 independent repetitions.

Fig. 9. Average mean memory utilisation of all individuals in the population,
for each of the six algorithm configurations.

Fig. 10. Distribution of mean memory utilisation of all individuals in the
final population, for each of the six algorithm configurations.

Figure 10 shows the distribution of final-generation mean

memory utilisations over these repetitions.

Figures 11 and 12 show similar plots to those above.

This time, however, we considered the maximum memory

utilisation of individuals in the population, rather than taking

the average of the whole population.

We found that the mean and maximum memory utilisations

followed similar patterns. In the case of the SOGA configura-

tions, the maximum utilisations did not converge to a stable so-

lution and fluctuated in a small range – a behaviour consistent

with that seen in other performance metrics. However, in the

case of average memory utilisation, we observed that all three

of the SOGA configurations followed an identical pattern,

with an offset applied to each. It appeared that higher mean

and maximum memory utilisations were achieved by memory

models B and C. Specifically, employing Model C allowed

the algorithm to devise a mapping whose memory utilisation

exceeded 84%. The box plot reveals that the MOGAs produced

very consistent results in the final round of each repetition,

while the SOGAs showed much larger standard deviation.

The results that we obtained were as we expected. Namely,

the memory utilisations of mappings produced by the MOGAs



Fig. 11. Average maximum memory utilisation of all individuals in the
population, for each of the six algorithm configurations.

Fig. 12. Distribution of maximum memory utilisation of all individuals in
the final population, for each of the six algorithm configurations.

exhibited significantly more efficient memory utilisation, thus

wasting less of the available memory. Intuitively, taking mem-

ory into account forces tasks with large memory requirements

to be distributed over different cores, spreading the load across

the system and achieving a more even distribution of memory.

Memory models A and B appear to converge steadfastly to a

consistent solution after 100 generations, suggesting that they

almost always found the optimal mapping in the case of the

AVA benchmark. Memory Model C, however, does not appear

to plateau, and therefore the results after 100 generations are

slightly more widely distributed. We suspect this is because

Memory Model C takes into account code sizes, which are

randomly assigned. Stochasticity in the system is likely to

manifest as variation in our final results. Running the evolution

for more generations would likely result in an eventual plateau.

VI. CONCLUSIONS

This paper has provided a solution to the problem of

mapping hard real-time tasks onto NoCs under memory con-

straints. It has proposed three memory models of increasing

complexity and realism to better show the impact of such

constraints. Experimental work has shown the difficulties im-

posed by the constraints to a genetic search algorithm increase

as the memory models are made more realistic. Nonetheless,

the proposed genetic algorithm is capable of finding fully-

schedulable mappings that respect these memory constraints.

The experiments also uncovered a potential correlation be-

tween schedulability and memory optimisation, as the baseline

genetic pipeline was able to reduce memory requirements

while optimising system schedulability, despite being unaware

of that metric. These improvements, however, were of a less

significant scale, when compared to the proposed approach.

Further work will address the same metrics over a larger

number of benchmarks, and may address more complex mem-

ory architectures, such as paged memory models.

REFERENCES

[1] A. Agarwal. The Tile Processor: A 64-Core Multicore for Embedded
Processing. In 11th Annual Workshop on High Performance Embedded

Computing (HPEC), 2007.
[2] G. Ascia, V. Catania, and M. Palesi. Multi-objective Mapping for Mesh-

based NoC Architectures. In Proc 2nd Int Conf on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), pages 182–187, 2004.
[3] R. Ayari, I. Hafnaoui, G. Beltrame, and G. Nicolescu. Schedulability-

guided Exploration of Multi-core Systems. In Int Symposium on Rapid

System Prototyping (RSP), 2016.
[4] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti. Guaranteed

Services of the NoC of a Manycore Processor. In Proc Int Workshop on

Network on Chip Architectures (NoCArc), pages 11–16. ACM, 2014.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2):182–197, 2002.
[6] L. S. Indrusiak. End-to-end schedulability tests for multiprocessor

embedded systems based on networks-on-chip with priority-preemptive
arbitration. Journal of Systems Architecture, 60(7):553–561, 2014.

[7] L. S. Indrusiak, A. Burns, and B. Nikolic. Analysis of buffer-
ing effects on hard real-time priority-preemptive wormhole networks.
arXiv:1606.02942, 2016.

[8] H. Kashif, S. Gholamian, and H. Patel. SLA: A Stage-Level Latency
Analysis for Real-Time Communication in a Pipelined Resource Model.
IEEE Trans Comput, 64(4):1177–1190, 2015.

[9] P. Mesidis and L. S. Indrusiak. Genetic mapping of hard real-time
applications onto NoC-based MPSoCsa first approach. In 6th Int

Workshop on Reconfigurable Communication-centric Systems-on-Chip

(ReCoSoC), 2011.
[10] B. Nikolic, H. I. Ali, S. M. Petters, and L. M. Pinho. Are Virtual

Channels the Bottleneck of Priority-aware Wormhole-switched NoC-
based Many-cores? In Proc 21st Int Conf on Real-Time Networks and

Systems (RTNS), pages 13–22, 2013.
[11] M. Palesi, G. Ascia, F. Fazzino, and V. Catania. Data encoding schemes

in networks on chip. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 30(5):774–786, 2011.
[12] M Norazizi Sham Mohd Sayuti and Leandro Soares Indrusiak. Real-

Time Low-Power Task Mapping in Networks-on-Chip. In IEEE Com-

puter Society Annual Symposium on VLSI (ISVLSI), pages 14–19, 2013.
[13] Z. Shi and A. Burns. Real-Time Communication Analysis for On-Chip

Networks with Wormhole Switching. In IEEE/ACM NOCS Symposium,
pages 161–170, 2008.

[14] Z. Shi, A. Burns, and L. S. Indrusiak. Schedulability Analysis for
Real Time On-Chip Communication with Wormhole Switching. Inter-

national Journal of Embedded and Real-Time Communication Systems

(IJERTCS), 1(2), 2010.
[15] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on

multi/many-core systems: survey of current and emerging trends. In
Proc 50th IEEE/ACM Design Automation Conference (DAC), 2013.

[16] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time
tasks: an NP-Hard problem made easy. Real-Time Systems, 4(2):145–
165, 1992.

[17] Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending Real-Time Analysis for
Wormhole NoCs. IEEE Trans Comput, 66(9):1532–1546, 2017.


