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I)   Summary  Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with 1 

significant carbon cycle consequences.  We review the state of knowledge regarding MTF tree 2 

mortality, create a conceptual framework with testable hypotheses regarding the drivers, 3 

mechanisms, and interactions that may underlie increasing MTF mortality rates, and identify 4 

next steps for improved understanding and reduced prediction.  Increasing mortality rates are 5 

associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind 6 

events, fire, and possibly CO2 fertilization-induced increases in stand thinning or acceleration of 7 

trees reaching larger, more vulnerable heights.  The majority of these mortality drivers may kill 8 

trees in part through carbon starvation and hydraulic failure.  The relative importance of each 9 

driver is unknown.  High species diversity may buffer MTFs against large-scale mortality events, 10 

but recent and expected trends in mortality drivers give reason for concern regarding increasing 11 

mortality within MTFs.  Models of tropical tree mortality are advancing representation of 12 

hydraulics, carbon, and demography, but require more empirical knowledge regarding the most 13 

common drivers and their subsequent mechanisms.  We outline critical datasets and model 14 

developments required to test hypotheses regarding the underlying causes of increasing MTF 15 

mortality rates, and improve prediction of future mortality under climate change.   16 

17 
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II )  Introduction   18 

Moist tropical forests (MTFs, see Glossary) are the largest terrestrial carbon sink in the 19 

world (Pan et al., 2011) and house the majority of Earth’s terrestrial biodiversity (Myers et al., 20 

2000; Kreft & Jetz, 2007).  The spatial patterns of biomass carbon storage in MTFs are primarily 21 

driven by mortality (see Glossary) rather than productivity (Galbraith et al., 2013; Johnson et al., 22 

2016).  The climatic and ecological benefits of intact MTFs are potentially threatened by 23 

increasing tree mortality due to environmental and biotic changes (Phillips et al., 2009; Lewis et 24 

al., 2011; Davidson et al., 2012; Chambers et al., 2013; Erb et al., 2016).  Valuable tools for 25 

predicting the future of MTF tree mortality are ecosystem and earth-system models (see 26 

Glossary; Seiler et al., 2015; Sperry & Love, 2015; Levine et al., 2016; Xu et al., 2016).  These 27 

“next-generation” models have enabled progress on mortality prediction, yet these advances have 28 

also revealed multiple questions, particularly regarding MTF tree mortality drivers and 29 

mechanisms, that must be addressed to enable accurate prediction (Powell et al., 2013; Thurner 30 

et al., 2017). Improving our understanding and model prediction is challenged in part by the 31 

enormous variability in mortality temporally, regionally, and within sites according to tree size 32 

and other traits (Fig. 1).   33 

Accurate prediction of the global climate warming trajectory is challenged by non- 34 

mechanistic understanding and simulation of future MTF carbon balance as influenced by tree 35 

death (Friedlingstein et al., 2006; Friend et al., 2014). To address this challenge, we describe the 36 

state of knowledge of (non-harvest) MTF tree mortality drivers and their associated 37 

physiological mechanisms, and investigate the likelihood that these drivers will strengthen in the 38 

future.  We use empirical and simulation evidence.  Through this review, we generate a 39 

conceptual framework that provides testable hypotheses regarding the causes, mechanisms, and 40 

interactions associated with increasing mortality rates.  We briefly investigate factors that may 41 

promote survival, and propose a path forward for both empirical and modeling work to better 42 

understand the future of MTF tree mortality.  Our focus is on intact (primary or old-growth) 43 

forests, including aseasonal (wet) and seasonally dry forests, because of their large role in the 44 

global carbon cycle (Pan et al., 2011).  We are focused on intact forests so that we may 45 

investigate if global drivers are associated with mortality, in the absence of direct human 46 

intervention.  We draw an outer boundary to our geographic scope at the dry margin where forest 47 

fires historically occurred.  Our scope includes all evidence available from the MTFs in South 48 
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America, Africa, and Southeast Asia.  We are focused only on mortality; we do not discuss 49 

resilience and recovery rates from mortality events, though these are critical questions relative to 50 

the terrestrial carbon sink.  We use evidence from the extra-tropics when a process appears to be 51 

global in nature (e.g. warming impacts on carbon balance) and when tropical evidence is scarce.  52 

This ultimately allowed hypothesis generation as to the trends in MTF tree mortality drivers and 53 

their mechanisms.   54 

 55 

III)  Increasing mortality rates in the Amazon Basin 56 

Mortality of individual trees within intact, old-growth forests has been rising during 57 

recent decades in the Amazon basin (Fig. 2; see Glossary and Methods S1 for definitions of 58 

mortality rates; unless otherwise specified mortality rate in this manuscript is always defined as 59 

% individuals died per total number of live and dead individuals per year), having a significant 60 

impact on biomass carbon loss (Fig. S1) and net ecosystem carbon storage (Phillips & Gentry, 61 

1994; Phillips et al., 2004; Brienen et al., 2015).  The trends for the Amazon basin are similar 62 

whether plotted as percent mortality rates or biomass mortality (Figs 2, S2).  These results from 63 

100s of plots across the Amazon are consistent with observed pulse-mortality events in SE Asia 64 

(Phillips et al., 2010), and declines in remotely sensed indices (assumed to be correlated with 65 

canopy or whole-tree loss) of canopy biomass post-drought in the Amazon (Saatchi et al., 2013) 66 

and canopy health in the Congo attributed to drought and warming (Zhou et al., 2014). However, 67 

not all tropical forests have exhibited increasing mortality recently (in Panama; Condit et al., 68 

2006; Meakem et al., 2017). The drivers and mechanism(s) underlying this increasing rate of tree 69 

death in some areas (while not in others) are currently unknown (Phillips & Gentry, 1994; 70 

Stephenson et al., 2011; Feldpausch et al., 2016).   71 

At the coarsest level, increasing mortality rates in the Amazon are consistent with 72 

observed forest inventory results from old-growth boreal and temperate forests of North America 73 

(Fig. 2; Luo & Chen, 2015). Direct statistical comparison of the lines for the Amazon and for 74 

North America is precluded by many limitations (see Notes S1 for details), but the similar 75 

general trends for the two regions allows for the possibility of similar drivers and mechanisms 76 

across North and South America.  The Amazon basin has higher mortality rates than North 77 

America (Fig. 2), which may be expected based on the observed correlation between 78 

productivity and turnover at regional (Amazon, Fig. 3, and see alternative versions of Fig. 3 (Fig. 79 
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S3A,B)) and global scales (Phillips & Gentry, 1994; Stephenson & van Mantgem, 2005; Phillips 80 

et al., 2004).  We note that an important question arises from Fig. 2: is the relationship of 81 

mortality rate over time non-linear or linear (our analysis of Brienen et al.’s data shows no 82 

significant difference between linear and non-linear fits (p=0.36; see Notes S1 for statistical 83 

details).  A non-linear pattern is logical because mortality never reaches zero historically, 84 

however, a continued non-linear or exponential relationship is also unsustainable.  Further 85 

discussion of the implications of different statistical fits for Fig. 2 are discussed in the Notes S1.   86 

 87 

IV) Global and regional mortality drivers and mechanisms  88 

 We review mortality drivers that are significant factors in MTFs with the objective of 89 

assessing the likelihood that they could already be increasing mortality rates (Fig. 2), and 90 

ultimately to generate testable hypotheses regarding future mortality rates, their drivers and 91 

associated mechanistic processes (Fig. 4).  We draw upon empirical and simulation evidence of 92 

both historical and likely future trends in mortality drivers to aid in generating hypotheses as to 93 

the drivers of increasing mortality.  In many cases, these expected trajectories are based on 94 

limited data (e.g. from the Neotropics) or inferred from uncertain climate forecasts (e.g. wind 95 

disturbance) and we have attempted to represent this uncertainty for each trajectory in Fig. 4.  96 

We review the evidence supporting and conflicting with Fig. 4 in the following sections, and 97 

include a critical assessment of the data and model limitations.  We cannot rank the importance 98 

of mortality drivers because there is too little evidence (even at single sites).  We focus on 99 

tropical evidence throughout our review; however, some drivers (temperature, VPD, and CO2 in 100 

particular) are all rising globally and thus we also use knowledge from the extra-tropics to fill in 101 

knowledge gaps when appropriate.  While potentially important, nutrient impacts were so poorly 102 

covered in the literature that we relegated that text to the supplemental information (Notes S1). 103 

 104 

IV.I) Global Driver --Temperature and vapor pressure deficit: Temperature is expected to rise 105 

in tropical forests (Figs 4A, 5A–C).  MTFs reside in the warmest latitudes on Earth, thus rising 106 

temperature will push them into a new temperature regime that has no current analog 107 

(Diffenbaugh & Charland, 2016).  Rising temperature and vapor pressure deficit (VPD) are 108 

forcing drivers associated with the multi-decadal increases in tree mortality rates throughout the 109 

Americas (Fig. 2).  VPD rises due to temperature rise (e.g. Trenberth et al., 2014) and due to 110 
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changes in relative humidity (Fig. S4).  There are multiple mechanisms by which rising 111 

temperature could cause rising mortality. First, rising temperature can drive increased respiratory 112 

carbon costs via the dependence of respiration on temperature (Clark et al., 2010) and via high-113 

temperature impacts on photosynthetic metabolism, both exacerbating carbon starvation (see 114 

Glossary; Fig. 4B; Galbraith et al., 2010).  Second, rising temperature also causes elevated VPD 115 

(Trenberth et al., 2014), forcing greater risk of carbon starvation and hydraulic failure (see 116 

Glossary; Fig. 4B) via greater stomatal closure and evaporative demand, respectively (McDowell 117 

& Allen, 2015).  Model analyses suggest the impacts of rising VPD on photosynthesis are 118 

substantially greater than the impacts of rising temperature per se in tropical forests (Lloyd & 119 

Farquhar, 2008).  Rising temperature and VPD can cause a negative carbon balance even at 120 

relatively high soil water availability (Zhao et al., 2013). Rising temperatures and VPD may 121 

promote biotic attacks (Raffa et al., 2008), though this has not been tested in MTFs.  Rising 122 

temperature and VPD is also particularly relevant in the mountainous tropics, where mountain 123 

tops may limit migration (Feeley et al., 2011; Duque et al., 2015), but also because the range of 124 

microhabitats are greater, which could provide refugia under climate change.  Impacts of rising 125 

temperature and VPD on other mechanisms of mortality are described below (see Fig. 4B–E). 126 

 127 

IV.II ) Global-Regional Driver-Drought:  Drought, i.e. precipitation decline that impacts soil 128 

moisture, is arguably the best-studied driver of MTF tree mortality.  Two critical aspects of 129 

drought as a mortality driver are that it episodically occurs everywhere globally, and that the 130 

severity of drought extremes is expected to worsen under future conditions (Trenberth et al., 131 

2014; also see Mitigating Factors section below and Fig. S5 for more details on precipitation 132 

forecasts).  In particularly wet or anoxic soils the drying may benefit growth and survival, but in 133 

many areas this will result in regional increases in mortality (Phillips et al., 2010; Brienen et al., 134 

2015; Doughty et al., 2015; Johnson et al., 2016; Powell et al., 2013; Thurner et al., 2017). 135 

Droughts happen in MTFs particularly during El Niño events (Ropelewski & Halpert, 1987; 136 

Ronchail et al., 2002) and periods of warm North Atlantic sea-surface temperatures (Marengo et 137 

al., 2011). The most consistent predictions of climate in tropical forests suggest increasing total 138 

precipitation (Gloor et al., 2013; Kitoh et al., 2013), but stronger and longer dry seasons over the 139 

next century (Boisier et al., 2015; Duffy et al., 2015; Rauscher et al., 2015; Pascale et al., 2016).  140 

Due to atmospheric warming (and possibly due to lower relative humidity, see Fig. S3), these 141 
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future droughts will include higher so-called baseline temperature and VPD than historically 142 

experienced by MTFs (Trenberth et al., 2014; McDowell & Allen, 2015), which is the primary 143 

driver of the modeled soil drying pan-tropically after 2081 (Fig. 5D–G).  Thus tropical droughts 144 

will be superimposed upon chronically drier soils.  In the Amazon basin, dry season length is 145 

increasing (Fu et al., 2013), and anomalous droughts occurred in 1997, 2005, 2010 (Marengo et 146 

al., 2011), and 2015.  In both drought experiments and in observational datasets, the largest trees 147 

have disproportionately higher mortality rates under drought stress, with associated large impacts 148 

on carbon storage (Nepstad et al., 2007; da Costa et al., 2010; Meir et al., 2015; Bennett et al., 149 

2015; Rowland et al., 2015a; Meakem et al., 2017; Fig. 1B).  Drought has both positive and 150 

negative impacts on the other mortality mechanisms (Fig. 4, see text below). 151 

Drought, temperature, and VPD are expected to kill trees alone or via a combination of 152 

physiological stress and biotic attack (McDowell et al., 2011).  These inter-related mechanisms 153 

occur in part via carbon starvation and hydraulic failure (see Glossary; Fig. 4B). In particular, 154 

sustained periods of severe loss of hydraulic conductivity are a strong predictor of drought 155 

mortality in temperate forests (McDowell et al., 2013; Anderegg et al., 2015a; Sperry & Love, 156 

2015; Adams et al., 2017), with consistent evidence from the tropics (Rowland, 2015a).  157 

Carbohydrate status was a strong predictor of mortality in a study of tropical seedlings, with 158 

higher carbohydrate content leading to more favorable water status and longer survival (O’Brien 159 

et al., 2014).   160 

Moist tropical forests often display paradoxical autotrophic carbon cycle responses to 161 

drought.  Seasonal and interannual droughts cause greater respiratory carbon loss (Metcalfe et 162 

al., 2010), lower leaf-level photosynthesis (Doughty et al., 2014), increases in mortality (Phillips 163 

et al., 2009; Brienen et al., 2015), and reduced regional carbon uptake (Gatti et al., 2014).  164 

Nonetheless, droughts sometimes result in stable growth (Doughty et al., 2015, but see 165 

Feldpausch et al., 2016 for evidence of decreasing growth) in part via increasing canopy 166 

photosynthetic capacity (Clark & Clark, 1994; Graham et al., 2003; Saleska et al., 2007, 2016; 167 

Huete et al., 2006; Brando et al., 2010), flushing of young leaves (Wu et al., 2016), and greater 168 

solar radiation (Guan et al., 2015).  This paradoxical strategy of prioritizing growth during 169 

periods of drought, presumably to compete for light, may accelerate risk of hydraulic failure, 170 

carbon starvation, or vulnerability to biotic attack (Doughty et al., 2015).  Rowland et al. (2015a) 171 

found that both growth and carbohydrate concentrations of trees that survived drought were 172 
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unchanged relative to control trees, suggesting that survival may either depend on maintenance 173 

of a positive carbon balance, or vice versa, mortality of surrounding trees promotes higher 174 

carbon balance in those that survive.   Because carbon starvation and hydraulic failure can be 175 

induced or exacerbated by myriad drivers, including increases in these processes after fire (Bar et 176 

al., 2017), biotic attack (McDowell et al., 2011), and defoliation and shading (Kobe et al., 1997), 177 

we hypothesize that carbon starvation and/or hydraulic failure may underlie the mortality 178 

resulting from many of the drivers (Fig. 4A–E; see hypotheses descriptions below).  179 

IV.III) Global Driver--Carbon Dioxide: Like rising temperature, VPD, and possibly drought,  180 

atmospheric CO2 is rising globally and thus is a candidate driver of the observed increasing 181 

mortality rates throughout the America’s (Fig. 2).  But how could rising CO2 cause elevated 182 

mortality rates, when it promotes increased water-use efficiency (Lloyd & Farquhar, 2008) and 183 

growth?  At least two candidate explanations exist.  First, at the stand level, rising CO2 may drive 184 

elevated mortality through enhanced growth, which accelerates successional dynamics by 185 

driving faster thinning via increased competition for resources (light, water, nutrients).  In such a 186 

case, the suppressed trees that die experience carbon starvation, hydraulic failure, or biotic attack 187 

due to reduced light, water, and nutrients due to increased competition (i.e. the interdependent 188 

processes across panels in Fig. 4A, B, D, E).  Second, rising CO2 may allow greater growth per 189 

individual, thus accelerating the speed at which trees reach large heights, and therefore the rate at 190 

which they experience the increased risks of lightning, windthrow, dry-upper canopy 191 

environments, and the physiological impacts associated with large size (Nepstad et al., 2007; 192 

Bennett et al., 2015; Rowland et al., 2015a).  The hypothesis that rising CO2 may partially drive 193 

increasing mortality rates is consistent with 1) the observed mortality rate increase (Fig. 2), 2) 194 

the relationship between mortality rate and productivity (Fig. 3), 3) the relationship between 195 

mortality and stand density (Lugo & Scatena, 1996), 4) the lag between increases in productivity 196 

(first) and then mortality (second) in Amazonia (Brienen et al., 2015), 5) with observed increases 197 

in recruitment in Amazonia (Phillips et al., 2004), and 6) the consistent observation that drought-198 

CO2 studies find little benefit of CO2 upon survival (reviewed in Allen et al., 2015, but see Liu et 199 

al., 2017 for a contrasting model-based result).  For these mechanisms to be driving increased 200 

mortality, they also must be driving faster stand-level growth but this has only been shown 201 

unambiguously for the Amazon basin thus far (Brienen et al., 2015); we lack such tests for 202 

African and Asian forests.  This idea is not new (Phillips et al., 2004; Stephenson & van 203 
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Mantgem, 2005; Stephenson et al., 2011), but could be an important driver of increased mortality 204 

and thus merits further study.   205 

If either CO2 (via the enhanced-productivity mechanism), temperature, or VPD drive 206 

mortality, then we can expect mortality rates to continue increasing as these drivers are expected 207 

to continue rising (IPCC, 2014).  The remaining mortality drivers discussed below are less 208 

certain at the global scale, but evidence exists for them at regional scales. 209 

 210 

IV.IV ) Regional Driver--Lianas: Lianas (woody vines) are much more common in tropical 211 

forests than in temperate or boreal forests (Schnitzer, 2005).  Lianas reduce productivity and 212 

increase mortality of host trees (Fig. 1F; Ingwell et al., 2010; van der Heijden et al., 2015, 213 

Wright et al., 2015).  The total contribution of lianas to tropical tree mortality is difficult to 214 

estimate because of wide variation in liana abundance among tropical forests, the relatively small 215 

number of studies that have quantified liana influences on tree mortality, differences among 216 

studies that make direct comparisons difficult, and the inherent difficulties of quantifying the full 217 

impact of lianas on tree mortality. However, Wright et al. (2015) found that 64% of studies had 218 

shown liana abundance to be increasing (also see Phillips et al., 2002; Schnitzer & Bongers, 219 

2011).  Lianas outcompete host trees for resources such as light, water, and nutrients (Johnson et 220 

al., 2013), thus they potentially promote both carbon starvation and hydraulic failure of host 221 

trees.  Furthermore, lianas break limbs and expose fresh wounds for infection by biotic agents.  222 

Thus interdependent mechanisms between liana invasion, carbon starvation (e.g. shading), 223 

hydraulic failure (e.g. reduced water availability), and biotic agent attack are likely (interactions 224 

in Fig. 4B–E).  Lianas may also increase mortality rates of neighboring uninfested trees, insofar 225 

as they increase the rates of treefalls – which can be lethal to smaller neighbors – while 226 

competing belowground for water and nutrients (Johnson et al., 2013).  Liana abundance tends to 227 

increase with dry season length, land use change, and with increasing CO2 (DeWalt et al., 2015; 228 

Granados & Körner, 2002; Schnitzer, 2014) and thus is expected to increase in the future (Fig. 229 

4C).    230 

 231 

IV.V ) Regional Driver-Fire: Although fires in MTFs are influenced by anthropogenic ignitions, 232 

there is a significant role played by climate through drying and increasing fuels (Cochrane, 2003; 233 

Nepstad et al., 2004; Slik et al., 2010; Brando et al., 2014). Droughts increase MTF flammability 234 
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by reducing understory air and fuel moisture (Ray et al., 2010) and increasing fuel accumulation 235 

from litterfall and mortality (Ray et al., 2005). As a result, forest fires occurring in tropical 236 

forests during drought years tend to be larger (Silvestrini et al., 2011; Alencar et al., 2015), more 237 

intense, and kill more trees than the ones occurring in non-drought years (Brando et al., 2014).  238 

Several lines of evidence suggest that fire seasons in tropical forests have increased over the past 239 

few decades (Jolly et al., 2015) resulting in larger (Cochrane & Barber, 2009) and more frequent 240 

fires (Alencar et al., 2015). MTF species have few adaptations to resist fires (Barlow et al., 2003; 241 

Brando et al., 2012), resulting in even low-intensity understory fires killing a high proportion of 242 

the forest community (Barlow et al., 2003; Cochrane & Barber, 2009; Slik et al., 2010). 243 

Estimates of fire-induced tree mortality rates range from 5% yr-1 to 90% yr-1 (Barlow et al., 244 

2003; Balch et al., 2015; Brando et al., 2016). It is likely that rising temperatures and climate 245 

extremes and decreasing surface water content (Fig. 5) are increasing forest flammability (Chen 246 

et al., 2011).  Clear linkages between hydraulic failure and post-fire mortality are now 247 

established (Bar et al., 2017) suggesting again that interactions across mechanisms (in this case 248 

hydraulic failure and fire) are likely (Fig. 4B,C). 249 

 250 

IV.VI ) Regional Driver--Wind: Wind  Convective storms, hurricanes, and typhoons that 251 

generate high winds, water logging, and lightning cause tree mortality from individual wind-252 

thrown trees to large blowdown patches (Lugo & Scatena, 1996; Chao et al., 2009; Chambers et 253 

al., 2013; Marra et al., 2014). Treefall clusters ranging from individual treefalls to <10 trees per 254 

gap represented more than 90% of wind-driven mortality for a Central Amazon landscape 255 

(Chambers et al., 2013; consistent with Espirito-Santo, 2014a, b).  Hurricanes and typhoons also 256 

damage forests in coastal and island forests, though these forests are adapted to these events and 257 

tend to shed leaves and even branches without complete mortality during wind events 258 

(Zimmerman et al., 1994; Yap et al., 2016).  Storms are associated in some cases with 259 

waterlogging, which promote trees tipping over.  Storm-associated lightning also kills trees and 260 

damages tree crowns (Magnusson et al., 1996; Yanoviak et al., 2015), but has been little studied 261 

in MTFs even though lightning frequencies are higher in the tropics (Christian et al., 2003).  No 262 

study has yet determined if wind-associated mortality has a latitudinal trend at the global scale, 263 

though there is a latitudinal trend in average wind speed, average wind speed declines towards 264 

the tropics (http://globalwindatlas.com/datasets.html) and equatorial regions (≤10 degrees from 265 
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the equator) rarely experience hurricanes/typhoons.  Extreme storm events are expected to 266 

become stronger and more frequent with climate warming (Emanuel, 2013; IPCC, 2014, see Fig. 267 

S6) with warming-driven increases in atmospheric latent heat, indicating a shift toward more 268 

intense wind disturbance regimes in MTFs (Fig. 4D).   269 

 270 

IV.VII ) Regional Driver-Biotic agents: Pathogens, insects, and other biotic agents contribute to 271 

tree mortality (Coley & Barone, 1996) and play a strong role in structuring tropical forests 272 

(Mangan et al., 2010; Coley & Kursar, 2014).  While only rarely studied, heart rot is associated 273 

with >50% of stems in a forest in Borneo, and may be strongly associated with susceptibility to 274 

wind events that cause loss of branches, stem breakage, or windthrow (Heineman et al., 2015).  275 

Far less is known about tropical outbreaks of biotic agents than temperate outbreaks leading to 276 

unclear expectations of their response to future climate (Fig. 4D), due in part to the great 277 

diversity of species that kill trees (Dyer et al., 2012) and the historic focus on defoliators that 278 

often do not kill trees (Anderegg et al., 2015b).  However, attack by insects was greater in a 279 

drought experiment in the Amazon (Brando et al., 2006) and tends to follow droughts (Anderegg 280 

et al., 2015b).  Biotic agents often cause widespread tree mortality events in the temperate and 281 

boreal zones (Kautz et al., 2017), but die-offs of the magnitude observed in low-diversity forests 282 

(Breshears et al., 2005) have not been observed in tropical forests.  The largest mortality rates 283 

observed in moist tropical forests rarely exceed 5% (Fig. S1), whereas mortality events 284 

exceeding 90% of individuals lost have occurred in the extratropics (Breshears et al., 2005), 285 

generally the result of a drought-facilitated insect (e.g. bark beetle) outbreak upon single or 286 

multiple species.  The relatively low rates of mortality in MTFs (compared to the extra-tropics) 287 

may be due to the high species diversity and the relatively high specificity of biotic agent-host 288 

tree relationships, coupled to the asynchronous timing of outbreaks of biotic agents (Dyer et al., 289 

2007; Coley & Kursar, 2014).  Alternatively, the rate of biotic-attack driven mortality may be 290 

higher but less detectable in the tropics than in the extra-tropics.  Thus while biotic agents are 291 

clearly important mortality drivers in MTFs, their historical or expected future trends in attack 292 

rates are poorly constrained (Fig. 4D).    293 

 294 

IV.V III ) Regional Driver--Shading: Shading in light-limited MTFs is an expected driver of 295 

mortality (Wright et al., 2010; Ruger et al., 2011) and has been associated with carbon starvation 296 
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in four species of angiosperms (Kobe, 1997).  The dichotomy between the low light environment 297 

and the high light environment when gaps form has had a distinct impact on evolutionary 298 

strategy of species (Richards, 1952).  Slow-growing, shade-tolerant trees tend to live longer than 299 

fast-growing, shade-intolerant trees (Condit et al., 1995; Wright et al., 2010; Fig. 1D).  Shading 300 

is presumed to be the dominant driver of the high mortality rates of seedlings and understory 301 

plants (Fig. 1A, Panama example), however the mechanisms of the interactions between shade, 302 

herbivory, biotic agents, and the physiological mechanisms of carbon starvation and hydraulic 303 

failure (O’Brien et al., 2014) within the ultimate mortality process is poorly known.  Solar 304 

radiation is expected to increase in much of the tropics (Collins et al., 2013), and rising 305 

temperature and VPD would act to further reduce shading by inducing mortality (or lower leaf 306 

area) of competing vegetation.  In contrast, the competitive dynamics that drive mortality via 307 

shading may be speeding up due to CO2 induced increased productivity (Brienen et al., 2015) 308 

and higher leaf area.  Thus, there is large uncertainty in the trajectory of shading in the future 309 

(Fig. 4E).   310 

IV.IX ) Summary – mortality drivers 311 

In summary, amongst the identified mortality drivers in tropical forests, most appear to 312 

be increasing in potential or frequency, thus there is reasonable evidence to conclude that risks to 313 

continued increases in tree mortality within moist-tropical forests are likely.  Temperature, VPD, 314 

fire, wind, biotic agents, lianas, and potentially CO2-induced thinning and accelerated height 315 

growth (Fig. 3) may all possibly increase under future climate change (Fig. 4).  However, the 316 

lack of knowledge of the relative impacts and interactions of each process on MTF tree 317 

mortality, and inadequate evidence of their trajectories (particularly for competition) make 318 

determination of the relative causes of rising mortality rates (Fig. 2) a challenge both historically 319 

and in the future.   320 

 321 

V)  On the coupling of mortality drivers and mechanisms 322 

 Mortality drivers and mortality mechanisms (see Glossary for definitions) are coupled 323 

through a chain of events, starting from an initial forcing variable that promotes an increase in a 324 

mortality driver (e.g. rising CO2 forces rising temperature), and the mortality driver subsequently 325 

impacting plants via structural (e.g. windthrow) or physiological mechanisms (e.g. liana-shading 326 
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reducing photosynthesis; Fig. 4).  Understanding these linkages is valuable both from a 327 

fundamental knowledge perspective and for advancing mechanistic-mortality simulation within 328 

newer ESMs.  We previously explained the linkage between carbon starvation, hydraulic failure, 329 

and temperature, VPD and drought, and now hypothesize on how these mechanisms are tied to 330 

the other mortality drivers (Fig. 4). 331 

 Fires and wind-events can destroy entire trees via simple structural breakage.  For the 332 

other mortality drivers, we propose that drivers kill trees via the mechanisms of carbon starvation 333 

(and phloem failure) and hydraulic failure (see Glossary for definitions).  Carbon starvation 334 

should be promoted by increased shade from neighboring trees or lianas, and can be further 335 

exacerbated if liana’s girdle the phloem.  Defoliation from wind and insects promotes carbon 336 

starvation if sufficient canopy is removed, though such disturbances may need to be repeated in 337 

high frequency to sufficiently deplete stored carbohydrates (Wurth & Korner, 2005).  Biotic 338 

agents may successfully invade trees that have low carbohydrates from the carbon starvation 339 

process and low sap pressure (Lorio & Hodges, 1968).  Hydraulic failure may be promoted by 340 

increased competition for soil water such as from lianas, and fire promotes hydraulic failure in 341 

partially burned trees (Michaletz et al., 2012) thus resulting in greater death than the consumed 342 

stems alone.  The carbon starvation and hydraulic failure framework has had a growing impact 343 

on ESMs (Fisher et al., 2010, 2015; McDowell et al., 2013) because it is logical and consistent 344 

with available data, however, extending it (including validation) to include the interactions with 345 

lianas, wind, fire, shade, and other drivers has yet to be attempted.  Whether representing carbon 346 

starvation and hydraulic failure associated with the myriad mortality drivers will improve model 347 

predictions over simpler empirical functions is an emergent question as we begin to uncover 348 

mechanisms. 349 

 350 

VI ) Mitigating factors that may promote future survival  351 

There are potential mitigating factors that may promote survival of trees in MTFs that 352 

should be considered.  The three most obvious mitigating factors are species diversity (Poorter et 353 

al., 2015), rising CO2 impacts on carbon and water relations (Keenan et al., 2016), and the 354 

potential of increasing mean annual precipitation (Fig. S5).   355 

Higher species richness and hence physiological traits are expected to reduce 356 

vulnerability to large-scale mortality events (Mori et al., 2013).  Empirical data from tropical 357 
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forests suggests higher diversity does beget greater resistance to drought in terms of individual 358 

mortality rates (Williamson et al., 2000; Fauset et al., 2012) and sometimes carbon storage 359 

(Poorter et al., 2015, but see Sullivan et al., 2017).  The mechanisms by which diversity 360 

promotes resistance (ability to withstand change) and resilience (ability to recover) are thought to 361 

lie in the greater capacity of the forest community to tolerate new conditions due to a wider 362 

range of traits that enable survival (e.g. hydraulic traits that promote drought tolerance; 363 

Christoffersen et al., 2016; Powell et al., 2017).  Evidence on the role of diversity in global 364 

patterns of mortality comes from comparison of rates of drought-induced death in the moist 365 

tropics, where mortality rates (on an individual basis) are rarely above 5% in inventory plots 366 

even after droughts (Fig. S1B) and only up to 15% in drought experiments (Nepstad et al., 2007, 367 

Rowland et al., 2015a), versus the temperate zone where mortality rates can exceed >90% 368 

(Breshears et al., 2005; Plaut et al., 2012).   369 

As reviewed earlier, elevated CO2 benefits water-use efficiency (Ehlringer & Cerling, 370 

1995; Lloyd & Farquahar, 2008), but the degree to which this results in changed growth at the 371 

individual tree level remains disputed (van der Sleen et al., 2015; Brienen et al., 2016).  372 

Enhanced growth should result in less risk of mortality of the trees that are rapidly growing 373 

(Chao et al., 2008), as should enhanced water-use efficiency through reducing the risk of both 374 

hydraulic failure and carbon starvation.  However, CO2 manipulation studies that imposed 375 

drought and killed trees rarely found any effect of CO2 on survival (all greenhouse studies; 376 

reviewed in Allen et al., 2015).  It remains a large question what the impact of CO2 is on moist-377 

tropical tree mortality and this introduces uncertainty into the associated drivers (Fig. 4). 378 

Increasing mean annual precipitation may occur in some tropical regions (Fig. S5).  This 379 

would act to only partially buffer the large increase in evaporative demand due to temperature 380 

(Fig. 5A), which results in significant reductions in soil moisture (Fig. 5B) based on the 381 

Coupled-Model Intercomparison Study (CMIP5, Collins et al., 2013).  As reviewed earlier, the 382 

occurrence of droughts that are warmer than previously will increase, thus their impact will be 383 

more severe (Trenberth et al., 2014).  There is some prediction of shifts to longer drought lengths 384 

(Boisier et al., 2015; Duffy et al., 2015, Rauscher et al., 2015, Pascale et al., 2016).  Note that 385 

increasing precipitation, when it does occur, also results in greater shade, more soil anoxia, and 386 

greater windthrow, so it is unclear what the net benefit of increasing precipitation, if it occurs, 387 

will be on survival of moist-tropical forest trees. 388 



 17 

   389 

VI I ) The state of ESM simulations of moist tropical tree mortality 390 

ESM’s are the required tool to predict moist-tropical tree mortality pan-tropically.  391 

However, many ESM processes, including those relevant to mortality, draw upon ecosystem- 392 

and individual-plant scale models in part because they provide mechanistic simulation 393 

capabilities at appropriate scales (e.g. the individual plant).  As discussed above, while there is 394 

evidence of increasing likelihood of mortality drivers, we still need substantially more data on 395 

these processes in order to understand them sufficiently to model them.  As a result, many of the 396 

mortality drivers and mechanisms discussed here (Figs 1–4) are not represented in ESMs, and 397 

thus accurate simulation of the future mortality-related carbon flux requires process 398 

development.  Before discussing the next steps in empirical and model developments, we briefly 399 

review the state of ESM simulations of mortality in moist-tropical forests.   400 

Most tropical ESM projections highlight the interaction between the fertilization impacts 401 

of rising CO2 and the deleterious impacts of increasing drought and heat stress (Cox et al., 2004; 402 

Huntingford et al., 2008; Fisher et al., 2010; Rowland et al.,  2015b). However, many earlier-403 

generation ESMs simply assume a fixed mortality rate (often called background mortality, see 404 

Glossary), leading to a growth-only driven estimate of forest carbon fluxes and stocks (i.e. they 405 

cannot capture the trends in Fig. 2; de Almeida Castanho et al., 2016; Johnson et al., 2016; see 406 

Table 1 within McDowell et al., 2011 for a brief summary of mortality mechanisms in ESMs).  407 

This is a significant problem because ESMs must simulate mortality sufficiently well to properly 408 

predict ecosystem biomass (Galbraith et al., 2013; Johnson et al., 2016), particularly if mortality 409 

drivers are changing (Fig. 4).    410 

Among the newer generation of ESMs, two representations of mortality are common.  411 

The first is shifting from one plant functional type (PFT) to another (representative of mortality 412 

and regeneration by a new type) based on climate envelopes (Sitch et al., 2003).  The second is 413 

the use of constant biomass residence times (see Kucharik et al., 2006), which is tantamount to 414 

assuming “senescence” mortality, in which a genetically predisposed age threshold is used.  Both 415 

of these approaches risk over-simplification.  Climate envelopes do not capture spatial variability 416 

such as with different climates, species, or topography, and may not be realistic in a future, 417 

warmer, higher CO2 world.  Age-driven mortality, while it may capture the statistical odds of 418 
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dying from pathogen infestation, wind, or lightning, is not mechanistically representative 419 

(Mencuccini et al., 2005) and may thus also fail under a novel climate.   420 

A more sophisticated yet common approach to simulate tree mortality in ESMs is the use 421 

of growth efficiency, in which a PFT is replaced if its stemwood growth per individual leaf area 422 

is below a threshold (McDowell et al., 2011).  The low growth-efficiency approach is 423 

mechanistic and supported because trees that die tend to grow more slowly (per unit leaf area) 424 

than those that live (Chao et al., 2008; McDowell et al., 2008; Cailleret et al., 2016) and because 425 

growth is intimately tied to carbon starvation (McDowell, 2011).  Furthermore, the growth-426 

efficiency approach responds to most if not all climate drivers that limit growth, including CO2, 427 

light limitation, drought, and VPD.  Next-generation approaches that are under current or 428 

planned development, as well as new ideas on ESM developments that have not yet been 429 

attempted, are discussed in the ensuing sections on specific ESM development needs.   430 

 431 

VIII ) Next steps 432 

There are numerous hypotheses regarding the possibility of increasing future MTF 433 

mortality rates (e.g. continuation of trends in Fig. 2) that revolve around the dependence of 434 

mortality process changes, and subsequent mortality rate changes, on chronic or punctuated 435 

changes in mortality drivers (Fig. 4).  We outline our highest level hypotheses here: 436 

1) MTF mortality rates are increasing linearly and will continue under projected climate 437 

change (Fig. 2);  438 

2) mechanisms of mortality e.g. lianas, fire, biotic agents, wind, competition, and shade, 439 

are increasing 440 

3) with the exception of death from direct physical destruction (e.g. windthrow or 441 

intense fire), mortality involve a cascade of impacts from driver (Fig. 4A) through a 442 

mechanism (Fig. 4C–E) to a physiological death process (Fig. 4B);  443 

4) uncertainty can be reduced through quantifying the primary mechanisms and 444 

processes underlying rising mortality rates in MTFs. 445 

Many sub-hypotheses have been previously outlined and will be expanded upon below, but all 446 

revolve around the trajectories and interactions between expected drivers, their mechanisms, and 447 

physiological end points (Fig. 4). 448 

 449 
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VIII.I ) Observations: We do not know the relative importance of the various drivers of MTF 450 

mortality (Figs 1–4) nor do we have sufficient confidence in the trajectory of these mortality 451 

drivers in the future to make rigorous predictions (Fig. 4).  Quantifying the various mortality 452 

mechanisms in MTFs is limited by a scarcity of temporal and spatial data sufficient to overcome 453 

the high signal-to-noise ratio inherent in field observations of plant mortality.  Long-term and 454 

high-temporal frequency observations (e.g. annual) at the plot-level are essential to reveal the 455 

long-term spatial and temporal patterns of mortality in relation to climate dynamics.  Plot 456 

networks, although challenging to run, are arguably the lowest cost, highest impact investment 457 

one could make to refine the uncertainty in moist-tropical mortality drivers.  Plot networks 458 

provide information regarding the dynamics of growth and death in response to droughts (Condit 459 

et al., 1995; Phillips et al., 2009; Brienen et al., 2015; Anderson-Teixeira et al., 2015), and with 460 

appropriate measurements, they can unveil mechanisms driving mortality (Doughty et al., 2015).  461 

A relatively low-cost addition to inventory networks could be assessment of the “modes” of 462 

death (snapped, died standing, windthrow, presence of rot, etc), determination fraction of crown 463 

shaded (by neighbors or lianas), and dendrometer measurements prior to death.  Plot-level work 464 

can in some cases include tree rings, even for tropical trees (Schöngart et al., 2006; van der Sleen 465 

et al., 2015; Brienen et al., 2016), which can provide proxy measurements of physiology 466 

proceeding death (Gaylord et al., 2015).  Similarly, remotely-sensed data provide unparalleled 467 

spatial coverage of drought impacts, such as the long-term decline in canopy health associated 468 

with declining precipitation and increasing temperature in the Congo Basin (Zhou et al., 2014) 469 

and the sustained loss of biomass observed post-drought in the Amazon (Saatchi et al., 2013).  A 470 

key step is validation of remote sensing estimates of mortality against ground-based data such as 471 

mortality rates, leaf area, canopy height, and canopy biomass and correlations of remotely sensed 472 

indices of dying and surviving trees at the crown scales e.g. using high-resolution (<10 m) 473 

satellite products now available (McDowell et al., 2015).   474 

 475 

VIII.II ) Experiments: Cause-and-effect experiments that manipulate mortality drivers (Meir et 476 

al., 2015; van der Heijden et al., 2015) are valuable because they can reveal the mechanisms 477 

underlying mortality, and can be employed for model evaluation under novel climate conditions.  478 

The few moist tropical drought experiments (Nepstad et al., 2007; Moser et al., 2014; Rowland 479 

et al., 2015a; Meir et al., 2015), cannot be representative of the diverse MTFs and thus 480 
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experiments replicated across a broad range of soils, topographic relief, and proximity to 481 

groundwater (Nobre et al., 2011) are needed.  Replication of such experiments across a wider 482 

range of sites in the moist-tropics could be achieved economically if  the measurement intensity 483 

was low.  However, in addition to replication, some of the next generation experiments must 484 

address the multi-factorial climate changes expected in the future e.g. low precipitation and 485 

elevated CO2 or rising temperature (and associated rising VPD), and should push drought to 486 

extreme levels to understand acute impacts and threshold responses (Knapp et al., 2016) 487 

including mortality.  Otherwise, such experiments manipulate only one of the many variables 488 

that are changing, and thus determining the net effects under future climate scenarios is 489 

challenged. Multi-factorial and replicated experiments have not been conducted in mature 490 

tropical forests for financial, technical, and logistical reasons.  The most challenging aspects of 491 

manipulative experiments are their inability to control all environmental conditions, and their 492 

minimal replication relative to the hyper-diversity of tree species in MTFs.   493 

VIII.I II ) ESM Demographics:  To allow simulation of competition, shading, lianas, and size-494 

dependence of mortality as they may change over time (Fig. 4), ESMs should represent 495 

demographic heterogeneity in vegetation (horizontal and vertical size variation, Moorcroft et al., 496 

2001; Fisher et al., 2015; Levine et al., 2016). Big-leaf (no demography) model simulations 497 

predict trees fail to die (Powell et al., 2013) or die more often and faster than is observed 498 

(Galbraith et al., 2010; Poulter et al., 2010), whereas the addition of demographic variation in 499 

size and environment results in more realistic, gradual mortality (Powell et al., 2013; Levine et 500 

al., 2016).  Simulating demography allows more realistic spatial heterogeneity in resource 501 

capture and loss and thus better simulations of mortality against observations, for example, 502 

prediction of taller trees dying in a drought experiment (Longo, 2013).   503 

 504 

VI II.IV ) ESM drought, temperature, VPD and CO2: Given that mortality is downstream of the 505 

majority of other physiological processes (assimilation, respiration, allocation), predictions are 506 

sensitive to assumptions about photosynthesis, respiration, carbon allocation, and carbon storage 507 

(Fisher et al., 2010), all of which are heavily influenced by plant hydraulics (Christoffersen et 508 

al., 2016; see text below on hydraulic modeling limitations and developments) and so predictions 509 

tend to be extremely divergent among models (Galbraith et al., 2010; Huntingford et al., 2013).  510 

To improve accuracy under non-linear changes (and complex interactions) of future drought, 511 
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temperature, VPD, CO2, and hopefully someday wind, fire, and lianas, next-generation models 512 

are now including more realism such as carbon starvation and hydraulic failure (Fisher et al., 513 

2010, 2015; McDowell et al., 2013; Sperry et al., 2016; Xu et al., 2016), though evaluation in 514 

MTFs is needed.  Simulating these mortality mechanisms requires representing water transport, 515 

xylem embolism, photosynthesis, and carbon storage accurately.   516 

Inclusion of plant hydraulics allows more realistic simulation of mortality (McDowell et 517 

al., 2013; Anderegg et al., 2015a) and photosynthesis (Bonan et al., 2014).  Thus simulating 518 

plant hydraulics allows more accurate representation of both the risk of hydraulic failure and the 519 

likelihood of carbon starvation under changing climate, and of the interactions of these processes 520 

with external drivers such as lianas, shading, biotic agents, wind, and climate.  Most land 521 

components of ESMs model plant response to drought as a function of the vertical profile of 522 

prescribed fine root biomass (‘root fraction’ in models) and soil moisture, and collapse these two 523 

profiles into a single non-dimensional (‘beta’) multiplier [0,1] that is applied to Ball-Berry 524 

stomatal parameters or to carbon assimilation (Sitch et al., 2003; Krinner et al., 2005; Kucharik 525 

et al., 2006; Oleson et al., 2010). Three main reasons exist why this approach is insufficient for 526 

modeling tropical forest hydraulic and subsequent carbon assimilation responses to reductions in 527 

moisture.  First, these models poorly capture observed experimentally-induced patterns of 528 

mortality (Powell et al., 2013; Joetzjer et al., 2014) in contrast to site-specific models that 529 

include plant hydraulics (Williams et al., 1998; Fisher et al., 2006, 2007).  This model-530 

observation mismatch is due in part to the ‘beta’ approach: because all trees’ drought response is 531 

considered equivalent and shares the same threshold response, causing an all-or-nothing response 532 

to drought. Second, current approaches lack the ability to model a well-documented negative 533 

interactive effect of soil moisture and VPD (Sperry & Love, 2015; Sperry et al., 2016), which 534 

plays an important role in regulating tree response to typical droughts.  Finally, a wealth of 535 

knowledge regarding plant hydraulic traits that govern how tropical trees transport and use water 536 

under a range of moisture conditions has been synthesized in multiple databases that quantify 537 

inter- and intra-specific variation (Bartlett et al., 2012, 2014, 2016; Choat et al., 2012; Gleason et 538 

al., 2016; Christoffersen et al., 2016; Wolfe et al., 2016).  While the typical argument against 539 

increasing model process complexity usually states that a host of unknown parameters are 540 

introduced, the case of plant hydraulics represents the opposite: parameter central tendencies, 541 

ranges, and variances are already known but most current model structures are incapable of 542 
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exploiting this information.  Inclusion of biophysically-based representations of water 543 

acquisition, transport, and use holds great promise for increasing the realism of tropical forest 544 

drought and mortality responses (see an example approach for future ESM hydraulic 545 

development in Notes S2). 546 

Carbon starvation is sensitive to shade, temperature, VPD, and CO2 (Fig. 4; reviewed by 547 

McDowell et al., 2011) among other factors.  In practice, carbon starvation mortality is simulated 548 

as a response to nonstructural carbohydrate stores; i.e., trees die when nonstructural carbohydrate 549 

stores reach zero (Weng et al., 2015), or when carbon storage is less than leaf biomass carbon 550 

(Fisher et al., 2010), though these thresholds are arbitrary and more work is required to 551 

determine if a universal threshold exists under field conditions (Adams et al., 2017). The 552 

accuracy of carbohydrate simulations can be high (e.g. McDowell et al., 2013), but observations 553 

of carbohydrate content at death are required to tune models to simulate mortality via carbon 554 

starvation, because the carbohydrate concentrations at death are variable (Adams et al., 2017) 555 

and because carbohydrate results vary between labs/studies (Quentin et al., 2015).  Furthermore, 556 

the role of carbon in mortality remains in question, therefore carbon starvation by itself may not 557 

be the appropriate mechanism to simulate tree death (Rowland et al., 2015a), but rather an 558 

interdependency of carbon starvation and hydraulic failure, and linkages to phloem failure may 559 

be required to improve model simulations during drought or under low light (O’Brien et al., 560 

2014; Sevanto et al., 2014; Mencuccini et al., 2015; Adams et al., 2017).   561 

 562 

VI II.V ) ESM trait-based modeling in the diverse moist tropics: Modeling the myriad set of 563 

mortality drivers and mechanisms (Fig. 4) is challenging as it requires identification and 564 

incorporation of the trade-off and coordination among different traits targeted for different 565 

survival strategies (Fisher et al., 2015). This is a particularly important issue in the particularly 566 

diverse tropics, where the variety of species and thus traits are greatest, but are represented by 567 

only a limited number of PFTs used to model MTFs i.e. evergreen vs. deciduous trees.  Next 568 

generation models are moving towards becoming trait-enabled such that trait-trade-offs facilitate 569 

simulation of diversity impacts on carbon and water balance of forests (Sakschewski et al., 570 

2016).  Data to parameterize these models is becoming available at the global scale, with 571 

discovery of quantitative relationships among plant traits (Wright et al., 2004; Christoffersen et 572 

al., 2016), the inter- and intra-specific and biogeographical components to their variation 573 
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(Anderegg, 2015c), the number of independent axes of trait variation in forest communities 574 

(Wright et al., 2007; Baraloto et al., 2010; Reich, 2014), and relationships of plant traits to tree 575 

mortality (Wright et al., 2010).  For example, many parameters required for simulating plant 576 

hydraulics (such as pressure-volume relationships) can be estimated from traits such as wood 577 

density (Christoffersen et al., 2016).  This understanding informs us how models can 578 

represent new and flexible PFT definitions (Pavlick et al., 2013; Verheijen et al., 2013; Harper et 579 

al., 2016; Powell et al., 2017), which is a critical prerequisite for developing modeling capability 580 

to represent ecological sorting mediated by plant traits (i.e., trait-mediated environmental 581 

filtering sensu Sommer et al., 2014).  It is important for next-generation ESMs to predict shifts in 582 

trait distributions through time (Scheiter et al., 2013) because of mounting evidence showing that 583 

key aspects of ecosystem-level properties (e.g., C storage, overall resiliency) depend on the 584 

functional community composition (Fauset et al., 2012).  A critical challenge, however, is for us 585 

to better understand what traits, their trade-offs, and their plasticity (Lloyd et al., 2010), result in 586 

tolerance or susceptibility to mortality drivers (Fig. 4). 587 

 588 

VI II.VI ) ESM Lianas: No ESMs have yet attempted to explicitly represent lianas (Verbeeck & 589 

Kearsley, 2016).  The empirical knowledge base for modeling lianas is incomplete, but our 590 

existing knowledge regarding the role of gaps, CO2, and drought on liana abundance can provide 591 

some simulation potential for liana succession.  With demographic ESMs it may be possible to 592 

simulate the succession and impacts of liana’s on upper-canopy trees through shading and 593 

breakage, particularly in gaps.  Trait-enabled hydraulic models will be able to simulate the high 594 

rates of soil water acquisition by lianas (Johnson et al., 2013) and subsequent impacts on host 595 

tree water availability.  For mortality mechanisms, lianas likely impact hydraulic failure through 596 

drawing down soil moisture via their high transpiration rates (Chen et al., 2015), and carbon 597 

starvation via shading, but determining the fraction of host-crown shaded, and impacts on water 598 

consumption, are required to inform model mechanism. 599 

 600 

VI II.VII ) ESM Fire: Most ESMs include representations of fire, but the majority of these 601 

models are parameterized from limited studies in boreal and temperate regions, and their 602 

applicability to tropical systems is largely unknown (Hantson et al., 2016).  Improvements in the 603 

simulation of fires for the tropical forests should focus on 1) mechanism-scale validation of fire 604 
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spread and tree mortality simulations against fire experiment data, 2) tests of how fire-vegetation 605 

interactions are simulated at stand-to-ecosystem scales, and 3) developments that focus on the 606 

landscape-scale determinants of fire durations, maximum fire extent, the geographical spread of 607 

ignition events and interactions with human activity. The latter problem in particular poses 608 

significant issues concerned with how to attribute patterns observed through remote sensing to 609 

variation in different processes (ignition, suppression, fragmentation), and with predictive 610 

models of interactions with human behaviors. Increasing abundance of regional and global fire 611 

remote sensing products (Alencar et al., 2015; Bloom et al., 2015) allows at least the possibility 612 

of better landscape-scale calibration of the higher-level features of such models, while more 613 

robust testing of physical models of fire spread should increase confidence in our ability to 614 

predict responses to altered climatic drivers in future scenarios. 615 

 616 

VI II. VI II ) ESM Biotic agents: Most ESMs have not simulated biotic attacks (insects and 617 

pathogens; but see Dietze & Matthes, 2014; Landry et al., 2016) but a path forward can be 618 

derived from a few key observations.  Insect outbreaks often occur after droughts in the moist 619 

tropics (Anderegg et al., 2015b), exhibit a correlation between host tree defense and outbreak 620 

success in both temperate (Herms & Mattson, 1992; Raffa et al., 2008) and tropical regions 621 

(Dyer et al., 2007), and outbreaks (i.e. widespread attacks on one or more species) decline with 622 

increasing diversity at the global scale (Jactel & Brockerhoff, 2007).  Less is known about the 623 

processes driving biotic agents such as heartrot and rootrot, but we may presume that infection 624 

by these agents is similar in physiological regulation to that of insects (see McDowell et al., 625 

2011).  Thus an initial ESM approach could be to simulate defense (perhaps using available 626 

carbon as a surrogate) and assume (for now) that biotic agents are ubiquitous in presence.  627 

However, in addition to predisposition by plant stress, outbreaks of tropical tree-killing insects 628 

are also more likely after other types of disturbances that open the canopy and increase the 629 

abundance of light, new foliage, and juvenile trees (Dyer et al., 2012), which suggests that the 630 

dynamics of canopy gap formation in demographic models may be used for outbreak initiation. 631 

Although these bottom–up controls by plant defenses and stand structure play a role in outbreaks 632 

of tropical tree killing insects, top-down predator control appears particularly important in the 633 

tropics in constraining the magnitude of outbreaks (Van Bael et al., 2004).  Thus an idealized 634 

model might include a function associated with host tree defense capability, host-tree abundance 635 
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(Dyer et al., 2012), forest structure (Dyer et al., 2012), insect thermal optima (Goodsman et al. 636 

2017), and top-down insect predator abundance, all influenced by environment.   637 

 638 

VI II.IX ) ESM Wind: Arguably the hardest ESM challenge is to downscale maximum wind 639 

speeds from atmospheric models that simulate average wind speeds over the scale of individual 640 

grid cells (e.g. Fig. S4) and are formulated using a hydrostatic approximation that prevents 641 

explicit representation of processes that generate high wind extremes.  At the canopy-scale, the 642 

ability to model either loss of foliage, loss of major branches, snapped-stems, standing dead 643 

stems, or an uprooted tree is valuable for capturing recovery processes, gap light dynamics, and 644 

carbon cycling from wind mortality (Holm et al., 2017), which can be most aptly simulated in 645 

demographic models. Opportunities to further improve predictions of wind mortality lie in 646 

representing abiotic and biotic conditions (e.g., soil conditions, prior exposure to stress, presence 647 

of heartrot) that enhance vulnerability to wind, traits that confer susceptibility or resistance to 648 

wind, and the wind fields that can topple canopy trees (Ribeiro et al., 2016).  649 

 650 

IV ) Conclusions 651 

Many of the drivers of MTF tree mortality appear to be increasing (Fig. 4, though with 652 

large uncertainties), thus there is some confidence that mortality rates may increase over time.  653 

These mortality drivers may include productivity-driven thinning and increase in height growth, 654 

rising temperature and VPD, increasing frequency and severity of droughts, increasing liana 655 

competition, fire, wind disturbance, and biotic attacks.  Determining the relative importance of 656 

these drivers is critical to enable mechanistic prediction of future mortality.  Simulating future 657 

tropical forest mortality under climate-change is daunting due to this lack of knowledge coupled 658 

with the complexity of processes in hyper-diverse tropical systems.  Some model mechanisms 659 

require improvement, such as including refined hydraulics and demographics, whereas other 660 

model processes have yet to be included, such as wind, insects, and liana competition.  Model 661 

structures that include demographic representation and represent the diversity of physiological 662 

traits should provide a useful foundation for rapid model development, but such development 663 

must progress hand-in-hand with increasing empirical knowledge of the key processes that 664 

regulate tropical forest mortality under climate change.   665 

 666 
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Box 1  Glossary 1512 

Background mortality:  also considered a fixed mortality rate (e.g. % year-1, carbon m-2 yr-1) in 1513 

models and referred to as such in this manuscript; this is the theoretically stable mortality rate 1514 

under a non-changing environment.    1515 

Biotic agents:  insects, fungi, and other pathogens that attack and sometimes kill trees directly or 1516 

by weakening them (e.g. defoliation, or rot impacts on wind resistance).   1517 

Carbon starvation:  the process by which limited carbon uptake (e.g. due to stomatal closure, 1518 

shade, or leaf area loss to wind damage) relative to carbon demand (e.g. growth, respiration, 1519 

defense) results in a decline in carbon-driven metabolism, hydraulic repair, or ability to defend 1520 

against pests, and ultimately promotes mortality (McDowell et al., 2011).   1521 

Earth System Model (ESM):  models designed to simulate the coupled influences and feedbacks 1522 

of climate, land and ocean.  Land surface models operate within ESMs. 1523 

Hydraulic failure:  mortality via dehydration; often associated with prolonged periods of xylem 1524 

conductivity loss >60% in field studies (McDowell et al., 2013).   1525 

Lianas:  woody plants that utilize free-standing hosts to support their weight as they grow into 1526 

the canopy.  Lianas are typically aggressive consumers of light, water, and nutrients. 1527 

Moist-tropical forests (MTFs):  forests with mean annual precipitation > 1500 mm, including 1528 

both aseasonal and seasonal precipitation regimes (e.g. with a dry season < 100mm/month for 1529 

five months or less; Vitousek& Sanford, 1986). 1530 

Mortality drivers:  factors that when they experience a directional change so do mortality rates.  1531 

Examples include decreasing precipitation, increasing temperature, and increasing biotic attack.  1532 

Mortality mechanisms:  mortality drivers cause changes in mechanisms that lead to mortality, 1533 

such as altering plant structure (e.g. via windthrow, fire) or physiology (e.g. shade-induced 1534 

carbon starvation, drought-induced hydraulic failure). 1535 

Mortality rate:  Can be defined using many units, typically % yr-1 (number of trees died per 1536 

number of total individuals live and dead per year) or in units of basal area (m2 basal area died 1537 

per m2 of total stems per year) or biomass (kg C died per kg C standing biomass per year).  1538 

Corrections for biomass weighting, non-balanced plot sizes or sampling periods over time and 1539 

space are often employed when calculating mortality rates from inventory data.  See Supporting 1540 

Information Methods S1 for equations. 1541 

1542 
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Fig. 1 Axes of variability in tropical tree mortality. A) Mortality rate [as log(initial number) – 1543 

log(number survivors))/(years)]  versus stem diameter in Pasoh, Malaysia and Barro Colorado, 1544 

Panama (bars are 95% CI, no major droughts during censuses); this highlights that both negative 1545 

and positive mortality rates as a function of diameter can be found (from Muller-Landau et al. 1546 

2006).  B) Mortality rates (# individuals died per number of total individuals per year; all 1547 

subsequent figures use this calculation; see Glossary and Supporting Information Methods S1 on 1548 

mortality rate calculations) plotted as the ratio of mortality rate during drought relative to a 1549 

control period across a range of stem diameters for 12 sites across the tropics (symbols represent 1550 

different sites), showing the clear pattern size-mortality relationships during droughts (from 1551 

Bennett et al., 2015). C) The mortality rates in forests in Borneo and the Amazon measured post-1552 

drought, highlighting regional differences (from Phillips et al., 2010). D) Mortality rate versus 1553 

life-history strategy in Barro Colorado, Panama, highlighting the role of successional strategy on 1554 

long-term mortality rates (from Condit et al., 1995).  E) Mortality rate versus wood density in 1555 

Barro Colorado, Panama, highlighting a significant but weak relationship (p<0.05; from Wright 1556 

et al., 2010).  F) Mortality rate as a function of liana cover class in Pasoh, Malaysia, highlighting 1557 

the influence of lianas on mortality. Liana cover class 0 indicates no lianas, 1 indicates up to 1558 

25% of the crown covered by lianas, 2 = 26-50%, 3=51-75%, and 4=76-100% (from Wright et 1559 

al., 2015).    1560 

 1561 

 1562 
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Fig. 2.  Consistent increases in mortality rate (% individuals died per total number of 1567 

individuals per year) across the America’s.  Regression lines fitted to observations of stem 1568 

mortality rate for the Amazon basin (solid line; Brienen et al., 2015, slope of 0.029) and for 1569 

temperate and boreal North America (dashed line; average values from all five sub-regions 1570 

within van Mantgem et al., 2009, Peng et al., 2011, slope of 0.027).  Linear regressions were 1571 

used for simplicity, though a case can be made for non-linear (exponential) lines because zero-1572 

intercepts on the time-axis are not realistic (e.g. there is always some mortality occurring; see 1573 

text).  See Supporting Information Methods S1 and S2 for methods details and for versions of 1574 

this figure using different units.  1575 
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Fig. 3:  Basal area mortality rate is correlated with basal area productivity across the 1578 

Amazon basin (r2 = 0.29).  Data from Brienen et al. (2015).  Data represent stand dynamics as 1579 

recorded for individual plots.  See Supporting Information Methods S2 for details. 1580 
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Fig. 4.  A graphical summary of the literature evidence of changing mortality drivers and 1582 

potential mechanisms over future conditions in moist -tropical forests. Shown are the 1583 

expected trends in A) the forcing drivers of CO2, temperature and VPD, and associated 1584 

likelihoods of B) carbon starvation and/or hydraulic failure, C) liana abundance and fire 1585 

frequency, D) biotic agent attack rates and destructive wind events, and E) competition for 1586 

resources including shade.  See references in text that support the general trends and their 1587 

associated uncertainty.  Panels C-E have widening uncertainty around the mean expectations due 1588 

to lack of consistent projections (e.g. wind and biotic agents) or due to logical feedbacks (e.g. 1589 

shade is enhanced by CO2 but reduced by rising temperature and VPD; and CO2 causes both 1590 

increasing shade and higher water-1591 

use efficiency) that may negate 1592 

influences.  The numbered gray 1593 

lines denote potential interactions 1594 

across panels based on the 1595 

literature evidence.  Rising 1596 

temperature and VPD promote (1) 1597 

carbon starvation and hydraulic 1598 

failure, (2) liana encroachment and 1599 

fires, and (3) biotic agent attack 1600 

and wind events.  (4) Rising CO2 1601 

may promote competition and 1602 

shade.  (5) Lianas may promote 1603 

carbon starvation via shade and 1604 

fires may promote hydraulic failure 1605 

via xylem damage, (6) biotic 1606 

agents promote carbon starvation 1607 

and hydraulic failure and vice 1608 

versa; wind promotes carbon 1609 

starvation via canopy loss, and (7) 1610 

competition and shade promote 1611 

carbon starvation.  Not shown is 1612 

potential long-term precipitation 1613 

trends; but there is high likelihood 1614 

of continued droughts at some 1615 

periodicity and frequency, which 1616 

will be more severe due to rising 1617 

temperature and VPD (Panel A).   1618 

1619 
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Fig. 5.  Coupled-Model Intercomparison Project (5) multi-model ensemble means of pan-tropical 1620 

temperature and soil moisture in 2081-2100 relative to 1986-2005.  A-C) The CMIP5 multi-1621 

model median change in 20-year return intervals of annual warm temperature extremes as 1622 

simulated for 2081-2100 in RCP2.6 (top), RCP4.5 (middle), and RCP8.5 (bottom).  D-G) 1623 

Change in annual mean soil moisture (mass of water in the uppermost 10cm) (mm) for 2081-1624 

2100 relative to 1986-2005 from the CMIP5 ensemble (RCP2.6, 4.5, 6.0, and 8.5). Hatching 1625 

indicates regions where the multi-model mean change is less than one standard deviation of 1626 

internal variability and where at least 90% of models agree on the sign of change.  Between 22 1627 

and 35 models were used depending on the scenario.  Re-printed courtesy of Collins et al. 1628 

(2013). 1629 

 1630 

A

B

C

D E

F G


