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Abstract

Climate change vulnerability assessments are commonly used to identify species at

risk from global climate change, but the wide range of methodologies available makes

it difficult for end users, such as conservation practitioners or policymakers, to decide

which method to use as a basis for decision-making. In this study, we evaluate

whether different assessments consistently assign species to the same risk categories

and whether any of the existing methodologies perform well at identifying climate-

threatened species. We compare the outputs of 12 climate change vulnerability

assessment methodologies, using both real and simulated species, and validate the

methods using historic data for British birds and butterflies (i.e. using historical data to

assign risks and more recent data for validation). Our results show that the different

vulnerability assessment methods are not consistent with one another; different risk

categories are assigned for both the real and simulated sets of species. Validation of

the different vulnerability assessments suggests that methods incorporating historic

trend data into the assessment perform best at predicting distribution trends in subse-

quent time periods. This study demonstrates that climate change vulnerability assess-

ments should not be used interchangeably due to the poor overall agreement

between methods when considering the same species. The results of our validation

provide more support for the use of trend-based rather than purely trait-based

approaches, although further validation will be required as data become available.

K E YWORD S

biodiversity, climate change, conservation prioritization, policy, risk assessment, species

conservation, vulnerability assessment

1 | INTRODUCTION

Standardized methods of risk assessment are important tools for pri-

oritizing adaptive strategies to counter the impacts of climate

change, including conservation action for species most likely to face

extinction. The IUCN Red List (De Grammont & Cuar�on, 2006; Mace

et al., 2008) is globally accepted as the method for assessing the

vulnerability of species to extinction. However, it has recently been

suggested that this process does not adequately identify potential

future risk, such as that posed by climate change, as it focuses more

on the symptoms of declines than on the underlying causes

(Akc�akaya, Butchart, Watson, & Pearson, 2014). Given that global

extinction risks are high (Ceballos et al., 2015; Pimm et al., 2014;
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Thomas et al., 2004a) and increasing as a consequence of climate

change (Thomas et al., 2004b; Warren, Price, Fischlin, de la Nava

Santos, & Midgley, 2011), this could potentially lead to an underesti-

mate of the risk to species. These concerns have led to the parallel

development of a number of risk assessment frameworks (Pacifici

et al., 2015), each of which aims to quantify the vulnerability or

extinction risk of a species due to climate change.

Each framework draws on different input variables and combines

them in different ways, so they are not necessarily interchangeable.

To allow for meaningful interpretation of the assessments by conser-

vation practitioners and policymakers, it is necessary to evaluate

whether the results of different frameworks are in agreement with

one another; and this is currently unknown (Wade et al., 2016). If

the results of species risk assessments do differ, the choice of frame-

work would affect the perceived vulnerability of different species,

hence changing conservation priorities and management actions. It is

also unknown whether any of the different assessment frameworks

provide a projection of risk that is accurate or realistic. Therefore, it

is important that the frameworks should be validated using empirical

data on observed changes to the status of species to determine

which methods are most appropriate to use, something that has pre-

viously been absent from the literature (Wade et al., 2016).

Climate change vulnerability assessment methodologies follow

two broad approaches (Pacifici et al., 2015) trait- and trend-based.

Ultimately, how the population of a species responds to environmen-

tal change is strongly influenced by the unique combination of traits

possessed by each species (and those it interacts with), so trait-

based vulnerability assessment frameworks have much to commend

them (Arribas et al., 2012; Barrows et al., 2014; Chin, Kyne, Walker,

& McAuley, 2010; Foden et al., 2013; Gardali, Seavy, DiGaudio, &

Comrack, 2012). Typical traits selected by these assessments include

life-history information, but they may also incorporate trait data

derived from distributional data (e.g. to estimate thermal limits). By

contrast, trend-based frameworks (Pearce-Higgins, Ausden, Beale,

Oliver, & Crick, 2015; Thomas et al., 2011; Trivi~no, Cabeza, Thuiller,

Hickler, & Ara�ujo, 2013) may recognize the importance of traits in

ultimately determining risk, but focus primarily on abundance and

distribution changes (observed and projected), supplemented by

some trait information to inform assessors of the likelihood that pro-

jected trends will be realized. The merit of this approach is that it

focuses on the primary cause of conservation concern (population

and distribution decline, in the spirit of IUCN Red Listing), and side-

steps the need to identify every causal trait, or how these traits

combine to determine population responses to climate change. Some

studies have attempted to combine the two types into hybrid frame-

works (Garnett et al., 2013; Heikkinen et al., 2010; Moyle, Kiernan,

Crain, & Qui~nones, 2013; Young et al., 2012), weighting one set of

inputs most heavily or including trend-based data as an optional set

of inputs. The ease of applying each of these frameworks depends

on the availability of trait, trend and modelled input data for the

taxon and region under consideration. In this regard, some frame-

works have been developed with specific taxa in mind (Arribas et al.,

2012; Chin et al., 2010; Gardali et al., 2012; Garnett et al., 2013;

Heikkinen et al., 2010; Moyle et al., 2013; Trivi~no et al., 2013) par-

ticularly birds and other vertebrates, while others are generic; and

they have been applied at a range of geographic scales (Table 1).

However, they are all amenable to being scaled up or applied to dif-

ferent taxonomic groups with little or no adjustment.

In general, the frameworks attempt to quantify three major com-

ponents (or some combination thereof) of risk: sensitivity, exposure

TABLE 1 Summary vulnerability framework information. Overall vulnerability equation used by each framework, broad methodology type,

taxonomic group(s) used to test the framework, and geographic scale at which the framework was tested. The Pearce-Higgins et al., 2015

framework is a simplified version of the Thomas et al., 2011 framework, excluding exacerbating factors and including only trend data

General vulnerability

equation Framework

Methodology

type Taxon Locality

Exposure 9 sensitivity Gardali et al., 2012; Trait Birds California State

Young et al., 2012; Hybrid Molluscs, Fish,

Amphibians, Birds, Mammals

Nevada State

Moyle et al., 2013; Hybrid Freshwater fish California State

Garnett et al., 2013; Hybrid Birds Australia

Thomas et al., 2011; Trend Birds, Plants, Invertebrates Great Britain

Pearce-Higgins

et al., 2015;

Trend Birds, Plants, Invertebrates Great Britain

Exposure 9 sensitivity 9

conservation status

Trivi~no et al., 2013; Trend Birds Iberian Peninsula

Exposure 9 sensitivity 9

adaptive capacity

Chin et al., 2010; Trait Chondrichthyan fish Great Barrier Reef

Foden et al., 2013; Trait Birds, Amphibians and Corals Global

Exposure + sensitivity Barrows et al., 2014; Trait Plants, Mammals, Reptiles, Birds Joshua Tree National Park,

California

Heikkinen et al., 2010; Hybrid Butterflies Europe

Exposure + sensitivity +

adaptive capacity

Arribas et al., 2012 Trait Water beetles Iberian Peninsula
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and adaptive capacity (Dawson, Jackson, House, Prentice, & Mace,

2011; Williams, Shoo, Isaac, Hoffmann, & Langham, 2008). All

approaches, whether trait- or trend-based, explicitly incorporate mea-

sures that are intended to represent both species exposure and spe-

cies sensitivity to climate change (Table 1) but, beyond this, there is

little agreement across the frameworks on exactly which input vari-

ables to use. This arises, in part, because there is limited evidence to

identify which traits are most important in determining the sensitivity

of a species to climate change (Pearson et al., 2014) or exactly how

climate exposure should be quantified. A range of different inputs are

therefore used to assess vulnerability, using a combination of projec-

tions from distribution models, population dynamics and life-history

traits. These amount to 117 specific input variables across the 12

frameworks considered here, of which three-quarters are unique to a

single framework; and only five of the 117 variables are represented

in more than two frameworks (Table S1). Ideally, these differences

would not matter and each framework would identify the same spe-

cies as vulnerable, but this should be tested, not assumed. In addition

to the variation in input variables used by different frameworks, there

is inconsistency in whether inputs are considered measures of sensi-

tivity, exposure or adaptive capacity. For example, metrics of dispersal

are treated as indicating sensitivity (Barrows et al., 2014; Gardali

et al., 2012; Heikkinen et al., 2010; Thomas et al., 2011; Young et al.,

2012), or adaptive capacity (Arribas et al., 2012; Chin et al., 2010;

Foden et al., 2013) depending on the framework used.

Here, we assess the utility of 12 published frameworks, using some

of the best biodiversity data available. Initially, we consider whether

the 12 frameworks generate consistent results, that is whether the

frameworks “agree” on which species are at risk from climate change.

We also consider the current Red List assessment approach, without

incorporating any future projected declines using bioclimate envelope

modelling, and compare the outputs against those from each of the 12

frameworks. We then validate the performance of the 12 different

frameworks by carrying out an assessment based on historic species

data and compare the outcomes to subsequent, observed changes in

distribution and population. For frameworks that perform well in vali-

dation, species that are classified as at risk using historical data are

expected to be most likely to have declined since then.

2 | MATERIALS AND METHODS

2.1 | Exemplar and real species comparisons

The assessments of 18 species (11 birds and 7 butterflies; hereafter

“exemplar species,” Table 2) and additional British bird and butterfly

species (Table S4) were carried out based on trait and distribution

data within Great Britain. These species were chosen due to the qual-

ity and availability of data for the taxa considered within this region.

The exemplar species were chosen because they were the only spe-

cies of any taxonomic group with both comprehensive distribution (in

two or more time periods) and traits data and a northern or southern

range margin lying within Great Britain (Gillingham et al., 2015). Spe-

cies with range boundaries in a region are likely to be of interest

when running climate change vulnerability assessments—in this case,

species with a southern range edge in this temperate northern hemi-

sphere situation should be more likely to be predicted to be at high

climate risk than species with a northern range edge. All common Bri-

tish breeding bird and butterfly species were considered for the addi-

tional assessment, the 234 species selected being the ones for which

future distributions could be modelled based on data availability.

Trait data for the real species were collected from the scientific

literature and species atlas data (Asher et al., 2001; Balmer et al.,

2013). Projected distribution changes were generated by applying a

Bayesian, spatially explicit (Conditional Autoregressive) GAM to the

bird and butterfly distribution data (Beale, Brewer, & Lennon, 2014).

We used only a single climate modelling approach rather than an

ensemble as our aim was to test framework performance rather than

produce a definitive risk assessment of the species, and including

projections from multiple models would have increased uncertainty

and made comparison of framework outputs more difficult. Climate

data for two emissions scenarios, low (UKCP09 B1) and medium

(UKCP09 A1B), corresponding to a 2°C and 4°C increase in average

temperature relative to a pre-industrial baseline by 2080 were used,

as limiting the global rise above baseline temperatures to 2°C is

widely considered key to avoiding the worst impact of climate

change on species, while current estimates suggest 4°C may be a

more realistic potential change (Mora et al., 2013). Both emissions

scenarios show similar patterns of climate change of increasing mean

temperature and total annual precipitation, with only the expected

magnitude of change different between them, and are very close to

recent observed changes. This pattern of change for the key climate

variables in our model is consistent across the majority of global cli-

mate models, so using alternative future climate projections would

likely yield a similar pattern of relative risk across species.

For each emissions scenario, we modelled species distributions

using 11 different spatially coherent projections (SCPs), allowing us

to incorporate uncertainty within each emissions scenario into the

model outputs and giving us projected changes based on 22 future

climate datasets per species. The change in distribution for a species

was then calculated under each emissions scenario by averaging

across the 11 different SCPs.

2.2 | Simulated species comparisons

To compare the outputs of the 12 risk assessment frameworks using

simulated species, we generated ranges of values for 117 unique

input variables (Table S1), covering characteristics such as species

traits and population trends. We then drew values for each input

variable to generate 10,000 combinations of “trait sets” that were

used as simulated species in the assessments, in lieu of real world

data for many species.

Where possible to do so, we applied constraints on the input

variables to ensure logical consistency. For example, in the case of

interspecific interactions, some frameworks ask broadly whether

there is a dependence of a species on any interspecific interaction,

while other frameworks require inputs relating to multiple, clearly
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TABLE 2 Risk assessment output for exemplar real species. Low (white), medium (grey) and high (black) risk category outputs for the 18 exemplar species assessed using all 12 climate

change vulnerability assessment frameworks. Assessments were carried out at the Great Britain scale, based upon contemporary data, with modelled future distributions based upon a medium

emission scenario (A1B projection for 2070–2099). Northern (N, with a southern range margin) or southern (S, with a northern range margin) distributed species are identified in the distribution

column

Distribution Chin Gardali Foden Barrows Arribas Young Moyle Heikkinen Garnett Thomas Pearce-Higgins Trivi~no

Birds

Black grouse (Tetrao tetrix) N

Capercaillie (Tetrao urogallus) N

Black-throated diver (Gavia arctica) N

Common scoter (Melanitta nigra) N

Red-throated diver (Gavia stellata) N

Slavonian grebe (Podiceps auritus) N

Bittern (Botaurus stellaris) S

Dartford warbler (Sylvia undata) S

Nightjar (Caprimulgus europaeus) S

Stone curlew (Burhinus oedicnemus) S

Woodlark (Lullula arborea) S

Butterflies

Large heath (Coenonympha tullia) N

Mountain ringlet (Erebia epiphron) N

Northern brown argus (Aricia artaxerxes) N

Scotch argus (Erebia aethiops) N

Adonis blue (Polyommatus bellargus) S

Large blue (Maculina arion) S

Silver-spotted skipper (Hesperia comma) S
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defined interspecific interactions. In this situation, it would not make

sense for the broad interaction to be scored as absent while specific

interactions are scored as present. In this case, the broad interaction

is generated first and the scores of more specific interaction vari-

ables are influenced by that, to ensure consistent inputs across

frameworks.

For continuously distributed input variables, upper and lower

bounds were set based on reported values from the literature (e.g.

body size, generation time) or theoretical minimum and maximum

values. A value for the variable for each simulated species was then

drawn from a uniform distribution bounded by those upper and

lower limits. Species current distributions were simulated using the

same approach, sampling a value for area occupied (in km2) from a

uniform distribution with an upper limited based on known real

world distribution limits. For projected changes to species distribu-

tions under climate change, a future distribution was generated using

the same process as for current distributions, and the percentage

change in area between the two calculated.

The uniform distribution was chosen for all variables (equal prob-

ability for binary and categorical variables) because, for many input

variables, there was little or no data available on how they might be

distributed or the covariance between traits in reality (and they dif-

fer greatly between taxonomic groups), so an arbitrary selection of

distribution would have been needed. Nonetheless, where there was

an a priori expectation of the distribution of a trait based on the lit-

erature (e.g. logarithmic scaling of dispersal distance), the uniform

draw was taken from between the transformed trait limits. The uni-

form distribution also allows for generation of traits covering the full

range of the potential parameter space for the input variables, which

was one of the main advantages of generated trait sets rather than a

larger sample of real species data. The results therefore test consis-

tency in framework performances, rather than the “true” frequencies

of risk (which we do not know, given the differences between

framework methods).

Many of the input variables are categorical, typically scored as

low/medium/high or a variation thereof. In some cases, it is possi-

ble to base these on a continuous variable which is then split into

the different categories (e.g. dispersal distance <1 km scored as

low, dispersal distance >1 km and <10 km scored as medium, dis-

persal distance >10 km scored as high). Where it has not been

possible to generate a continuous variable to base the categorical

split on (e.g. impact of climate mitigation measures—scored as low

to high), the category was instead assigned randomly to one of

the possible options, with an equal probability of assignment to

each. IUCN Red List conservation status was required as an input

to one of the frameworks and was generated using IUCN criteria

A to D based on simulated traits, with no projected future

changes considered. This conservation status for each simulated

species was also used in comparisons of Red List risk category

against risk category for each framework and therefore informs us

of the relationship between climatic and nonclimatic risks rather

than whether the Red List could adequately take climate change

into account.

2.3 | Validation

Given the large variation in the risk categories assigned to each real

and simulated species, validation is required to assess whether any

of the vulnerability frameworks has any predictive power. To exam-

ine how well the different climate vulnerability assessments per-

formed at projecting future risk we used the results of assessments

based on historic species data to compare against observed recent

trends in species distribution/abundance. For validation of the

frameworks to produce robust results they need to be tested using

reliable input data, poor quality input data will always lead to poor

assessments of risk regardless of the method used for the assess-

ment. We therefore utilized some of the best quality data available

globally by selecting British birds and butterflies for the analysis.

Validations were carried out using historically available data to

assign species to low-, medium- and high-risk categories (for each of

the 12 risk assessment frameworks), as though the assessments

were carried out in the past (i.e. excluding more contemporary infor-

mation not available during the first time period), and then, we com-

pared recent distribution and population changes for species that

had been assigned to each risk category. Assessments for British

birds were based on the time period 1988–1991, to match the

breeding bird atlas data (Gibbons, Reid, & Chapman, 1993). Assess-

ment inputs based on the “then-current” distribution/population

were calculated from these Atlas data, with historic changes in distri-

bution calculated from the 1968–1972 Atlas to the 1988–1991 Atlas

(Gibbons et al., 1993). Projected changes in distribution were mod-

elled using the 1988–1991 Atlas distribution data and future climate

projections for 2080 under the medium (UKCP09 A1B) emissions

scenario. Historic assessments for British butterflies were performed

using the same approach, based on the 1995–1999 Millennium But-

terfly Atlas (Asher et al., 2001) and historic trends calculated from

the previous 1970–1982 national survey. Future projected distribu-

tions were modelled using the same methodology as for the bird

species. A total of 181 British bird species and 53 British butterfly

species were assessed based on this historic data.

In addition to the risk categorization outputs of the assessments,

observed recent trend data for distribution and population change as

the assessment time period was required. For bird distribution

trends, data from the 2007–2011 Atlas was used, giving the percent-

age change in occupied 10 km grid squares between 1988–1991

and 2007–2011. Observed changes in population for birds were

obtained from the State of the UK Birds report (Hayhow et al.,

2015), as a percentage change in population from 1995 to 2013.

Butterfly population change data were obtained from the State of

the UK Butterflies report (Fox et al., 2011), giving a percentage

change in population from 1995 to 2005. Although these dates

partly overlap with the Millennium Butterfly Atlas (Asher et al.,

2001), the population data are collected on fixed transects that are

separate from the millions of independent distribution records that

give rise to the Atlas maps. Distribution change data for the butter-

flies was not used in the analysis due to a large increase in observer

effort in the latter time period, which resulted in increases in
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distribution that are likely to reflect increased effort rather than true

changes in distribution.

2.4 | Statistical analysis

The risk category outputs from each of the frameworks were con-

verted to a set of standardized categories: low/medium/high risk

(Table S2). Broad agreement between the frameworks was tested on

a pairwise basis using Spearman’s rank correlation, to establish how

consistently species were assigned to the same low/medium/high

risk categories by the different frameworks.

Rank correlation allows for a comparison of how well the differ-

ent frameworks correspond across all levels of risk assignment, but a

potentially more useful comparison is of how well they agree in

identifying a species as high risk, based on the assumption that

assessments will primarily be run to identify the species most vulner-

able to climate change. To compare agreement on just high-risk spe-

cies, the risk categories were further simplified to a binary, “low and

medium” versus “high” categorization. Cohen’s kappa, a measure of

inter-rater reliability, was calculated to compare agreement between

frameworks. The prevalence and bias-adjusted Cohen’s kappa

(PABAK) (Byrt, Bishop, & Carlin, 1993) was used due to the relatively

low frequency of species scoring as high risk.

Principal component analysis (PCA) was used to examine how

much of the variation in risk assignment was influenced by certain

frameworks and to identify whether frameworks of the same general

type (trait, trend) showed similar patterns in risk category assign-

ment. Risk category outputs from each framework for the 10,000

simulated species were used in this analysis.

For the validation analysis, we predicted that most species at

high risk due to climate change are more likely to have seen popula-

tion/distribution decreases than species identified at low risk, and

are unlikely to have seen increases over the period of the validation

analysis. Species identified as low risk under climate change may still

have declined due to nonclimatic factors, but should also include

increases in population/distribution over the validation period. We

used quantile regression to validate framework performance, with

change in distribution or abundance as the response variable and

framework risk categorization (low/medium/high) as the predictive

factor (Cade & Noon, 2003). This allowed us to consider trends in

the 0.50 and 0.75 quantiles of distribution/population change

instead of just the mean, which would identify if the majority of

high-risk species are declining as we would expect if a framework is

performing well. The models were tested for significance against a

null model using an ANOVA.

3 | RESULTS

3.1 | Consistency between the results of different

vulnerability frameworks

We first assessed risk to the 18 exemplar species using each of the

12 frameworks and a medium emissions scenario. The results of the

assessments were highly variable, with no single exemplar species

assigned to the same risk category by all frameworks (Table 2). The

majority of species were classified as high risk by at least one

assessment (14/18 species); yet only one species (Black Grouse) was

classified as high risk by at least half of the frameworks (Table 2).

Pairwise Spearman’s rank correlations between frameworks showed

poor overall agreement in risk assignment (rs mean = .17 � .03, rs

median = .21). The ten “northern” species, with a southern range

margin in Great Britain, were classified as higher risk on average

than the eight “southern” species with a northern range limit in

Great Britain, with average risk values of 1.7 and 1.4, respectively

(scoring low/medium/high categories as 1/2/3), although only three

of the eight southern distributed species were not classified as high

risk by any of the frameworks (Botaurus stellaris, Sylvia undata,

Caprimulgus europaeus) and one northern distributed species was not

classified as high risk by any (Tetrao urogallus).

Focussing only on classification of species in the highest risk cat-

egory, inter-rater reliability analysis (for high risk versus low or med-

ium risk) produced a similar pattern to the rank correlation results,

with “weak” (McHugh, 2012) agreement across frameworks (mean

jPABAK = .51 � .03, median jPABAK = .55). Almost exactly the same

pattern was observed for the exemplar taxa when using a low emis-

sions climate scenario: the average proportion of agreement

between frameworks for the two scenarios was 95%, with only 11

changes in risk category across the two projected futures. The

results for the low emissions scenario are given in Table S3.

The frameworks also showed poor overall agreement with the

Red List assessment (rs mean = �.28 � .03, rs median = �.25), and

this agreement was not improved when we considered trait-based

and trend-based frameworks separately (trait-based: rs

mean = �.39 � .02, trend-based: rs mean = .01 � .01).

We further tested the frameworks with an additional 181 British

bird and 53 British butterfly species (Table S4) for which data were

available to model GB distribution changes, under a medium emis-

sions climate change scenario. Of these 234 species, 131 were classi-

fied as high risk by at least one framework (56%) (Figure 1b), with

only 12 species (2 bird and 10 butterfly species) classified into the

same risk category by every framework. Pairwise rank correlations

showed poor overall agreement (rs mean = .18 � .03, rs

median = .17), confirming that even with a larger sample of real spe-

cies with strong correlations between traits, there was little consis-

tency across the frameworks. In addition, inter-rater reliability analysis

indicated weak (McHugh, 2012) agreement across frameworks when

classifying species as high risk (mean jPABAK = .43 � .03, median

jPABAK = .61). We also ran the assessments for the 234 species using

a low emissions climate change scenario, which produced the same

overall pattern in risk and similar levels of agreement as for the med-

ium emissions scenario.

All 10,000 simulated species were assessed individually using

each of the 12 risk assessments. The frameworks showed broadly

similar patterns in the overall assignment of risk to the real species,

classifying the majority of species as low risk and relatively few as

high risk (Fig. S1). However, over 75% of the 10,000 simulated
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species were classified as high risk by at least one framework con-

sidered, and only 135 were assessed as high risk by more than half

of the frameworks (Figure 1a). Overall, we found poor agreement

across the frameworks in assigning risk (Figure 2, rs

mean = .07 � .01, rs median = .04). Pairwise correlations within

broad framework types were stronger than the overall pairwise cor-

relations (between trait-based frameworks: rs mean = .13 � .04, rs

median = .08; between trend-based frameworks: rs

mean = .29 � .12, rs median = .18), but still relatively poor. There

was also little difference between frameworks designed for a single

taxonomic group and more generic frameworks (between taxon-spe-

cific frameworks: rs mean = .09 � .05, rs median = .04 and between

generic frameworks: rs mean = .11 � .03, rs median = .04). Using

inter-rater reliability analysis to compare agreement between frame-

works in their classification of simulated species in the highest risk

category only, we again found weak overall agreement (mean

jPABAK = .55 � .02, median jPABAK = .52). This inconsistency sug-

gests against using a consensus of contrasting methods as the basis

for prioritization.

Comparing the outputs of the frameworks to Red List outputs

also produced poor correlations (Figure 2: Spearman’s rank correla-

tion rs mean = .04 � .01, rs median = .01), with trait-based assess-

ments showing weaker correlation with Red List outputs than trend-

based approach types (trait-based: rs mean = .02 � .01, rs

median = .01, trend-based: rs mean = .11 � .01, rs median = .13).

To investigate similarities between the risk assignments of differ-

ent frameworks further, we used Principal Components Analysis

(PCA) on the risk category outputs. We found distinct clusters for

trait-only frameworks (Arribas et al., 2012; Barrows et al., 2014;

Chin et al., 2010; Foden et al., 2013; Gardali et al., 2012) and trend-

based frameworks (Pearce-Higgins et al., 2015; Thomas et al., 2011;

Trivi~no et al., 2013) with hybrid assessments falling between the

two (Moyle et al., 2013; Young et al., 2012) (Figure 3, Table S5).

This pattern is the same for the pairwise correlations between

frameworks, with weak agreement overall, but stronger correlations

within the five purely trait-based frameworks and within the three

trend-based frameworks.

3.2 | Validation of different vulnerability

frameworks

Overall, none of the frameworks showed strong predictive power

(Table 3), with only two of the frameworks (Pearce-Higgins et al.,
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2015; Thomas et al., 2011) producing significantly better-than-ran-

dom risk assessments (one significant for the 0.50 and 0.75 quan-

tiles, and one for the 0.75 quantile, Figure 4). Both of these

frameworks are trend-based approaches, which would suggest incor-

porating this type of data into the assessment process produces

more robust risk outputs. The results of validation for both birds and

butterflies when using population change, rather than distribution

change as the response variable, also suggested limited framework

effectiveness. When considering changes in bird populations, there

were no significant trends in the 0.50 quantile for any of the frame-

works and only a single framework showed a significant trend for

the 0.75 quantile (Fig. S2), although this was in the opposite direc-

tion to what we would expect for a framework performing well.

There were no significant trends in either the 0.50 or 0.75 quantile

for any of the 12 frameworks when assessing population change for

butterflies (Fig. S3), although overall performance appeared to be

better than for the bird population analysis.

3.3 | Validation using an ensemble approach

In addition to the individual framework validation, we also consider

the effectiveness of using an ensemble approach to climate vulnera-

bility assessment. We compared the modal risk category assigned to

a species by the 12 frameworks against the same change in distribu-

tion/population value used in the individual framework validations.

For the 181 bird species, only two had a modal risk classification of

high risk, with both showing positive changes in distribution (Fig-

ure 5a) and population (Figure 5b), measured over the validation per-

iod. The 53 butterfly species also had just two species with a modal

high-risk classification, with one increasing its population over the

validation period and the other showing little change in its popula-

tion (Figure 5c). Therefore, the ensemble approach did not identify

high-risk species that subsequently declined—and across all species,

there was no link between the consensus risk category and subse-

quent distribution trends in quantile regressions. We also considered

the maximum risk category assigned by an ensemble approach

(Fig. S4), which was also not significant and would be impractical to

use to set conservation priorities because maximum risk identified

over half the bird and butterfly species as high risk (Figure 1b).

When considering average risk score (again scoring low/medium/

high categories as 1/2/3), the values for both birds and butterflies

ranged from 1.0 to 2.3, with a median score of 1.3 for birds and 1.4

for butterflies. There is relatively little variation across the average

risk scores, which would make prioritization based on this measure

difficult due to the difficulty involved in trying to differentiate

between the scores.

4 | DISCUSSION

4.1 | Assessment comparisons and validation

Risk assessments for both real and simulated species showed poor

overall agreement across the 12 frameworks, particularly between

trend- and trait-based approaches. These inconsistencies between

methods hold, regardless of whether we take into account the

correlated traits that exist for real species within a given taxo-

nomic group or if we minimize correlations between traits in sim-

ulated species (given that different higher taxa possess dissimilar

TABLE 3 Summary validation trends. Directions of trends in either distribution or abundance change for birds and butterflies from low risk

species to high-risk species. A negative trend indicates the framework is performing as expected, and a positive trend indicates poor

framework performance. Significant trends are denoted with *. The frameworks are ranked first by number of significant negative trends and

then by number of non-significant negative trends

Framework

Methodology

Type

Bird distribution

trend

direction

Bird population

trend

direction

Butterfly population

trend direction
Correct

significant

trends

Correct

non-significant

trends Rank

0.50

quantile

0.75

quantile

0.50

quantile

0.75

quantile

0.50

quantile

0.75

quantile

Thomas et al., 2011; Trend �* �* � � � � 2 4 1

Pearce-Higgins

et al., 2015;

Trend �* �* � + � + 2 2 2

Young et al., 2012; Hybrid � � � � � � 0 6 3.5

Barrows et al., 2014; Trait � � � � � � 0 6 3.5

Garnett et al., 2013; Hybrid � � � + � � 0 5 5

Arribas et al., 2012; Trait � � + + � � 0 4 6.5

Trivi~no et al., 2013; Trend � + � � � + 0 4 6.5

Gardali et al., 2012; Trait � � + � + + 0 3 8.5

Chin et al., 2010; Trait � � + � + + 0 3 8.5

Moyle et al., 2013; Hybrid + + + + � � 0 2 10

Foden et al., 2013; Trait + +* + + � � 0 2 11

Heikkinen et al., 2010 Hybrid + +* + +* + + 0 0 12
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trait correlations), which we might expect to have caused greater

inconsistencies between frameworks, depending upon the degree

of similarity between the traits considered. The similarities

between our results for simulated and real species suggest that

the inconsistencies arise from differences between the risk frame-

work methods themselves (i.e. which variables are included in an

assessment, and how they are combined to place each species in

a risk category) rather than from the test data that we used.

Uncertainty in the assessments is likely to be increased if projec-

tions of future distributions from multiple modelling approaches

are considered, rather than the single approach we have utilized

here, suggesting that the results if used for definitive risk assess-

ments of species could be even more variable than we have

demonstrated.
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Given that real and simulated species are assigned different

climate-risk categories by different risk assessment frameworks, it

is essential that validations are carried out to assess whether

none, some or all of the frameworks have predictive power. The

validation analysis here revealed that most frameworks perform

poorly (Table 3). Only two methods (Pearce-Higgins et al., 2015;

Thomas et al., 2011), both of which were trend-based, assigned

risk appropriately (i.e. the high-risk species declined more than

lower risk species) and significantly (Figure 4); although predictions

were only significant when considering change in distribution as

the response variable, not change in population (top two rows of

Table 3). One of these methods (Thomas et al., 2011) also gener-

ated nonsignificant predictions in the expected direction in all of

the other tests (top row of Table 3). These two methods are clo-

sely related to one another, with both using predicted trends

based on climate as the driving force, with one (Thomas et al.,

2011) using additional trait/habitat information that modifies the

capacity of each species to respond as predicted. These additional

constraints apparently increased the predictive power of this

framework.

Some of the other frameworks do show a similar overall pattern,

but assign such small numbers of species to the high-risk category

that it was not possible to detect significant trends (see Figure 4).

For example, one trait-based framework (Barrows et al., 2014) failed

to assign any species to the high-risk category (and only between 9

and 13 to the medium-risk category) and one hybrid framework

(Young et al., 2012) only assigned either one or five species to high

risk across the three tests.

Two of the frameworks (Garnett et al., 2013; Heikkinen et al.,

2010) classify species into risk categories based on proportions (e.g.

top tenth of values assigned high risk) instead of consistently set

threshold values, as seen in the other frameworks. The risk outputs

from these two frameworks correlate poorly with most others, and

they fall close to the origin in the PCA (Figure 3). Another framework

(Foden et al., 2013) uses proportional cut-offs for some input data

and along with a method that uses proportional risk categories

(Heikkinen et al., 2010) performs poorly overall in the validation anal-

ysis, with significant trends in the opposite direction to that expected

if assigning risk suitably. Proportions of species at risk from climate

change are not expected to be the same in different regions (or taxo-

nomic groups), so we recommend avoiding proportional approaches.

4.2 | Consensus assessment approach

As each framework we tested gives markedly different results, it

limits the effectiveness of using the assessments to inform conser-

vation responses. A potential alternative is to consider the results

from an ensemble of climate vulnerability assessments. The high

variability in outputs, however, also limits the effectiveness of tak-

ing an ensemble approach. We considered three possible

approaches to this. The first was to consider the possibility that

there are many different mechanisms of endangerment from cli-

mate change, and hence to consider a species as at risk if any of

the 12 methods classified it as at high risk. This was not practi-

cally useful because the majority of species were identified as

high risk using this approach. The second was to assign species to

the modal class of vulnerability, which resulted in almost no spe-

cies being classified as high risk. Neither approach significantly

identified declining species in the validation. The third approach

considered was the average risk score across the 12 frameworks,

which again identified very few species as high risk and with very

little variation in scores between them.

None of the outputs from the ensemble approaches offer suffi-

cient improvement over any individual method to justify the time

and effort required to collect the data to run all the assessments.

Combining the results of different climate vulnerability assessments

also has the potential problem of a single input variable appearing in

multiple methods, which could lead a single species characteristic

having an unduly large influence on the overall risk score.

4.3 | Validation analysis limitations

It should be noted that the time period for the observed changes

used in the validation analysis are relatively short for both birds and

butterflies (20 and 10 years, respectively), and from a period when a

range of other pressures have also affected species’ population in

the area considered, particularly changes in agricultural management

(Burns et al., 2016). There is a possibility that some species consid-

ered may be climate-threatened but not yet showing a strong nega-

tive response in distribution or population, while others may be

limited by other factors, potentially leading to the underestimation

of longer term framework performance. In particular, species that

might be expected to be most climate threatened by changing pat-

terns of extreme weather events, such as droughts or floods, are

unlikely to have experienced the full impact of this over the time

period used in our validation.

However, we would expect frameworks to show some separa-

tion between expanding and contracting species, because both bird

and butterfly communities have responded to climate change during

this period (Davey, Chamberlain, Newson, Noble, & Johnston, 2012;

Devictor et al., 2012), for example by polewards range shifts (Gil-

lings, Balmer, & Fuller, 2015; Mason et al., 2015; Massimino, John-

ston, & Pearce-Higgins, 2015). The fact we do not see such a

pattern for most assessments (and some trends are the reverse of

those expected), combined with the results of our comparison

between frameworks, does highlight the lack of evidence currently

available to support the use of most of these frameworks. As some

of the assessments are designed for global assessments of risk, there

is a possibility that the poor performance is a consequence of apply-

ing them over a regional scale. As data becomes available, it would

be valuable to repeat our analysis at the scale of entire species dis-

tributions, rather than on regions or subpopulations, to test this.

However, these methodologies are being applied at nonglobal scales

by researchers and practitioners (Meng et al., 2016), so the results

of our validation at a regional scale remain applicable to how the

methods are actually being used.
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4.4 | Future climate vulnerability assessment use

The science underpinning trend-based approaches is stronger, with

increasing evidence that species distribution models, which are used

to measure exposure in trend-based approaches, can retrodict recent

population and range trends (Green et al., 2008; Gregory et al.,

2009; Stephens et al., 2016). There remains uncertainty around iden-

tifying the key traits influencing species vulnerability to climate

change (Pacifici et al., 2017; Pearson et al., 2014), which may vary

widely by taxonomic group and could explain the wide range of

inputs across the different trait-based assessments. Recent work

(Willis et al., 2015) has advocated the combination of elements of

trait-based vulnerability assessments with species distribution mod-

elling to produce more realistic projections of future risk. This

approach has already been implemented to different extents by

some frameworks considered here (Thomas et al., 2011; Trivi~no

et al., 2013; Young et al., 2012), although the outputs of these show

at best weak correlations with purely trait-based assessments, sug-

gesting that trait-only assessments may not adequately capture the

exposure component of climate risk. The two general types of

assessment (trait and trend) effectively represent different para-

digms, with combined approaches representing arbitrarily weighted

blends of the two.

We have demonstrated that different vulnerability assessment

frameworks should not be used interchangeably when attempting

to assess a species’ potential future risk to climate change,

because assessments made with either real or simulated species

produce conflicting results. Our validation results suggest there is

currently less evidence to support the use of purely trait-based

vulnerability assessments than trend-based approaches, although

neither performed very strongly for the species’, time period and

location tested. Ideally, further tests of these approaches in differ-

ent circumstances, for different taxa and locations, would be valu-

able. Trend-based approaches are the only type of methodology

shown to assign species to appropriate risk categories, particularly

when this information is supplemented with additional species trait

data. If this conclusion is supported by other studies in other con-

texts, it would restrict the assessment options available to practi-

tioners (e.g. without long-term monitoring data, trend-based

approaches will not be possible). However, if frameworks not

incorporating this type of information produce highly uncertain

results, their long-term value remains questionable. Without signifi-

cant investment in long-term monitoring, to study change as it

occurs, and in research to identify exactly what traits make a spe-

cies’ vulnerable to climate change, our ability to identify the spe-

cies most in need of conservation attention in the face of climate

change will remain limited.
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