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ABSTRACT

Stellar magnetism plays an important role in stellar evolution theory. Approximatively

10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars

exhibit surface magnetic fields above the detection limit, raising the question of their origin.

These stars host outer radiative envelopes, which are stably stratified. Therefore, they are

assumed to be motionless in standard models of stellar structure and evolution. We focus on

rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital

companion. Using direct numerical simulations in a sphere, we study the interplay between

a stable stratification and the tidal instability, and assess its dynamo capability. We show that

the tidal instability is triggered regardless of the strength of the stratification (Brunt–Väisälä

frequency). Furthermore, the tidal instability can lead to both mixing and self-induced mag-

netic fields in stably stratified layers (provided that the Brunt–Väisälä frequency does not

exceed the stellar spin rate in the simulations too much). The application to stars suggests that

the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect

magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be

considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and

PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the

observed magnetism of tidally deformed and rapidly rotating Vega-like stars.
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1 IN T RO D U C T I O N

1.1 Stellar magnetism

Stellar magnetic fields were first discovered in the Sun (Hale 1908)

and in the chemically peculiar Ap star 78 Virginis (Babcock 1947).

Stellar magnetism sparks growing interest, since it provides ad-

ditional data to infer the dynamical processes occurring in stellar

interiors. On one hand, it has been known for decades that magnetic

fields are common in solar-like low-mass stars, in which magnetic

fields have complex surface structures and time variabilities. Since

the pioneering works of Larmor (1919), Parker (1955), Roberts

(1968), Busse (1970), and many works in stellar magnetism have

considered magnetic fields driven by thermochemical convection.

Indeed, it is widely accepted that stellar magnetic fields originate

from motions within the convective envelope, generating dynamo

action (Parker 1979). Convectively driven dynamo action is sup-

ported by magnetohydrodynamic numerical simulations of both

stellar and planetary fluid interiors (e.g. Glatzmaier & Roberts 1995;

Brun et al. 2004; Schaeffer et al. 2017; Strugarek et al. 2017). Fur-

thermore, reduced mean-field or flux-transport models can be tuned

⋆ E-mail: jeremie.vidal@univ-grenoble-alpes.fr

to reproduce magnetic cycles as observed for the Sun (e.g. Jouve

& Brun 2007; Jouve et al. 2010; Charbonneau 2014) or solar-like

stars (e.g. Jouve et al. 2010).

On the other hand, the magnetism of hot Ap/Bp stars, a group

of intermediate-mass A/B stars showing strong chemical peculiar-

ities, with outer radiative layers (i.e. stably stratified in density),

is different from the magnetism of cool solar-like stars. Indeed,

they display global dipolar fields, with typical amplitudes rang-

ing from 300 G (Aurière et al. 2007) to thousands of Gauss,

and seem remarkably stable over observational time (Donati &

Landstreet 2009). Recently, magnetic fields with Gauss-level am-

plitudes have been detected in several stars (Blazère et al. 2016a,b),

e.g. in Vega (Lignières et al. 2009; Petit et al. 2010) and in Sirius A

(Petit et al. 2011). They form another class of magnetic stars defining

the Vega-like stellar magnetism. Hence, there is a strong dichotomy,

or magnetic desert, between strong and ultra-weak magnetic fields

among hot stars (Lignières et al. 2013). More generally, astronom-

ical observations show that between 5 per cent and 10 per cent

of main-sequence (MS, e.g. Ap/Bp) and pre-main-sequence (PMS,

e.g. Herbig Ae/Be) stars exhibit surface magnetic fields (Donati &

Landstreet 2009; Braithwaite & Spruit 2017; Mathys 2017).

It is commonly accepted that stars form from a fully convective

low-mass core, which grows through accretion during the proto-

stellar phase (Palla & Stahler 1992; Behrend & Maeder 2001).
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However, hot stars undergo important changes in their interior struc-

tures before reaching the MS. Stellar models indicate that after the

initial fully convective phase, a radiative core forms and grows in

the whole star. This suggests that sun-like dynamo action does not

occur in hot stars with thick outer radiative envelopes. However,

in very massive stars, an innermost convective core may develop.

Hence, the magnetic desert may result from the large variability of

mechanisms generating magnetic fields in hot stars.

1.2 Proposed mechanisms in hot stars

The origin of stellar magnetism in hot stars remains elusive and

debated (Neiner et al. 2014). The observed fields are often presumed

to be fossil fields (Borra et al. 1982; Braithwaite & Spruit 2004),

which were shaped during the stellar formation phase (Power et al.

2008) and might survive into later stages of stellar evolution. The

observed strong dipolar fields of Ap/Bp stars are stable over time

(Donati & Landstreet 2009), which is compatible with fossil fields.

However, it seems difficult for rapidly rotating stars to reach stable

magnetic equilibrium (Braithwaite & Cantiello 2012). Similarly, the

fossil field model does not seem to predict the observed small scale

and weak fields of Vega-like stars. It has been proposed that their

magnetic field is at equilibrium but undergo a dynamical evolution

before reaching an equilibrium state (Braithwaite & Cantiello 2012).

Moreover, the fossil field origin has also been questioned for the

magnetic field of PMS Herbig Ae/Be stars, which are expected to be

the precursors of magnetic Ap/Bp stars on the PMS phase (Alecian

et al. 2012). However, the recently observed dramatic change of

the surface magnetic field of HD 190073 (Alecian et al. 2013),

which possibly hosts a small inner convective core, could result

from interactions with a dynamo field generated in the convective

core.

Hence, dynamo action could also take place in the small inner

convective cores of some hot stars (Stello et al. 2016). It is argued

that surface fields could be due to the emergence of magnetic field

blobs produced by a powerful convective dynamo in the innermost

core (Parker 1975; Charbonneau & MacGregor 2001). However,

the time required for this dynamo field to reach the stellar surface

may be longer than the lifetime of the star (Moss 1989; MacGregor

& Cassinelli 2003), unless very thin magnetic tubes could be gen-

erated. Moreover, in radiative interiors only magnetic fields much

stronger than the equipartition value in the innermost convective

core are able to be carried out to the stellar surface, which challenges

the core-dynamo model (MacDonald & Mullan 2004). Interactions

between a fossil field and a core dynamo are also possible, leading

to a superequipartition state in the convective core (Featherstone

et al. 2009).

In early-type O and B stars, a sub-surface convective layer

may exist and a dynamo could develop in this layer (Cantiello &

Braithwaite 2011). This mechanism produces magnetic fields of

strength between 5 and 50 G, rather small scale and time-dependent,

while the observed fields are mainly dipolar, stable over time and of

much stronger amplitude. In intermediate-mass stars (smaller than

8 M⊙), such as Vega and Sirius, sub-surface convective layers are

also expected (Cantiello & Braithwaite 2011), although being of

different physical nature. Nevertheless, the dynamo action in such

thin layers is unlikely to sustain magnetic fields of large-enough

length scales to be detectable (Kochukhov & Sudnik 2013).

Another hypothesis relies on a dynamo action in the radiative en-

velope. Indeed, differential rotation can trigger various instabilities

which lead to dynamo action, as shown by self-consistent numer-

ical simulations (MacDonald & Mullan 2004; Guervilly & Cardin

2010; Arlt & Rüdiger 2011b; Marcotte & Gissinger 2016). Several

instabilities are likely to occur in stellar interiors (Spruit 1999).

Dynamo cycles (of the α�-type), based on flux-tube instabilities

(e.g. Ferriz-Mas et al. 1994; Zhang et al. 2003), the magnetorota-

tional instability (Balbus & Hawley 1991; Mizerski & Lyra 2012)

or the pinch-type Tayler instability (Tayler 1973; Markey & Tayler

1973; Pitts & Tayler 1985) have been proposed. In stably strati-

fied envelopes, a pinch-type instability is expected to be the first

to occur (Spruit 1999). Thus, recent theoretical and experimental

works (Gellert et al. 2011; Seilmayer et al. 2012; Weber et al. 2015)

focused on the Tayler instability in fluids with low magnetic Prandtl

number, but yielded contradictory results. The dynamo capability

of the Tayler instability in radiative envelopes was considered by

Spruit (2002) and Braithwaite (2006). This mechanism is concep-

tually similar to the one driven by the magnetorotational instabil-

ity (e.g. Jouve et al. 2015). An initial axisymmetric poloidal seed

field is transformed by the � effect into an axisymmetric toroidal

field. Then, a magnetic instability in the toroidal field develops

to generate non-axisymmetric field components. To close the dy-

namo loop, a regeneration of either an axisymmetric toroidal (Spruit

2002) or poloidal field (Braithwaite 2006) is invoked. Braithwaite

(2006) conducted numerical simulations, which seem to validate

the dynamo mechanism in stellar stratified interiors. This dynamo

mechanism has been criticized by Zahn et al. (2007). They used

numerical simulations that did not lead to dynamo action. However,

these simulations considered high magnetic diffusivity, yielding a

differential rotation in these simulations below the threshold for

dynamo action (Braithwaite & Spruit 2017). Later, Arlt & Rüdiger

(2011a) and Szklarski & Arlt (2013) observed dynamo action in

numerical simulations. Finally, Jouve et al. (2015) found that the

magnetorotational instability seems favoured at the expense of the

Tayler instability in differentially rotating, incompressible stars.

Undoubtedly, clarifying the relevance of these dynamo mech-

anisms in more realistic models of stably stratified stars deserves

future work. Observational tests should play an essential role. In par-

ticular, a correlation between the stellar rotation and the magnetic

field properties should exist (e.g. Potter et al. 2012), but this is not

observed (Hubrig et al. 2006; Mathys 2017). Then, in all scenarios

based on differential rotation, an energy source for that differential

rotation needs to be identified. Indeed, the toroidal field is produced

by shearing the poloidal field and it draws its energy from the dif-

ferential rotation. As a result, this mechanism could only operate

as long as a differential rotation exists. However, magnetohydrody-

namic effects tend to weaken the initial differential rotation, which

may be provided by the stellar contraction occurring during the

PMS phase, through dissipative processes (Arlt et al. 2003; Jouve

et al. 2015). Ultimately, the latter effects weaken the energy source

of the dynamo action. Strong field strengths at the stellar surface

are also expected to warrant a uniformly rotating radiative envelope

(Spruit 1999), for instance in B3.5V star HD 43317 (Buysschaert

et al. 2017).

Tidal forcing is another possible mechanism in radiative stars,

as long as stars host non-synchronized orbital companions. Indeed,

tidally deformed fluid bodies are prone to the tidal instability (e.g.

Kerswell 2002; Cébron et al. 2013; Barker et al. 2016; Vidal &

Cébron 2017). The latter is a hydrodynamic instability of ellipti-

cal streamlines that excites inertial waves through parametric res-

onance. The non-linear outcome of the tidal instability could lead

to space-filling turbulence (e.g. Barker & Lithwick 2013a,b; Barker

2016; Le Reun et al. 2017). It has been proposed that the tidal

instability is of significant importance for tidal dissipation in bi-

nary systems (Rieutord 2004; Le Bars et al. 2010) and for angular
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momentum transport in accretion discs (Goodman 1993). The dy-

namo capability of the tidal instability has been confirmed by nu-

merical simulations (Barker & Lithwick 2013b; Cébron & Holler-

bach 2014). Apart from dynamo action in hot stars, it has also been

shown that a Hot Jupiter companion is responsible for the stellar ac-

tivity enhancement of low-mass HD 179949 star (Fares et al. 2012).

The role of the close-in massive planet in the short activity cycle

of the star τ Bootis has also been suggested (Fares et al. 2009).

Finally, tides might also lead to a resonant excitation of helical

oscillations driven by the Tayler instability, suggesting a possible

planetary synchronization of the solar dynamo (Stefani et al. 2016).

1.3 Motivations

On one hand, the hydrodynamic non-linear regime of the tidal in-

stability has been studied in unstratified fluids by Cébron et al.

(2010a), Barker & Lithwick (2013a), Barker (2016), and Grannan

et al. (2016). The tidal instability can induce a magnetic field

(Lacaze et al. 2006; Herreman et al. 2010), paving the way to

dynamos as suggested by Mizerski et al. (2012). Its dynamo ca-

pability has been proved by local (Barker & Lithwick 2013b) and

global numerical simulations (Cébron & Hollerbach 2014). On the

other hand, the non-linear regime of the tidal instability in stably

stratified fluids has been studied by Cébron et al. (2010b), but only

for a very limited range of parameters. It remains unclear how the

tidal instability is modified in stably stratified layers. Consequently,

the main purpose of this numerical study is to investigate the non-

linear outcome of the tidal instability in stably stratified fluids and

then to assess its dynamo capability.

Numerical simulations of the tidal instability are difficult to carry

out. The parameter space of stellar interiors is impossible to simulate

with the available computational resources. To simulate more re-

alistic configurations we may use local models. Local simulations

of the tidal instability in periodic boxes (e.g. Barker & Lithwick

2013a,b; Le Reun et al. 2017) indeed give quantitative predictions

in good agreement with global simulations (Cébron et al. 2010a;

Cébron & Hollerbach 2014; Barker et al. 2016; Barker 2016) and

laboratory observations (Le Bars et al. 2010; Grannan et al. 2016).

However, it is unclear whether possible small-scale dynamos ob-

tained with local models could lead to large-scale magnetic fields

in stellar interiors.

Here, we use global numerical simulations to study the tidal in-

stability and its coupling to a magnetic field. In such simulations, the

internal magnetic field matches a potential field outside the tidally

deformed domain – such as a triaxial ellipsoid. This is a source

of great mathematical complexity in non-spherical geometries (e.g.

Wu & Roberts 2009). Existing numerical codes capable of handling

ellipsoidal boundaries – such as codes based on finite elements

(Cébron et al. 2010b, 2012a), spectral finite elements (Favier et al.

2015; Barker 2016) or finite volumes (Vantieghem et al. 2015) – ap-

proximate this magnetic boundary condition at the cost of both low

accuracy and slow execution. However, high performance is cru-

cial to try to reach the low viscosity limit relevant for astrophysical

bodies. We choose to perform proof-of-principle numerical simula-

tions in a spherical container. By considering a sphere, we benefit

from the efficiency and accuracy of spectral codes relying on spher-

ical harmonics (Schaeffer 2013; Matsui et al. 2016). We extend the

method proposed by Cébron & Hollerbach (2014) to handle strati-

fication. We assume that the fluid is subjected to a non-conservative

body force sustaining an analytically designed tidally driven flow,

valid in spherical geometry and satisfying the various constraints

(including the viscous boundary condition). This flow is then pre-

scribed in the code, and we consider the departure from the basic

state.

The paper is organized as follows. In Section 2, we present the

mathematical and numerical formulations of the problem. Numeri-

cal results are presented and discussed in depth in Section 3. Then,

we extrapolate our results to stellar interiors in Section 4. Section 5

ends the paper with a discussion and perspectives.

2 D ESCRI PTI ON O F THE PROBLEM

2.1 Governing equations

We model tides in a rotating fluid sphere of radius R∗. We con-

sider a Newtonian fluid of uniform kinematic viscosity ν, thermal

diffusivity κ , and magnetic diffusivity η = 1/(μ0σ e), where σ e is

the electrical conductivity and μ0 the magnetic permeability of free

space. The fluid is rotating with the spin–spin angular velocity �s ẑ

along the vertical axis. We consider the variations of density only in

the buoyancy force, using the Boussinesq approximation (Spiegel

& Veronis 1960). The density ρ is given by the non-barotropic

equation of state

ρ = ρ∗ [1 − α(T − T∗)] , (1)

with α the coefficient of thermal expansion, (ρ∗, T∗) typical density

and temperature and T the departure of the temperature field from

the adiabatic temperature profile. In the Boussinesq framework, the

fluid is stratified under the gravity field g = −∇�0, with �0 a pre-

scribed gravitational potential. We choose R∗ as unit of length, �−1
s

as unit of time, �2
s R∗/(αg0) as unit of temperature T, where g0 is

the gravitational acceleration at the stellar surface, and R∗�s

√
μ0ρ∗

as unit of magnetic field B. We introduce the dimensionless Ekman

number Ek = ν/(�sR
2
∗), the Prandtl number Pr = ν/κ , and the

magnetic Prandtl number Pm = ν/η. To quantify the stratification,

we introduce the dimensionless (local) Brunt–Väisälä frequency

N (r) defined by (Friedlander & Siegmann 1982)

N2(r) = −αg · ∇T , (2)

The fluid is stably stratified if N2 > 0.

We work in spherical coordinates (r, θ , φ). We expand in the in-

ertial frame the velocity field and the temperature as perturbations

(u, �, B) around a steady tidally driven basic state (U0, T0, 0). In

the inertial frame, the dimensionless non-ideal, non-linear magne-

tohydrodynamic equations are

∂u

∂t
= −(u · ∇) U0 − (U0 · ∇) u − (u · ∇) u − ∇p + Ek ∇2u

− � g + (∇ × B) × B, (3a)

∂�

∂t
= −(U0 · ∇) � − (u · ∇) T0 − (u · ∇) � +

Ek

Pr
∇2�, (3b)

∂B

∂t
= ∇ × (U0 × B) + ∇ × (u × B) +

Ek

Pm
∇2 B, (3c)

∇ · u = 0, ∇ · B = 0, (3d)

with p the modified pressure, ensuring the incompressibility of

the dynamics. For hydrodynamic computations, the Lorentz force

(∇ × B) × B is removed. Equations (3) are supplemented with

appropriate boundary conditions. The velocity field satisfies the

stress-free boundary condition

u · n = 0, n ×
[
n · (∇u + (∇u)T )

]
= 0, (4)
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where n is the unit radial vector. Following Cébron & Hollerbach

(2014), we impose a zero-angular momentum for u. We also assume

a fixed temperature � = 0 at the boundary. Finally, the external

region (r > 1) is assumed to be electrically insulating. Thus, the

magnetic field matches a potential field at the boundary.

The governing equations (3) are solved with the open-source

parallel XSHELLS code (e.g. Schaeffer et al. 2017). It has been vali-

dated against standard benchmarks (Marti et al. 2014; Matsui et al.

2016). It uses second-order finite differences in radius and pseudo-

spectral spherical harmonic expansion, handled efficiently by the

free SHTNS library (Schaeffer 2013). The time-stepping scheme is

of second order in time, and treats the diffusive terms implicitly,

while the non-linear and Coriolis terms are handled explicitly. For

this study, we have extended the XSHELLS code to handle arbitrary

basic state fields.

All simulations have been performed at Ek = 10−4, Pr = 1 with

various N0/�s and Pm. The spatial discretization uses Nr = 224 ra-

dial points, lmax = 128 spherical harmonic degrees, and mmax = 100

azimuthal wavenumbers. We made sure that our simulations are nu-

merically converged by varying the spatial resolution.

2.2 Tidal basic state

The disturbing tidal potential perturbs the spin solid-body rotation

to generate a flow with elliptical streamlines, known as the equi-

librium tide (e.g. Zahn 1966; Remus et al. 2012). A difficulty is

to numerically establish the equilibrium tide in spherical geom-

etry. Following Favier et al. (2014), we can impose numerically

a non-zero radial flow, or similarly decompose the flow into non-

wave-like and wave-like parts (Ogilvie 2005; Rieutord & Valdettaro

2010; Ogilvie 2013; Lin & Ogilvie 2017). However, the relevance

of these methods are elusive for dynamo computations, because

the fluid suddenly becomes insulating when crossing the spherical

boundary.

We assume that the fluid is subjected to a non-conservative body

force f and heat source term Q. They aim at deforming the axisym-

metry (mimicking tidal effects), yielding the basic flow U0 and the

basic temperature T0. As in the non-wave-like decomposition (e.g.

Rieutord & Valdettaro 2010), the body force f is vortical (Cébron

& Hollerbach 2014), i.e. ∇ × f �= 0. This is a necessary condition

to deform the circular streamlines of the solid-body rotation into

elliptical ones in incompressible fluids.

Instead of directly prescribing f (Cébron & Hollerbach 2014)

and Q in the governing equations (5a), we prescribe an analytical

basic flow U0 and temperature T0. Indeed, imposing (U0, T0) is

computationally more efficient, because we solve the departure from

the basic state. Moreover, the imposed tidally driven basic state

satisfies the various boundary constraints (including the viscous

boundary condition). The imposed analytical basic state (U0, T0),

is an exact steady solution of the primitive equations in the inertial

frame

(U0 · ∇)U0 = −T0 g − ∇P0 + Ek ∇2U0 + f , (5a)

(U0 · ∇) T0 =
Ek

Pr
∇2T0 + Q, (5b)

∇ · U0 = 0. (5c)

The body force f and the heat source term Q can be analytically

computed from equations (5). Their mathematical expressions are

rather lengthy and so they are not provided here.

The basic state depends solely on a stream function �0 as fol-

lows. The disturbing tidal potential generates an elliptical flow of

azimuthal wavenumber m = 2, superimposed on the spin solid-body

rotation (m = 0). For simplicity, we consider a dimensionless basic

flow of the form

U0(r) = ∇ × [�0(r) ẑ], (6)

where �0(r) is a stream function given by

�0(r) = −
r2

2
+ ǫf (r, θ ) cos(2φ), (7)

with ǫ the maximum equatorial ellipticity and f(r, θ ) ≤ 1 the local

ellipticity profile. The effective ellipticity is β(r, θ ) = ǫf(r, θ ).

The latter profile is built to ensure that the basic flow U0 satisfies

the stress-free boundary condition (4). It is also constrained by a

regularity condition at the centre (Lewis & Bellan 1990). After little

algebra it reads

f (r, θ ) =
256

9
r2

(
1

3
− r2 + r4 −

1

3
r6

)
r2 sin2 θ

2
. (8)

The basic flow U0 satisfies the stress-free boundary condition (4).

It is an approximation of the equilibrium tide (Zahn 1966; Remus

et al. 2012).

Then, we choose a background temperature profile of the form

T0 = N2
0 /�2

s �0, where N0 is the dimensional Brunt–Väisälä fre-

quency at the outer boundary (N2
0 ≥ 0). It has a fixed temperature

at the boundary and cancels out the baroclinic instability, as a result

of ∇T0 × g = 0. Thus, we ensure a barotropic basic state. We fur-

ther assume a linear dependence between the imposed gravitational

potential �0 and the stream function, i.e. �0 = −�0. Therefore,

isotherms in the basic state coincide with streamlines. With this

choice the imposed gravitational potential is constant at the outer

spherical boundary (r = 1).

Finally, the tidally driven basic state (7) does not take into account

the rotation of the tidal ellipticity due to the companion’s orbital

motion. Indeed, the rotation of the tidal strain does not modify

the underlying physical mechanism of the tidal instability (Le Bars

et al. 2010; Cébron & Hollerbach 2014). In the non-rotating orbital

case, the zero angular momentum condition imposed for u is in

agreement with the conservation of the angular momentum of the

star.

Our basic state is illustrated in Fig. 1 for a given set of parameters.

The effective tidal ellipticity equals its maximum value ǫ at r = 0.5

and decreases towards the centre and the outer boundary where it

vanishes. As a consequence, azimuthal averages of T0, g, and of

the background Brunt–Väisälä frequency almost vary linearly in

radius, as observed in Fig. 1(b). Hence, our basic stratification is

almost spherically symmetric, which is expected for rotating stars.

3 N U M E R I C A L R E S U LT S

3.1 Hydrodynamic regime

The magnetic field is kept at zero in equations (3) to study purely hy-

drodynamic instabilities of the equilibrium tide U0. When the max-

imum tidal ellipticity ǫ is greater than a critical value (ǫc = 0.054 in

the neutral case N0 = 0), the basic flow U0 is unstable. The pertur-

bation flow u grows exponentially and then saturates non-linearly.

Perturbation velocities u of larger amplitudes are obtained for larger

ǫ, but we also want to keep ǫ small enough for the basic state to

remain close to a solid-body rotation. Consequently, we choose

ǫ = 0.2( ≃ 4ǫc) to survey the parameter space in the following.
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(a) (b)

(c)

Figure 1. (a) Ellipticity ǫf(r, θ ) in a meridional plane, computed at ǫ = 0.2.

(b) Normalized Brunt–Väisälä frequency of the basic state N(r, θ )/N0 in

the meridional plane φ = 0. (c) Equatorial ellipticity ǫf (r, π/2) and N(r,

θ )/N0 are shown as solid and dashed lines, respectively. Horizontal dashed

lines represent the critical ellipticity ǫc = 0.05 and 0.15, for N0/�s ≪ 1 and

N0/�s ≃ 2, respectively.

The nature of the hydrodynamic instability is revealed in the

linear growth phase. If the perturbation flow satisfies the global

resonance condition (Kerswell 2002)

|m1 − m2| = 2, (9)

where (m1, m2) is the azimuthal wavenumber pair of the inertial

modes (i.e. the eigenmodes of a rotating cavity) resonating with the

tidal basic flow (m = 2), then the instability is a tidal instability. In

Fig. 2(a), we show the most energetic wavenumber pair (m1, m2)

excited in the exponential growth as function of N0/�s. All pairs

satisfy the condition (9), hence a tidal instability is always excited

in the explored range of stratification (0 ≤ N0/�s ≤ 100). It is an

equatorially symmetric flow, appearing first at radius r = 0.5 where

the ellipticity is maximum (see Fig. 1), which then spreads out in

the bulk. When N0/�s � 1, the pair (2, 4) is excited and the typical

growth rate is σ/ǫ ≃ 10−1 irrespective of the value of N0. It yields

typical time-scales for the instability to grow between 30 ky and

3 My for typical stellar interiors with ǫ ∈ [10−8, 10−6] and a one-

day spin period. The flow oscillates at the angular frequency ω ≤
2, suggesting that the parametric resonance involves inertial modes.

When 1 � N0/�s ≤ 2, we observe different pairs of unstable modes

and the growth rates of the tidal instability are lower. In this range,

the typical frequencies of inertial modes and internal gravity modes

are similar. As a result of the interplay between the two effects of

same order of magnitude, a complex pattern of unstable modes is

expected. The most unstable pair (2, 4) at N0 = 0 is first replaced by

(a)

(b)

Figure 2. Survey of hydrodynamic simulation of the tidal instability at

Ek = 10−4, Pr = 1, and ǫ = 0.2 for varying N0/�s. (a) Pair of the most

rapidly growing wavenumbers m1 (circles) and m2 (crosses) excited in the

exponential growth. (b) Volume average kinetic energy of the perturbation

E(u) normalized by the kinetic energy of the basic flow E(U0) and Reynolds

number Re.

the pair (0, 2) when 0.8 ≤ N0 ≤ 1.5 and then by the pair (1, 3). When

N0/�s ≥ 2, the buoyancy force becomes of primary importance and

the stratification is then expected to be always stabilizing (Miyazaki

1993). However, we observe that the tidal instability is not inhibited.

Furthermore, the hydrodynamic growth rates are slightly enhanced

by a large stratification, with σ/ǫ ≃ 5 × 10−1. It yields dimensional

time-scales for the instability to growth of order 5 ky–0.5 My for

typical stellar interiors, with ǫ ∈ [10−8, 10−6] and a one-day spin

period.

Finally, the observed pairs (m1, m2) depend on the diffusion in

our simulations. In asymptotic regime of low diffusion (Ek → 0),

we expect the excitation of a wider range of pairs (m1, m2), possibly

with large azimuthal numbers, leading to wave turbulence (Le Reun

et al. 2017).

To quantify the non-linear outcome of the tidal instability, we

compute in Fig. 2(b) the kinetic energy of the perturbation

E(u) =
∫

V

|u|2

2
dV , (10)

(with V = 4π/3, the dimensionless volume of the sphere), as a func-

tion of N0/�s. We also introduce the Reynolds number Re = Ro/Ek

with Ro =
√

E(u)/E(U0) the Rossby number and E(U0) the
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Figure 3. Three-dimensional views of the total temperature T = T0 + �

in the non-linear regime of the tidal instability. Surfaces of constant T are

shown in the equatorial plane and in a meridional plane. Simulations at

Ek = 10−4, Pr = 1, and ǫ = 0.2.

kinetic energy of the global rotation. Three regimes are observed in

the simulations. Illustrative three-dimensional snapshots of the total

temperature field T = T0 + � in these regimes are shown in Fig. 3.

When 0 ≤ N0/�s � 1, the tidal instability flow is immune to the

stable stratification, as in the linear growth phase. The instability is

almost four times critical in this range (ǫ/ǫc ≃ 3.7) and the typical

Reynolds number is Re = 2000. The flow has a kinetic energy repre-

senting about 5 per cent of the kinetic energy of the global rotation,

consistent with the expected dimensional amplitude ǫ �sR∗ in the

neutral (N0 = 0) case (Barker & Lithwick 2013a; Grannan et al.

2016; Barker 2016). In Fig. 3(a), the stratification seems to be well

mixed and eroded in the bulk (compare with Fig. 1b), below a ther-

Figure 4. Instantaneous fraction of poloidal to total kinetic energy

Epol(u)/E(u), denoted Fpol, as a function of N0/�s. Simulations at

Ek = 10−4, Pr = 1, and ǫ = 0.2

mal boundary layer (due to our thermal boundary condition). We

note that the fluid is no longer barotropic, since the instantaneous

isolines of T do not coincide with the isopotentials anymore.

When 1 � N0/�s ≤ 2, we observe a collapse of the kinetic energy.

For these stratifications, the interplay between inertial and internal

waves reduces the saturation amplitude of the tidal instability. As a

consequence, we observe also a reduction in the mixing in Fig. 3(b).

The collapse when 1 � N0/�s ≤ 2 is due to a variation of ǫc there,

likely due to diffusion effects (see Appendix). This effect is not

expected in radiative stellar interiors, characterized by much lower

diffusivities. Finally, when N0/�s ≥ 2, the strong stratifications do

not prevent the tidal instability. Instead the instability has an even

larger amplitude, with a typical Reynolds number Re = 3000 and a

kinetic energy representing still about 5 per cent of the kinetic en-

ergy of the basic flow, see Fig. 2(b). This translates to a dimensional

flow amplitude ǫ �sR∗ regardless of the strong stratification. The

total temperature field displayed in Fig. 3(c) seems however hardly

disturbed by the instability, implying that the motions are mostly

confined to spherical shells with almost no radial component. This

is confirmed by the ratio Fpol of poloidal kinetic energy to the total

kinetic energy, shown in Fig. 4. For N0/�s ≤ 1, Fpol mostly lies

between 0.3 and 0.4. When N0/�s ≥ 1, first Fpol seems to take

values between 0.1 and 0.5, before dropping below 0.05 when the

stratification is further increased in the range N0/� ≥ 10. These

low values of the poloidal kinetic energy show that the flow has

consistently a weak radial component when N0/�s ≥ 10.

3.2 Kinematic dynamos

We remove the Lorentz force (∇ × B) × B from the momentum

equation (3a) to investigate kinematic dynamos. In this problem, we

assess the dynamo capability of the non-linear tidal motions, without

a back reaction of the magnetic field on the flow. We introduce the

magnetic Reynolds number

Rm = Pm Re, (11)

with Re the Reynolds number previously introduced. If the structure

of the tidal instability flow is suitable for dynamo action, Rm has

a finite critical value Rmc above which the dynamo process starts,

characterized by the growth of a magnetic field. Equivalently, the

dynamo threshold Rmc is associated with a critical magnetic Prandtl

number Pmc for a fixed value of Ek.

We have considered several values of the magnetic Prandtl num-

ber (1 � Pm ≤ 5), starting from random magnetic seeds, to
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Figure 5. Survey of kinematic dynamos for varying N0/�s and Rm. Sim-

ulations at Ek = 10−4, Pr = 1, and ǫ = 0.2

determine Pmc. We have checked that the laminar basic flow U0 is

not dynamo capable for Pm ≤ 5, but it does not preclude a laminar

dynamo driven by the basic flow at higher Pm. To detect the onset

of kinematic dynamo action, we monitor the time evolution of the

mean magnetic energy density E(B) =
∫

V
|B|2/2 dV and deduce

the growth rate σ b by fitting with an exponential function. The

kinematic dynamos we obtained are summarized in Fig. 5. Typical

growth rates are σb = O(10−3).

Non-linear motions are always dynamo capable when 0 ≤ N0/�s

� 1, at least for Pm ≥ 1.5 at Ek = 10−4. This yields a typical

dynamo threshold Rmc ≃ 3000, a plausible value for dynamo action.

This value is higher than the one obtained for precession-driven

(Tilgner 2005; Goepfert & Tilgner 2016) and tidally driven (Cébron

& Hollerbach 2014) dynamos in neutral fluids.

In the range 1 � N0/�s ≤ 1.3, several dynamos are obtained

with a smaller Rmc ≃ 1000. In the range 1.3 ≤ N0/�s < 10, no

dynamo is obtained for the considered Pm ≤ 2. This is because

the saturated amplitude of the flow is weak (Re ≃ 100), as a result

of a higher ǫc there, leading to a much lower supercriticality (see

Appendix). Studying this region would require a more systematic

parameter survey, and in particular lowering the diffusivities. This

would require more computational power than we currently have at

our disposal and this is left for a future study. For stronger stratifica-

tions (N0/�s ≥ 10) we found no dynamo, even for the most extreme

case with Rm ≃ 8000. This suggests that the non-linear tidal flows

in this range are not dynamo capable as a results of their spatial

structure, even if the Reynolds number can be larger (Re ≤ 2000).

Indeed, the toroidal velocity theorem states that an incompressible

flow without radial component (i.e. purely toroidal) cannot sustain

a magnetic field (Bullard & Gellman 1954). This theorem is not

invalidating when small non-radial motions are considered (Kaiser

& Busse 2017). When N0 ≫ �s, although being of considerable

amplitude, the tidally driven flow seems constrained by the strati-

fication and leads to weak radial motions, see Fig. 3(b). This is a

plausible explanation of the lack of dynamos for reasonable values

of Rm at N0/�s > 10.

3.3 Self-consistent dynamos

Now we take the Lorentz force into account in the momentum

equation (3a) to compute self-consistent dynamos. We integrate the

governing equations (3) over one dimensionless magnetic diffusive

time tη = Pm/Ek to get reliable dynamo results. We use the saturated

tidal flow as initial conditions for the velocity field. All the kinematic

(a)

(b)

Figure 6. Self-consistent magnetic field in the saturation regime. Simula-

tion at Ek = 10−4, Pr = 1, Pm = 2, and ǫ = 0.2. Only a small representative

fraction of the dimensionless diffusive time tη = Pm/Ek is shown. (a) Ratio

E(B)/E(u). (b) Poloidal zonal (m = 0) energy (EZ, pol), toroidal zonal

(m = 0) energy (EZ, tor), poloidal non-zonal (m > 0) (ENZ, pol) energy,

and toroidal non-zonal (m > 0) energy (ENZ, tor) of the magnetic field.

dynamos obtained for N0/�s � 1 give self-consistent dynamos. As

in the hydrodynamic case, the simulations are qualitatively and

quantitatively similar in the whole range N0/�s � 1. We only

provide a detailed analysis of the illustrative simulation performed

at N0/�s = 0.5, ǫ = 0.2, and Pm = 2 (with 1.25 < Pmc < 1.5).

The magnetic energy, initially weak, is amplified and reaches

values representing a small fraction of the kinetic energy of the

flow driven by the tidal instability in Fig. 6(a). This fraction is

about 0.01–0.02. Hence, the magnetic field does not reach a state

of equipartition and the kinetic energy is therefore only slightly

affected by the dynamo action. Note that these values are smaller

than those obtained by Barker & Lithwick (2013b) in local simu-

lations without buoyancy effects. However, with larger Rm, larger

amplitude of the magnetic energy could be reached. The time evolu-

tion of the magnetic field seems to follow the time evolution of the

velocity field (see Fig. 6). Magnetic energy has rapid oscillations,

at frequency of the order of the spin rate, which are superimposed

on longer period oscillations of small amplitudes. In Fig. 6(b),

we observe that the zonal energy (i.e. axisymmetric m = 0 en-

ergy) is one order of magnitude smaller than the non-zonal energy

(i.e. non-axisymmetric m > 0 energy). The magnetic field is also
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(a)

(b)

Figure 7. (a) Three-dimensional snapshot of the magnetic field magnitude

|B| at a given time. The rotation axis is along z. (b) Time- and radius-

averaged spectra of the magnetic energy as function of the spherical har-

monic degree l. Simulation at Ek = 10−4, Pr = 1, Pm = 2, and ǫ = 0.2.

predominantly toroidal, as expected from stability considerations in

non-barotropic stars (Akgün et al. 2013).

Because of the complex time evolution, straightforward visual-

izations of the instantaneous field are not illuminating. We show in

Fig. 7(a) an instantaneous snapshot of the magnitude of the mag-

netic field. The field is of rather small scale. We observe similarities

with the temperature field shown in Fig. 3(a). A description of the

field morphology is provided by the time-averaged spectrum of the

magnetic field in Fig. 7(b). The magnetic spectrum is dominated by

components of spherical harmonic degrees l ≤ 10. It is maximum

for the dipolar component (l = 1) and then slowly decays with a

power law E(B) ∝ l−0.04. The time-averaged spectrum, as well as

the instantaneous ones, are well resolved, proving that tidal motions

are able to drive a dipole-dominated dynamo in a stably stratified

layer.

We show in Fig. 8, the time-averaged magnetic field truncated

at spherical harmonics degree l = 5, because higher degrees are

not observed (e.g. Donati & Landstreet 2009; Fares et al. 2017).

This time-averaged field is mostly dipolar (l = 1) and axisymmetric

(m = 0). Non-axisymmetric components are averaged out because

of the rapid spin. The time-averaged flow has a columnar structure

aligned with the spin axis, as shown in Fig. 8(b). These spin-aligned

Figure 8. (a) Time-averaged radial magnetic field at the stellar surface

and (b) time-averaged velocity magnitude in the equatorial plane and in a

meridional plane. Simulations at Ek = 10−4, Pr = 1, Pm = 2, and ǫ = 0.2.

Time-averaged fields computed from t/tη = 0 to t/tη = 0.1 in Fig. 6(b). In

both figures, the spin axis is the vertical z-axis.

structures are the global counterpart of the strong vortices almost

invariant along the rotation axis and filling the periodic boxes of

similar local simulations (Barker & Lithwick 2013a,b). These flows

are expected in our stress-free computations with no viscous fric-

tion at the boundary (Livermore et al. 2016; Le Reun et al. 2017).

The emergence of such spin-aligned large-scale vortices are also

observed in rotating thermal convection (e.g. Guervilly et al. 2014)

and have been shown to be dynamos (Guervilly et al. 2015).

3.4 Tidal mixing

We have shown that the tidal instability is dynamo capable in our

simulations when N0/�s � 1 with a dynamo threshold Rmc ≃
3000. For stronger stratifications (N0/�s ≥ 10), we did not find

dynamo action up to Rm ≃ 8000 in the simulations. Indeed, dynamo

action requires not only large Rm, but also adequate, sufficiently

complex, flow structure (Kaiser & Busse 2017). Here, we suspect
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(a)

(b)

Figure 9. (a) Time average of the surface average (l = 0, m = 0) of

the local Brunt–Väisälä frequency 〈N2(T)〉S(r) as function of radius r. The

vertical dashed line represents the beginning of the thermal boundary layer.

(b) Efficiency of mixing χ for varying N0/�s. We fix rtbl = 0.9 in formula

(12). Simulations at N0/�s = 0.5, Ek = 10−4, Pr = 1, and ǫ = 0.2.

the radial mixing induced by the tidal forcing to be important.

Therefore, we now quantify the mixing induced by non-linear tidal

motions.

As shown in Fig. 6(a), the magnetic energy is much smaller than

the kinetic energy. Hence, the Lorentz force has little effect on the

flow dynamics. To quantify how the background temperature T0 is

mixed by the tidal instability, we compute the time and spherical

average of the local Brunt–Väisälä frequency 〈N2(T)〉 S(r), where

〈.〉 S(r) is the average over the spherical surface S(r) at radius r

(i.e. l = 0 in spectral space). It is illustrated in Fig. 9(a) for the

non-linear saturated regime of the simulation at N0/�s = 0.5 and

ǫ = 0.2 (representative of the stratification N0/�s ≤ 1). The dashed

line represents the background state. In the non-linear state (dashed

line), the stratification is well mixed (N2(T) ≃ 0) as suggested by

Fig. 3(a), except near the outer boundary where a thermal boundary

layer appears. This thermal boundary layer has a typical thickness

of about 0.1 in our simulations.

To estimate the efficiency of the mixing, we compute a coefficient

of mixing χ defined as follows

χ =

∣∣∣∣∣1 −
∫ rtbl

0

〈N2(T )〉S(r)dr

(∫ rtbl

0

〈N2(T0)〉S(r)dr

)−1
∣∣∣∣∣ , (12)

with rtbl = 0.9, the bottom radius of the thermal boundary layer. If

χ = 1 then the stratification is entirely mixed (below the thermal

boundary layer), while if χ = 0 there is no mixing. Fig. 9(b) displays

the evolution of χ with N0/�s. We find that the stratification is

almost entirely mixed by the tidal instability (below the thermal

boundary layer) when N0/�s � 1. When 1 � N0/�s ≤ 2, the mixing

efficiency is strongly reduced. Then, we find that there is no mixing

associated with the still vigorous tidal motions when N0/�s ≥ 2.

We explain the observed dichotomy below and above N0/�s = 1

based on the following simple arguments. A parametric resonance

involving inertial modes is responsible for the tidal instability, which

is almost insensitive to the stratification when N0/�s � 1.

When 1 � N0/�s ≤ 2, Coriolis and buoyancy forces are of

the same order and thus a parametric instability involving inertia-

gravity modes is responsible for the tidal instability. However, as

shown in Appendix, the collapse in the kinetic energy in Fig. 2(b)

when 1 � N0/�s ≤ 2, responsible for the strong reduction of the

mixing in Fig. 9(b), is due to a higher ǫc and to a lower super-

criticality there. It is not expected to occur in stellar interiors in

the asymptotic limit Ek, Ek/Pr → 0 for these values of N0/�s.

Thus, for smaller Ek, radial mixing is also expected in non-linear

regimes.

Finally for stronger stratifications (N0/�s ≥ 2), the tidal insta-

bility generates motions mainly along spherical shells, as indirectly

observed in the advection of the scalar temperature in Fig. 3(c).

The tidal instability is linearly triggered near the locus of maximum

ellipticity (r = 0.5) and generates there non-linear radial motions

of short wavelengths (not shown). This is because the ellipticity

is not homogeneous in our model (see Fig. 1), but in a ellipsoidal

body (like a tidally deformed star), we expect it to appear every-

where. Non-linear motions are mostly toroidal motions of spherical

coefficients (l = 1, m = 1). These motions seem similar to ‘r modes’-

like motions, which are the least-damped motions with stress-free

boundary conditions (Rieutord 2001). The strong stratification in-

hibits radial flows and toroidal flows are favoured instead, unable

to lead to efficient radial mixing.

4 A STRO PHYSI CAL APPLI CATI ONS

To investigate the astrophysical importance of the tidal instability

for stellar magnetism, we have to extrapolate our numerical results

towards the parameter space of stellar interiors. We expect our nu-

merical simulations to capture the dominant global scales of tidally

driven non-linear motions. Indeed, there is a broad agreement with

the observed magnetic pattern at the surface of many magnetic

stars, showing a dominant dipolar field with possible smaller scales

(Donati & Landstreet 2009). The instantaneous magnetic field and

the potential field extrapolation (external field) of a model are shown

in Fig. 10, truncating the magnetic spectrum at l ≤ 5. Higher har-

monics are not observed in astronomical data. The external potential

field is still dominated by the dipolar component. Without scaling

laws, we cannot extrapolate towards the parameter space of stellar

interiors. Unfortunately, all available scaling laws have been de-

veloped for convective dynamos only (e.g. Christensen et al. 2009;

Yadav & Christensen 2013; Yadav et al. 2013; Augustson et al.

2017) and cannot be safely applied to other forcings. Obtaining
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Figure 10. Potential field extrapolation of the instantaneous surface mag-

netic field (up to dimensionless radius r = 2). Simulations at Ek = 10−4,

Pr = 1, Pm = 2, and ǫ = 0.2.

scaling laws would require to simulate lower viscosities, which are

currently out of reach.

4.1 Tidal instability in stellar interiors

We carry out the extrapolation as follows. We consider a star of mass

M∗, mean radius R∗, and equatorial ellipticity ǫ∗. The radiative zone

is modelled as a stably stratified zone in the Boussinesq approxima-

tion. A tidal basic flow (equilibrium tide), induced by the disturbing

tidal potential of an orbiting companion of mass m, is established

within the radiative envelope. We consider only non-synchronized

systems, where the spin angular velocity of the star �s = 2π/Ps

(with Ps the spin period) is not equal to the mean orbital rotation

rate of the companion �orb = 2π/Porb (with Porb the orbital period).

For simplicity, we assume that the companion is moving on a cir-

cular orbit in the equatorial plane of the host star. The ellipticity ǫ∗
is estimated from the static bulge theory (e.g. Cébron et al. 2012b;

Vidal & Cébron 2017)

ǫ∗ =
3

2

m

M∗

(
R∗

D

)3

, (13)

with D the typical distance between the star and its orbital compan-

ion. An estimation of D can be obtained with Kepler’s third law,

yielding (Barker & Lithwick 2013b)

ǫ∗ =
3

2

m

m + M∗

(
�orb

�dyn

)2

, (14)

with the dynamical frequency �dyn =
√

GM∗/R3
∗ and G the grav-

itational constant.

The fastest growing mode of the tidal instability (in the asymp-

totic limit Ek, Ek/Pr → 0) has the dimensional growth rate (e.g.

Kerswell 2002)

σ

|�s − �orb|
=

(2�̃ + 3)2

16(1 + �̃)2
ǫ∗, (15)

with �̃ = �orb/(�s − �orb) the background rotation. Using astro-

nomical quantities, formula (15) is rewritten as

σ =
3

2

∣∣∣∣1 −
�orb

�s

∣∣∣∣
(2�̃ + 3)2

16(1 + �̃)2

m

D3

R3
∗�s

M∗
≤ 3

m

D3

R3
∗�s

M∗
. (16)

The growth rate (16) is insensitive to the amplitude of the stratifi-

cation N0/�s, as globally observed in our simulations (except for 1

� N0/�s ≤ 2, see Appendix). The tidal instability is triggered for

circular orbital configurations belonging to the allowable range −1

≤ �orb/�s ≤ 3 (e.g. Le Bars et al. 2010). However, the tidal in-

stability can be excited well outside this range for eccentric Kepler

orbits (Vidal & Cébron 2017).

Based on our global simulations of the tidal instability, buoyancy

effects do not influence amplitudes of tidal non-linear motions when

N0/�s ≤ 1. For N0/�s ≥ 10, the tidal instability stays vigorous but

the flow is constrained by the strong stratification resulting in weak

radial motion, see Section 3.1 and Fig. 9. When 1 < N0/�s < 10,

the lower amplitudes observed are due to a larger critical ellipticity,

see Appendix. Therefore, as shown in Fig. 2(b), the tidal instability

generates non-linear flows with a typical velocity magnitude (Barker

& Lithwick 2013a,b; Grannan et al. 2016)

u ∼ ǫ∗|�s − �orb|R∗. (17)

4.2 Prediction for the magnetic field strength

Dynamo action requires a large magnetic Reynolds number, i.e.

Rm > Rmc. This translates into a constraint on the magnetic diffu-

sivity η < uR∗/Rmc. Using the estimate (17) for u, we have

η < ǫ∗|�s − �orb|R2
∗/Rmc. (18)

We assume a weak dependence of the dynamo threshold Rmc on

Pmc when the diffusivities are decreased towards stellar values (i.e.

Ek → 0 and Pm ≪ 1). Such a behaviour has been reported for

several (helical and non-helical) forcing geometries (Brandenburg

2001; Ponty et al. 2004, 2005; Mininni et al. 2005; Mininni 2007;

Ponty et al. 2007; Brandenburg 2009; Seshasayanan et al. 2017) and

seems rather generic. For �s ≃ 1 d−1, R∗ ≃ 2R⊙, and Rmc = 3000,

we obtain η � 500 m2s−1 for ǫ∗ = 10−8 and η � 5 × 105 m2s−1

for ǫ∗ = 10−5. The latter values are acceptable values for stellar

interiors, suggesting that stellar interiors may host dynamo capable

flows.

We relate the dipolar field strength at the stellar surface B0 to the

amplitude of the flow (17) using the dimensionless parameter δ as

B0 = δ ǫ∗
√

ρ∗μ0 |�s − �orb|R∗, (19)

In our simulations, the dipole amplitude at the surface B0 is small

compared to the typical magnetic field strength Brms within the fluid

(see Fig. 7), leading to B2
0 = f1E(B), or B0 =

√
f1Brms, with f1 ≃

10−4. The ratio of the magnetic energy to the kinetic energy is found

to be E(B)/E(u) = f2 = 0.01 (see Fig. 6) in our simulations. By

contrast, Barker & Lithwick (2013b) obtained f2 ≈ 0.1–0.3 in their

magnetohydrodynamic simulations of the tidal instability within a

periodic box. Actually, this ratio largely depends on supercriticality

with respect to the dynamo onset. Equipartition cannot be excluded

here in stellar interiors, hence we consider the range f2 ∈ [10−2,

1]. This results into δ =
√

f1f2 ∈ [10−3, 10−2]. Making use of for-

mula (13), the scaling law (19) can be written using astronomical

quantities as

B0 =
3

2

√
3μ0

4π
δ

R5/2
∗

M
1/2
∗

�s

m

D3

∣∣∣∣1 −
�orb

�s

∣∣∣∣ , (20)

with the typical density ρ∗ = M∗/(4/3πR3
∗).
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(a) (b)

Figure 11. Predictions of the (a) growth rate (16) and (b) surface field strength (19) with δ = 10−3 for various stellar configurations. In (a), the vertical axis

shows the quantity Y = |1 − �orb/�s|(2�̃ + 3)2/(16(1 + �̃)2)m/D3. Horizontal solid white line in (b) shows the upper limit when the companion is a close

and massive Hot Jupiter (D = 0.01 au, m = 10 MJ with au the astronomical unit, and MJ the Jupiter mass. Tilted dashed lines show the orbital configurations

associated with surface magnetic fields of 5 and 100 G. Circle (respectively square) point shows the location of Vega with an orbital companion characterized

by m = 1.24 MJ, D = 0.0165 au, and Porb = 0.53 d (respectively m = 0.34 MJ, D = 0.017 au, and Porb = 0.56 d) as proposed by Boehm et al. (2015).

4.3 Comparison with convective dynamo scaling laws

In planetary or stellar convective dynamos, the viscous dissipation

is expected to be negligible compared to the Ohmic one in the limit

Pm ≪ 1, as expected from turbulence studies (e.g. Brandenburg

2011). In this limit, Davidson (2013) argues that dynamo fields

should be governed by

Brms ∼
√

ρ∗ μ0 (R∗ P)1/3, (21)

whereP is the power per unit mass injected into the dynamo capable

flow (i.e. convection for convective dynamos, and tidal instability

here). In this limit of vanishing viscous dissipation, it turns out

that equation (21) is also consistent with the scaling laws obtained

from usual convective dynamo simulations using the Boussinesq

approximation (e.g. Schrinner et al. 2012; Yadav et al. 2013; Oruba

& Dormy 2014). The power law given by equation (21) also holds

for anelastic convection (Yadav & Christensen 2013). Thus, we can

rely on equation (21) to compare convective dynamos scaling laws

with our empirical scaling law (19).

To estimate P , one can consider the tidal instability in a regime

where viscous and ohmic dissipations are of the same order, such

that any scaling law obtained for the viscous (or the ohmic) dissipa-

tion would also governP . This regime has been numerically studied

by Barker & Lithwick (2013b) by imposing a weak magnetic field

in a periodic box. They obtained that the dissipation rate per unit

mass Dν is given by

Dν = χ (2R∗)2|�s − �orb|3ǫ3
∗, (22)

with χ ≃ 10−2. Hence, assuming P ∼ Dν , equations (21) and (22)

give the surface magnetic field B0 = f
1/2
1 Brms as

B0 ∼ δ ǫ∗
√

ρ∗ μ0 |�s − �orb|R∗, (23)

with δ =
√

f1f2 and f2 = (4χ )2/3 ≈ 0.1. Thus, we recover

equation (19) exactly. Moreover, Aubert et al. (2017) obtained f1 ≈
10−2 for a set of (convective) geodynamo simulations. Therefore,

the scaling laws proposed for convective dynamo simulations are

fully consistent with our scaling law (19), with a similar pre-factor

δ ∈ [10−3, 10−2]. This gives some confidence in the extrapolations

to stars that follows.

We show in Fig. 11(a), the growth rate given by formula (16) and

in Fig. 11(b) the surface field strength given by formula (19), for

various orbital configurations. We have separated physical quan-

tities of the orbital companion, (shown on the vertical axis) from

stellar parameters (shown on the horizontal axis). Assuming that a

Hot Jupiter is orbiting around the host star (m ≤ 10 MJ with MJ the

Jupiter mass and D ≥ 0.01 au), we expect magnetic field strengths

ranging from sub-Gauss values to thousands of Gauss. Thus, tidal

dynamos cannot be discarded in tidally deformed radiative stars

with moderate stratification (N0/�s � 2–10).

4.4 Tidally driven dynamos in Vega-like stars?

Vega, with mass M∗ = 2.15 M⊙, radius R∗ = 2.5R⊙, and period

Ps = 0.68 d (Alina et al. 2012; Boehm et al. 2015) has a surface

field strength of order B0 = 0.6 ± 0.3 G (Lignières et al. 2009;

Petit et al. 2010). The fossil field theory predicts a field strength

B0 = 20 G (Braithwaite & Spruit 2017), 20–30 times too strong. To

circumvent this issue, Braithwaite & Cantiello (2012) proposed that

Vega contains a non-equilibrium fossil field undergoing dynamic

evolution. Here, we provide an alternative scenario based on tidal

forcing. Indeed, the recent discovery of starspots on Vega (Boehm

et al. 2015) seem to support the existence of a close-in orbiting

exoplanet. An exoplanet with a mass m = 1.24 MJ, at a distance

D = 0.0165 au from the star, and with an orbital period Porb = 0.53 d

or with a mass m = 0.34 MJ, at distance D = 0.017 au and with orbital

period Porb = 0.56 d would support the astronomical observations

(Boehm et al. 2015). With these parameters, the tidal instability

would grow in a few thousand years for the two possible orbital

configurations and would yield field strengths of B0 ≃ 8 G for the

first planetary configuration or B0 ≃ 1.5 G for the second one,

even though the system is close to synchronization. Although this
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requires a moderate stratification, in the lower range of estimated

values for Vega (1 ≤ N0/�s ≤ 25 according to Rieutord 2006),

the tidal dynamo model is consistent with the observed magnetic

field of Vega. Therefore, Vega-like magnetism could well be due

to tidally driven dynamos in tidally deformed bodies. Moreover,

Petit et al. (2017) suggested that the time dependence of spots at

the surface of Vega would support zonal flows, as we have observed

in our simulations. This might be another hint supporting our tidal

mechanism.

However, the existence of exoplanets around Vega remains con-

troversial. Extended gaps in the debris discs around host stars are

often attributed to tidal perturbations by Hot Jupiter planets. But

within the current observational limits, no such massive planets have

been detected undoubtedly around Vega (Su et al. 2013). Instead,

Zheng et al. (2017) proposed a ‘lone-planet’ scenario to account for

the observed structure with a single eccentric gas giant, with a mass

m = 3MJ and located at the distance D = 75 au. This hypothetical

exoplanet would be too far from Vega to induce strong tidal effects

able to sustain a dynamo field.

4.5 Tidally driven dynamos in Ap/Bp stars?

Apart from weak Vega-like magnetism, we assess whether our

mechanism is relevant to predict the large field strengths of other

possibly tidally deformed magnetic stars, in particular Ap/Bp stars.

Herbig Ae/Be stars, which are the precursors of magnetic Ap/Bp

stars in the PMS phase, host magnetic fields with similar configura-

tions than their MS counterparts (Alecian et al. 2012; Hubrig et al.

2014). Hence, it is believed that MS fields of Ap/Bp stars are already

present at the PMS phase. About 70 per cent of the Herbig Ae/Be

stars appear in binary/multiple systems (Baines et al. 2006), mak-

ing them a priori good candidates for tidal dynamos. For instance,

HD 200775 is known to be a non-synchronized binary system. The

primary has a dipolar field strength of 1000 ± 150 G (Alecian et al.

2008). Yet, the tidal mechanism is unlikely to explain the observed

magnetic field, because its intensity predicted using the character-

istics of the binary system would be too weak from equation (20).

Indeed, the distance D between the star and its companion is too

large to induce strong tidal effects (orbital period of the companion

is Porb = 1412 d and D = 6.7 au).

4.6 Tidal mixing

The relevance of the fossil field model is well established in chem-

ically peculiar A/B stars (e.g. Braithwaite & Spruit 2017), in which

an in situ magnetic generation by tides is not compatible with our

findings. However, it is worth noting that it does not preclude the ex-

istence of the tidal instability within these bodies, in which it could

play a dynamical role (without dynamo action). Indeed, Kama et al.

(2015) suggest that giant planets of mass m ≃ 0.1–10 MJ are hiding

in at least 30 per cent of Herbig Ae/Be discs, possibly inducing

strong tidal effects once on the MS (at least for the closest and most

massive companions). Be stars are rapidly rotating MS B stars,

such as HR 7355 (Oksala et al. 2010; Rivinius et al. 2012) and

HR 5907 (Grunhut et al. 2011). Most massive stars (M∗ ≥ 8 M⊙)

either are binaries (about 75 per cent) or were so at some point in

their evolution (Sana et al. 2012). Binarity is also a common feature

in Be stars (Rivinius et al. 2013). Coupled with their rapid rotation

periods, typically 0.5 d for HR 7355 (Oksala et al. 2010; Rivinius

et al. 2012), the tidal instability could be significant in these binary

systems (if they are not yet synchronized and if their stratification

is not too strong).

5 C O N C L U S I O N

5.1 Summary

We have numerically investigated the non-linear outcome of the

tidal instability and assessed its dynamo capability in stellar ra-

diative zones. We have adopted a simplified global model of the

equilibrium tide in spherical containers. Its simplicity permits high-

resolution numerical simulations using an efficient spectral code

(Schaeffer 2013; Schaeffer et al. 2017).

We confirm that the basic equilibrium tide is prone to the tidal

instability as reported by Cébron et al. (2010b). Furthermore, we

have shown that this tidal instability is immune to a stable stratifi-

cation as long as N0/�s � 1. In non-synchronized bodies, the in-

stability grows on the typical time-scale ǫ−1
∗ /|�s − �orb|, yielding

typically My for a star with a one-day spin period. The tidal instabil-

ity induces non-linear motions, whose typical amplitude scales as

ǫ∗|�s − �orb|R∗ (Barker & Lithwick 2013b; Barker 2016), regard-

less of the stratification strength. These motions can induce radial

mixing leading to self-consistent dynamos.

Time-averaged magnetic fields in our dynamos are mostly dipo-

lar, an essential feature for their possible observations by as-

tronomers. The dipolar field intensity at the surface is a small

fraction δ of the magnetic intensity in the bulk. With our

proof-of-concept simulations, we show that a tidal dynamo is a

possible alternative mechanism to explain stellar magnetism of

hot intermediate-mass and massive stars hosting close-in orbital

companions.

Although motion amplitude being almost independent of the

stratification, dynamo action was not found when the stratifica-

tion is too large. Provided motion amplitude is large enough so

that induction overcomes Ohmic dissipation (Rm � 3000) and as-

suming the transitions between regimes occur at values of N0/�s

independent of the diffusivities, tidally driven dynamos are likely

when N0/�s ≤ 10.

By extrapolating our results, we predict (i) a field strength up to

several Gauss for presumably realistic orbital configurations (de-

pending on the properties of the orbital companion, such as mass,

distance to the host star), (ii) essentially all tidally deformed non-

synchronized stars should have fields of strength at least comparable

to Vega-like fields. Consequently, tidal dynamos in tidally deformed

Vega-like stars could explain their magnetism, provided that they

host a large and close enough companion and that their stratifica-

tion is not too strong (N0/�s � 2–10 according to our simulations).

Note also that all proposed mechanisms (e.g. failed fossil fields or

innermost convective dynamos) are not mutually exclusive and may

be combined to explain the observed fields.

5.2 Perspectives

Our proof-of-concept tidally driven dynamos call for many further

studies, both to expand the surveyed parameter space and to refine

the model. A considerable amount of work remains to be done to im-

prove direct numerical simulations of tidal flows in stellar interiors,

but we already hint at possible astrophysical consequences.

5.2.1 Parameter space exploration

We have not strived to adjust the dimensionless parameters to astro-

physical realistic ones in the simulations. They are out of reach with

the numerical resources currently available. The Reynolds number

in well-mixed stars is expected to be huge and only the large-scale
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components of the flow can be simulated. Consequently, the rela-

tively high viscosity regime considered in our simulations may have

filtered out tidal instabilities of smaller scales than those already

obtained. We however expect that our proof-of-concept simulations

capture the dominant global scales of tidally driven non-linear mo-

tions. We presume them not to be strongly dependent on resolving

much smaller scales, but this is difficult to test numerically. Further

simulations in the low diffusive regime, i.e. Ek → 0, Pr ≪ 1 and

Pm ≪ 1 are of interest, to study the robustness of tidally driven

mixing and dynamo action. In particular, the dynamo capability in

the region 1 < N0/�s < 10 must be studied with lower diffusivities.

Indeed, the higher critical deformation for the onset of instability

(see Appendix) is intriguing and prevents our current simulations

to reliably assess the dynamo action in this range. It would be also

worth to infer reliable scaling laws as diffusivities are lowered,

especially the behaviour of δ with ǫ∗ and Ek.

Stellar interiors have presumably small Prandtl numbers 10−8 ≤
Pr ≪ 1 (e.g. Rieutord 2006). However, we have shown that some

mixing is driven by the tidal instability. Mixed envelopes are often

modelled by the assumption of equal turbulent diffusivities, yielding

Pr � 1 (Zahn 1992). The sensitivity of the growth rate with Pr is

briefly outlined in Appendix at Ek = 10−4. The dependence on Pr

should be better assessed in the future.

5.2.2 Model refinements

Anelastic models of stably stratified stars should be considered to

better take into account buoyancy effects (Zahn et al. 2007; Simitev

& Busse 2017). Note that the baroclinic instability has been ruled out

from our model. Baroclinic instability is believed to occur in stars

(Spruit & Knobloch 1984; Kitchatinov 2013, 2014). Only our basic

state is barotropic, while the motions driven by the tidal instability

are baroclinic. A baroclinic basic state is known to enhance the tidal

instability in the equatorial plane of the star (Kerswell 1993; Le

Bars & Le Dizès 2006). Moreover, baroclinic basic states generate

non-linear motions which are also dynamo capable, as numerically

shown by Simitev & Busse (2017). Consequently, a baroclinic tidal

basic state could be even more dynamo capable and deserves further

studies.

The influence of a more realistic geometry is also of interest.

Indeed, we have assessed the dynamo capability in the simplest

possible geometry of a full container. When a solid inner core is

present, the tidal instability is also triggered in ellipsoidal shells

(Cébron et al. 2012b). It is known that the global pattern of inertial

modes is different in shells (Rieutord & Valdettaro 1997; Dintrans

et al. 1999; Rieutord & Valdettaro 2010; Favier et al. 2014), which

may affect the non-linear outcome of the tidal instability and ul-

timately its dynamo capability. However, first numerical (Cébron

et al. 2010a,b) and experimental studies (Seyed-Mahmoud et al.

2004; Lemasquerier et al. 2017) in shells seem in agreement with

results obtained in full containers.

5.2.3 Possible astrophysical implications

Statistically, it is believed that many magnetic stars host yet to be

observed companions. If the tidal instability is responsible for stel-

lar magnetic fields, then our mechanism provides constraints on the

companion (e.g. mass and distance). Further astronomical obser-

vations should be carried out to clarify this point, by seeking sig-

natures of orbital planetary companions (star–planets interactions)

around magnetic stars or magnetic binaries (star–star interactions).

Addressing the relevance of star–star interactions for magnetism

of hot stars is one of the objectives of the BinaMIcS collaboration

(Mathis et al. 2013; Alecian et al. 2015).

Then, interactions of the tidal instability with imposed fossil

fields need also to be addressed. Even in the low Rm limit, in which

dynamo action does not occur (if Rm ≤ Rmc), the tidal instability

could develop against the stabilizing effect of the magnetic field

in some stars and enhance the Ohmic dissipation of the fossil field

due to the tidal mixing. Indeed, star–star interactions may explain

that the magnetic incidence is much lower in binaries (less than

1.5 per cent) than in isolated stars (around 7 per cent), as for instance

studied by the BinaMIcS collaboration (Alecian et al. 2015, 2017).

Additionally, the time variability induced by the tidal instability

may provide an alternative explanation for the observed temporal

variability of strong fossil fields in Herbig Ae/Be stars, for instance

in HD 190073 (Alecian et al. 2013).

Thus, there is an increasing need for stellar evolution models tak-

ing into account mixing in stellar radiative zones, which are often

assumed to be motionless (Kippenhahn et al. 1990). This assump-

tion is not justified because it does not account for various obser-

vational data (e.g. Pinsonneault 1997). Mixing has a strong impact

on stellar evolution, for instance injecting hydrogen-rich material in

the nuclear core or being responsible for the overabundance of some

chemical elements at the surface of massive stars (e.g. Maeder &

Meynet 2000). Various mechanisms have been proposed to account

for the observed mixing, such as rotational mixing (Zahn 1992,

2008). Inertia-gravity waves could also partially account for the

observed mixing (Press 1981; Garcia Lopez & Spruit 1991; Rogers

et al. 2013). Inertia-gravity waves propagate in magnetic stars (e.g.

Neiner et al. 2012) and can be excited by tidal forcing through

direct resonances (e.g. Dintrans et al. 1999; Mirouh et al. 2016)

or parametric resonances (as studied here). Mixing induced by the

tidal instability has been so far overlooked in the models. However,

we have shown that the tidal instability could lead to mixing in sta-

bly stratified fluids. Future studies should better quantify the tidal

dissipation and mixing efficiency in radiative envelopes to improve

future models of stellar evolution.
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Cébron D., Le Bars M., Maubert P., Le Gal P., 2012a, Geophys. Astrophys.

Fluid Dyn., 106, 524
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Vidal J., Cébron D., 2017, J. Fluid Mech., 833, 469

Weber N., Galindo V., Stefani F., Weier T., 2015, New J. Phys., 17,

113013

Wu C.-C., Roberts P. H., 2009, Geophys. Astrophys. Fluid Dyn., 103,

467

Yadav R. K., Gastine T., Christensen U. R., 2013, Icarus, 225, 185

Yadav R. K., Gastine T., Christensen U. R., Duarte L. D. V., 2013, ApJ, 774,

6

Zahn J.-P., 1966, Ann. Astrophys., 29, 313

Zahn J.-P., 1992, A&A, 265, 115

Zahn J.-P., 2008, in Deng L., Chan K. L., eds, Proc. IAU Symp. 4, The Art

of Modeling Stars in the 21st Century. Kluwer, Dordrecht, p. 47

Zahn J.-P., Brun A. S., Mathis S., 2007, A&A, 474, 145

Zhang K., Chan K. H., Zou J., Liao X., Schubert G., 2003, ApJ, 596,

663

Zheng X., Lin D. N. C., Kouwenhoven M. B. N., Mao S., Zhang X., 2017,

ApJ, 849, 98

MNRAS 475, 4579–4594 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/4/4579/4797183
by University of Leeds user
on 24 April 2018



4594 J. Vidal et al.

A P P E N D I X : W E A K E N I N G O F T H E T I DA L

INSTABILITY W HEN 1 � N0/�s ≤ 2

The energy collapse of non-linear flows in Fig. 2(b), responsible

for the absence of mixing in Fig. 9(b) when 1 ≤ N0/�s ≤ 2, is

due to diffusive effects at the moderately small value Ek = 10−4

and Pr = 1. We performed simulations at Ek = 10−4 and Pr = 0.1,

i.e. for a thermal diffusion 10 times larger than viscous diffusion.

In Fig. A1, we show the normalized growth rate σ/ǫc for varying

N0/�s. When N0/�s � 1 the growth rates for both Pr = 1 and

0.1 are weakly affected and almost insensitive to N0/�s. However

for stronger stratifications, the growth rates are strongly reduced.

When 1.5 ≤ N0/�s ≤ 2, the tidal instability is even lost in simu-

lations at ǫ = 0.2. Thus, the critical ellipticity ǫc above which the

tidal instability is triggered evolves with N0/�s at our moderate

Ekman number. To quantify this effect, we show in Fig. A2 how ǫc

evolves as a function of N0/�s. In the range of interest 1 ≤ N0/�s ≤
2, ǫc quickly increases with N2

0 /�2
s . Hence, non-linear curves in

Figure A1. Normalized growth rate of the tidal instability σ/ǫ for varying

N0/�s. Simulations at Ek = 10−4, ǫ = 0.2, Pr = 1 (circles), and Pr = 0.1

(squares).

Figure A2. Threshold ǫc of the tidal instability for varying N0/�s. Simu-

lations at Ek = 10−4, Pr = 1 (circles), and Pr = 0.1 (squares). To determine

ǫc, we have performed simulations for several ellipticity ǫ. Horizontal axis

is linear between 0 and 1, then it is logarithmic.

Figs 2(b) and 9(b) have not been obtained for a constant super-

criticality ǫ/ǫc. This phenomenon explains why the amplitude of

non-linear flows quickly drops for 1 ≤ N0/�s ≤ 2, because simu-

lations at N0/�s ≤ 1 are about four times critical, while the ones at

1 ≤ N0/�s ≤ 2 are only barely supercritical. Finally, for stronger

stratification (N0/�s ≫ 2), the threshold ǫc decreases back to val-

ues close to the ones without stratification. This is the reason why

we observe the onset of the tidal instability for these stratifications

in Fig. 2. The more N0/�s increases, the more radial motions are

inhibited and become of short wavelength in the linear growth of the

instability and toroidal motions are favoured. The latter motions are

the least diffusively damped flows with stress-free boundary condi-

tions (e.g. Rieutord 2001). Hence, the combined effects of diffusion

and stronger stratification favour toroidal motions and decrease the

threshold of the tidal instability.
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