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Abstract—Recently, an increasing number of public cloud
vendors added Containers as a Service (CaaS) to their service
portfolio. This is an adequate answer to the growing popularity
of Docker, a software technology allowing Linux containers to
run independently on a host in an isolated environment. As any
software can be deployed in a container, the nature of containers
differs and thus assorted allocation and orchestration approaches
are needed for their effective execution. In this paper, we focus on
containers whose execution value for end users varies over time.
A baseline and two dynamic allocation algorithms are proposed
and compared with the default Docker scheduling algorithm.
Experiments show that the proposed approach can increase the
total value obtained from a workload up to three times depending
on the workload heaviness. It is also demonstrated that the
algorithms scale well with the growing number of nodes in a
cloud.

Keywords—Container orchestration, Market-based heuristics,
Containers as a Service, Cloud computing.

I. INTRODUCTION

The release of the Docker software in 2013 changed

software deployment and orchestration in Linux-based cloud

systems. Since that time, the operating system virtualisation

has gained popularity due to much higher performance and

flexibility in comparison with a traditional, hypervisor-based

virtualisation, offering sufficient isolation for numerous appli-

cations [4]. It is not surprising then that the most popular cloud

vendors, as Amazon Web Service, Google Cloud Platform,

Microsoft Azure or Red Hat OpenShift added Containers as a

Service (CaaS) to their cluster management systems (CMSs).

These services offer container engines, orchestration and the

underlying computing resources.

Initially, Docker containers were executed on a single

machine, but soon a few of orchestration software managing

a number of nodes in a cluster emerged, such as Docker

Swarm [5] or Google Kubernetes [1]. These systems, however,

perform best with the most typical cloud usage patterns, such

as Internet services’ high availability or load balancing for

microservices [8]. It is assumed that Docker Swarm has no a

priori information regarding the workload or the containers’

resource requirement. Thus its only available allocator at the

time of writing this paper is called Spread, which basically

replicates a container on different nodes in a round-robin like

fashion. More sophisticated allocation strategies are possible

by defining CPUs or memory reservations and limits. Addi-

tionally, some affinity rules can be added to run a container

on a computer with certain user-defined labels. However, all

the extra configuration has to be performed manually and is

rather laborious [18].

In [14], based on an example of distributed machine

learning, it was shown that the default Docker allocating

solutions are inferior to custom ones if a workload differs

from the typical usage patterns mentioned above. Similarly,

the workload considered in this paper is comprised of a

relatively large set of containers that perform transformational

computations, i.e. compute results from input values and then

stop, which is in contrast to interactive or reactive services

omnipresent in the Internet or IoT. Such usage pattern is

characteristic to numerous real-world problems related to

distributed optimisation [19]. For such workload type, the

features of the native clustering for Docker, named Docker

Swarm, such as creating replicas of a certain container, rolling

updates or load balancing based solely on the ingress traffic

are of limited usage [15]. Kubernetes, on the other hand, is

rather a complicated system and requires essential manual

configurations to tie together its components (e.g. etcd, flan-

nel), but its high availability, scalability and service discovery

features again suit more to the interactive Internet services

than transformational computations [14]. Those orchestrator

tools are not capable of benefiting from an extra knowledge

originating from the prior execution of the same containers,

which can be used for the execution time estimation [17], [13].

The traditional Docker orchestration tools are not capable of

prioritising the container execution considering the value of

the container execution results to the end users. In this paper,

this problem is addressed using market-based heuristics.

The above considerations lead to the conclusion that, despite

the popularity of various container orchestration software,

there is still a need for creating new ones, aiming at executing

specific workload types.

II. RELATED WORK

The most prominent container orchestrate systems, such as

native Docker Swarm [5] or popular Google Kubernetes [1]

follow the monolithic architecture rather than the shared-state

one, where parallel schedulers compete for cloud resources in

a free-for-all manner [12], or two-level, in which a number

of independent subclusters with their own schedulers requests

resources from the only second-level scheduler [6]. Similarly,

the majority of the orchestrators proposed in academia, e.g.

ACO [9] or DORM [15], applies the same approach. The

simplicity of the monolithic architecture allows the research-

ers to analyse and evaluate the influence of various aspects

of scheduling algorithms, as dominant fairness policy and

resource adjustment overhead in [14] or fuzzy-logic-based

approaches in [15]. Similarly, in this paper, a monolithic

cluster scheduler is used to facilitate the analysis of value-

based container allocation.

The main goal of market-inspired heuristics is to allocate

jobs to processors in a way that the overall value is maximal.

In [16], jobs’ values have been assumed to be fixed, whereas



in [3] it has been assumed that a job value can change over

time. In this case, the value can be described with a so-called

value curve of a job, a function whose domain represents the

computation time with the origin at the release time of the

container, whereas the codomain represents the values them-

selves [10]. A number of value-related heuristics have been

compared in [7], highlighting the benefits originating from the

access to historic execution data (profiling). In this paper, a

similar assumption is made: the estimated execution time of

each container, based on historically measured executions, is

known and used to support the allocation decisions.

From the literature survey, it follows that there were no

prior works related to the benefits of value-based scheduling

of Docker containers. Since the market-based heuristics proved

to be beneficial in a traditional task scheduling problem in the

high performance computing domain [2], it may be expected

that they will be similarly advantageous when applied to

containers. This hypothesis is investigated in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Cluster platform CP contains a set of k nodes N =
{N1, . . . , Nk} capable of executing containers (i.e. running

a container engine). Each node can execute one or more

containers of workload Γ = {C1, . . . , Cn}. The nodes are he-

terogenous and their computation speed difference is expressed

with so-called calibration coefficient ζi, i ∈ {1, . . . , k},

denoting a ratio between empirically measured execution time

of a set of container benchmarks on node Ni divided by the

execution time of the same set of container benchmarks on a

reference unit.

Each container Cj , j ∈ {1, . . . , n}, is executed on node Ni

in a time slot proportional to the so-called CPU shares ξj ∈
{1, . . . , 1024} of this container (the value of the maximum

share is taken directly from the Docker’s –cpu-shares flag).

Assuming that the sum of all the CPU shares of containers

ΓNi
executed on node Ni equals Ξi, container Cj gets ξj,i =

ξj
Ξi

· 100% of the CPU time of node Ni.

In CP , there is a global resource manager, named Dock-

erManager that coordinates the execution of containers sub-

mitted by the users. It is responsible for serving the incoming

requests and allocates the containers to nodes.

The estimated execution time of each container Cj is known

and equals ETj . Such information can be obtained from

the previous executions of the containers in the cluster. The

assumption of the existence of such data is quite common in

the cloud computing domain, e.g. [17], [13]. The arrival time

of container Cj is denoted as ATj .

A value curve V Cj of container Cj is a function of the

value of the container’s job to the end user depending on the

completion time of the job [3], [10]. A value curve has its

maximum value V maxj from the moment of the container

release time and does not increase, as shown in Figure 1. At

certain time the value curve assumes zero value and since

that time there is no benefit from computing the task. The

job can be then dropped in order not to waste resources.

We assume a value curve is given for each container, as this

reflects its business importance as assessed by the end user.

The description of the value curve generation is out of scope

time t

value V

ATj ETj

0
EETj

Vmaxj

VCj

Vj

Fig. 1. An example value curve of container Cj

of this paper. Some guidance can be found, for example, in

[7].

The reduction in the container value due to delay can

be determined by observing the value of the value curve at

the delayed completion time. Late completion of a container

execution may result in zero value and thus the computation

becomes useless for the end user. Further, the energy spent on

such computation can be considered as wasted. Therefore, the

container’s job request may be rejected if the zeroth value is

expected from executing it.

The concept of estimated execution time ETj of container

Cj is different from expected execution time EETj of the

same container. The latter one denotes the expected real

computation time of Cj and considers the influence from other

containers allocated to the same node and CPU share ξj . It is

then expected that the value Vj obtained from container Cj

would be equal to the value of the associated value curve V Cj

at time point EETj , Vj = V Cj(EETj).
With βi we denote the sum of expected values of all

the containers executed on node Ni (i.e. the value from the

value curve at the time point of the expected computation

completion) divided by the sum of their maximal values, which

can be expressed with formula

βi =











0 if ΓNi
= ∅,

∑

j:Cj∈ΓNi

Vj

∑

j:Cj∈ΓNi

Vmaxj

otherwise.
(1)

Notice that βi ∈ [0, 1].
A node Ni is treated as overloaded if βi is below a certain

threshold λ ∈ (0, 1), i.e.

βi < λ. (2)

For example, if ΓNi
includes two containers with V max1 =

100 and V max2 = 50, but due to the expected execution

time of these containers V1 = 50 and V2 = 40, the value of

βi = 0.6. If λ is set to, e.g., 0.7, then Ni is treated as an

overloaded node. The influence of various values of λ on the

total workload value is discussed in the experimental result

section.

In CP , containers Γ = {C1, . . . , Cn} are submitted by end

users at various time points and need to be allocated to the

processing cores of the cluster nodes N = {N1, . . . , Nk} in a

way that the total value obtained from the executed containers,
∑n

j=1
Vj , is maximised.

To recap, the problem considered in this paper can be briefly

described with the following features:



• Input: Workload, i.e., container set Γ = {C1, . . . , Cn},

value curve of each container V Cj , arrival time of each

container ATj , j ∈ {1, . . . , n}, nodes of the CaaS

platform N = {N1, . . . , Nk} with different calibration

coefficients ζi, i ∈ {1, . . . , k}.

• Constraints: Limited computational power on each node

Ni of the cluster platform CP .

• Objective: Maximize the total value
∑n

j=1
Vj obtained

from the execution of containers in Γ.

For each container submitted by an end user, the allocation

process conducted by DockerManager selects the node for

executing container Cj and its CPU share ξj ∈ {1, . . . , 1024}.

The container may be also not allocated to any node if the

allocation algorithm finds the value obtained after its execution

inferior to the value obtained from CP without execution of

Cj . In certain situations (detailed later in this paper), an earlier

allocated container may be preempted from the selected node

to provide more computational power to the newly allocated

container.

IV. VALUE-OPTIMISING CONTAINER ALLOCATION

APPROACHES

To determine the baseline, we assumed that the whole

workload Γ is known in advance and thus it can be scheduled

statically to the cluster platform CP . This assumption is

rarely applicable to practical scenarios and the purpose of

this approach is solely for comparison with other, dynamic

approaches, described later in this section.

As the computation of this static allocator is performed

off-line, its execution time is not crucial and thus heuristics

with even high computational complexity may be employed.

In this paper, a genetic algorithm, one of the most popular

but resource intensive heuristics, is used for this purpose.

Each chromosome in the genetic algorithm contains genes

of two types. The odd n genes indicate the target nodes for

n containers or the rejection of it, NCj
∈ {∅, N1, . . . , Nk},

whereas the remaining n genes specify the containers’ CPU

share, ξj ∈ {1, . . . , 1024}.

In real-world HPC scenarios, it is quite unlikely that the

workload is known a priori [13]. Then the target node together

with the CPU share of a container need to be determined just

upon the container’s release.

The first proposed dynamic approach is greedy as for each

released container Cj it searches for the mapping NCj
and

CPU share ξj maximising the overall value at the given time

point. For each released container, 1023 · k + 1 possibilities

are evaluated (extra ”+1” for the possibility of the container

rejection). The computational complexity of the algorithm

is then O(n · k) where n is a number of containers. In

an implementation of this algorithm, some larger stride (the

amount by which the index is increased each loop iteration) for

the for loop browsing through the CPU shares can be applied

to increase the speed of the approach. The influence of the

stride size on the total value and execution time is evaluated

experimentally in section VI.

In order to go beyond the search space of both the algo-

rithms presented above, we propose to remove the already

allocated containers whose expected value is relatively low.

This additional functionality may be beneficial when the

system is overloaded and thus the majority of containers would

be executed well beyond their estimated execution times [13].

Then the resources regained by removing one container may

be used in a more beneficial way when allocated to another

container.

The main difference between the greedy dynamic allocation

with preemption and the previous approach is the fact that,

in case of a node overload, during allocation of container

Cj to each node N1, . . . , Nk, one particular container already

allocated to this node is selected as a victim. This container

is to be removed from the cluster. It may be either suspended

(using the docker pause command) or killed (using the docker

stop command).

In section VI, two criteria for victim selection are experi-

mentally evaluated: the lowest expected value and the lowest

value density. These victimisation criteria among others, such

as the minimal remaining value, are described in [13].

V. IMPLEMENTATION ISSUES

The dynamic algorithms described in the previous section

have been implemented and used with the original Docker

engine in form of two software modules, namely DockerMan-

ager and DockerWorker. The former one is run on a machine

where Docker may or may not be installed, whereas the latter

requires the presence of the Docker daemon, which is depicted

in Fig. 2. In this figure, VFS denotes Virtual File System, an

abstraction layer on top of a concrete file system used in Linux

OS and the remaining blocks are described below.

The responsibilities of DockerManager are mainly related

to the selection of a DockerWorker instance for executing

a particular container. The DockerManager module can allo-

cate/deallocate a container into/from a certain DockerWorker

instance. A container can be started and stopped. Such param-

eters as: a period of a container, a quota of a container and con-

tainer CPU shares can be defined. A number of statistics are

available, such as a container CPU usage since its start, total

value for all containers executed by a certain DockerWorker,

the remaining execution time of a certain container (based

on its execution time), an execution time ratio between a

certain DockerWorker and a reference DockerWorker instance

(used for determining its calibration coefficient ζi). There is a

possibility of checking how these statistics would change if a

certain container would be added to the particular instance of

a DockerWorker.

DockerManager keeps a list of all containers and Docker-

Worker instances registered in the system. With each container,

its estimated execution time and value curve are associated.

DockerManager also includes information about all container

allocations to DockerWorker instances. Its functionalities are

communicated to an appropriate DockerWorker instance via

its DockerAgent using a RESTful-based interface.

Each DockerWorker instance executes a DockerAgent and

the original Docker daemon. DockerAgents communicate with

the corresponding Docker daemon using its official Engine

API. Currently, only three functions are available in Dock-

erWorker: creation of a container, its start and stop. Dock-

erAgent accesses (both for reading and writing) the Linux
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Fig. 2. General scheme of the proposed approach implementation

cgroups pseudo-files to get specific statistics and send certain

properties of a container [11]. It allows DockerWorker to get

or set a container CPU share, period and quota. There is also

functionality for getting the total CPU usage of a particular

container.

VI. EXPERIMENTAL RESULTS

To experimentally evaluate the algorithms proposed in this

paper, they will be first used to allocate workloads of assorted

heaviness. Then the influence of various parameters of these

algorithms is analysed to identify their most promising values

for the considered scenarios. Finally, the scalability of the

proposed solutions is addressed.

To check the system response to tasksets of various levels

of load, nine sets of 10 random workloads, W1, . . . ,W9, have

been generated. Each workload is comprised of 150 containers

to be executed. The maximal value of each container equals

100. Execution times of these containers vary from 100s to

800s on a reference machine. There are three DockerWorkers,

two of them can process with the speed of the reference

machine whereas the third one is about 50% faster. The arrival

time ATj+1 of the subsequent containers is selected randomly

between ATj and ATj + Tmax. The following Tmax values

(in seconds) have been selected for the workloads: W1 - 10,

W2 - 45, W3 - 80, W4 - 115, W5 - 150, W6 - 185, W7 - 220,

W8 - 255, W9 - 290 to cover a wide spectrum of workload

heaviness.

The total values obtained from the executed containers while

using different algorithms are presented in Fig. 3. In all cases,

the default Docker Swarm algorithm (SP - Spread) leads

to significantly lower values than the remaining approaches.

This observation is not surprising, as the Spread algorithm

is not aware of the underlying containers’ values and do not

maximise the total value.

As a rather small CP is used for all workloads, for the

heavier workloads (e.g. W1) the total value is much lower

than for the lighter ones (e.g. W9), as there is not enough

computational power and thus more containers are executed

for much longer than their estimated execution time ETj or

rejected by the scheduler, as no positive value is predicted. For

the heavier workloads, the variance of the values obtained with

different algorithms is significantly higher than in case of the

lighter ones. For example, for the heaviest workload W1, the

Dynamic Allocation with Preemption algorithm (DwP) is 3.85

times better than SP, whereas it is only about 17% better for
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Fig. 3. Total value obtained with different allocation algorithms (SP - Spread,
GA - Genetic Algorithm baseline, DwoP - Dynamic Allocation without
Preemption, DwP - Dynamic Allocation with Preemption)

the lightest workload, W9. This behaviour has been expected

as in the second case the cluster has almost enough resource

to execute all the containers close to their estimated execution

times. The different behaviour between W1 and W9 means that

the workloads have been well selected to cover the spectrum

of possible workload heaviness.

Not surprisingly, the knowledge of future container release

leads to higher total values than the lack of such knowledge.

Thus the value obtained with the static, baseline genetic algo-

rithm is significantly better than Dynamic Allocation without

Preemption. This difference is particularly visible for the

workloads with heavy loads. For example, the value obtained

with the Dynamic Allocation without Preemption algorithm

(DwoP) is about 40% worse than the baseline for workloads

W2 and W3, whereas the dynamic algorithm almost equated

with the baseline for the lighter workloads.

The benefits resulting from applying preemption for the

dynamic strategy are clearly visible. This approach extends the

search space and can easily overperform the baseline approach

especially for heavier workloads. Depending on the workload,

DwoP improves the DwP result from 87% (for W2) to less than

1% (for W8). The arbitrarily selected value of the overload

parameter λ = 0.5 and the chosen minimal remaining value

victimisation criterion have appeared to be quite an appropriate

choice, as discussed below.

In case of the heaviest workload W1, the baseline static

approach seems inferior to the proposed DwoP solutions. This

counter-intuitive result is caused by the fact that the baseline

genetic algorithm does not converge early in the majority of

cases and finding the right termination criterion is problematic,

especially when a workload is heavy.

According to the previous experiment, employing DwP

leads to the highest values in all considered cases. Howev-

er, earlier in this paper two techniques for victim selection

have been mentioned: the lowest value density (LVD) and

minimal remaining value (MRV). The results of the previous

experiment have been obtained with the latter. Its comparison

with the LVD criterion using the same workloads W1-W9 and

cluster platform as before has been performed with no visible

impact on the total value. LVD has been slightly better in total,

but the difference (4 per mille) is negligible.

Next, different values of the λ parameter have been eval-
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uated. This parameter determines the situation if a node is

overloaded according to equation (2). Workloads W1-W9 have

been then allocated using the DwP algorithm with parameter λ

ranging from 0.1 to 0.9. Low values of this parameter lead to

about 10% worse results in terms of the total workload value.

The choice of λ = 0.5 seems to be the most advantageous,

especially in cases of workloads W2, W3 and W4, for which

the standard deviations of the total value with respect to

parameter λ are significantly higher than for heavier or lighter

workloads. For workloads of the heaviness similar to W2-W4

selecting the appropriate value of λ is then crucial.

Another parameter, applicable to both DwoP and DwP algo-

rithms, is the CPU share stride size. For example, for the stride

equal to 18, i.e. by analysing 57 CPU share values instead of

1023 per container per node, the resulting total workload value

is from 25% (workload W2) to 4% (workload W8) worse than

with the stride size equal 1, while the allocation time decreases

about five times on average. In general, the stride size has a

relatively low impact on the total value of lighter workloads

(W6-W9) and then its larger value can be applied.

To evaluate the scalability of the proposed approaches, the

heaviest workload set W1 has been deployed to CP with the

number of DockerWorkers ranging from 1 to 50. The values

obtained in this experiment are presented in Fig. 4. An almost

linear growth is observed for the three analysed approaches

up to the point close to 20 DockerWorkers. After this point,

the number of containers in W1 per DockerWorker is too low

to keep this linear trend and some saturation around the total

value 12000 can be observed, what is 80% of the maximum

possible value of the workload. In general, DwoP and DwP

are 27% and 29% better than Spread, respectively. In the

linear growth region (3 to 20 nodes) it is 53% and 65%,

correspondingly. The proposed algorithms seem then to be

particularly advantageous in the overloaded systems. Even for

the largest analysed cluster (50 nodes), the average container

allocation time is lower than 0.25s.

VII. CONCLUSION AND FUTURE WORK

We have proposed a value optimizing container allocation

approach for cluster platforms. We have shown that this

approach is beneficial in cases when the container’s value

to end users varies over time. A baseline static and two

dynamic allocation algorithms have been proposed. The dy-

namic algorithms have been implemented and used with the

original Docker engine. The experiments have shown that the

proposed approach can significantly increase the total value

of a workload, especially in case of heavy workloads. The

proposed approaches scale well with the growing number of

nodes in a cloud.
In future, we plan to add metrics related to memory footprint

size and network utilisation to improve the allocation of the

memory or communication intensive containers. Additionally,

we plan to investigate various container relocation algorithms

to benefit from stateful container migration technologies, such

as Flocker.
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