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Distributed MPC: Guaranteeing Global
Stability from Locally Designed Tubes*

Bernardo Hernandez * Pablo Baldivieso * Paul Trodden *

* Department of Automatic Control € Systems Engineering,
University of Sheffield, Sheffield S1 3JD, UK
(e-mail {prbaldiviesol, bahernandezvicentel,
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Abstract: This paper studies a fundamental relation that exists between stabilizability
assumptions usually employed in distributed model predictive control implementations, and the
corresponding notions of invariance implicit in such controllers. The relation is made explicit in
the form of a theorem that presents sufficient conditions for global stabilizability. It is shown
that constraint admissibility of local robust controllers is sufficient for the global closed-loop
system to be stable, and how these controllers are related to more complex forms of control
such as tube-based distributed model predictive control implementations.

Keywords: Predictive control, Invariant systems, Decentralized control, Stability analysis,

Invariance.

1. INTRODUCTION

There exists various physical systems for which a cen-
tralized control implementation is not a suitable solution
(Mayne, 2014). The two main reasons for this are: (i) the
physical system is spread over a wide area, which makes
communication to a central hub expensive and prompt to
data loss (power networks, traffic networks, etc.) (Baillieul
and Antsaklis, 2007), (ii) the physical system is a composi-
tion of individual subsystems with clearly defined physical
boundaries (autonomous vehicles, swarms of robots, etc).
In the context of model-based predictive controllers, there
is a third situation in which centralized control is not
a viable solution, and it has to do with computational
requirements. Model predictive control (MPC) is a mature
control technique that provides safe and stabilizing control
under appropriate design (Mayne et al., 2000). However,
in order to compute the control action to be applied to
the plant, it needs to solve an optimization problem at
each time instant. Clearly then, plants with fast dynamics
and/or a large number of control variables are out of the
scope of standard centralized MPC implementations. A
natural solution to this problem is to split the plant into
smaller subsystems, and then to design local controllers.
However, this creates residual interaction between different
subsystems, which must be taken into account if control
guarantees are to be delivered.

Many distributed MPC (DMPC) implementations have
been devised to tackle this problem (for a detailed re-
view see Scattolini (2009); Christofides et al. (2013)).
The main aspect in which they differ is in which type of
interaction is allowed between subsystems, and how this
is treated. In recent years, robust MPC techniques such
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as tube MPC (TMPC) (Mayne et al., 2005) and others
(for example Chisci et al. (2001)), have inspired several
DMPC approaches (Farina and Scattolini, 2012; Riverso
and Ferrari-Trecate, 2012; Farina et al., 2014; Lucia et al.,
2015; Trodden et al., 2016; Baldivieso and Trodden, 2016;
Hernandez and Trodden, 2016). The main idea of such
approaches is to treat the interactions between subsystems
as local disturbances that may be handled (conservatively)
by robust local controllers. Communication and iteration
between subsystems is then used in different ways to
reduce the conservativeness induced by use of a robust
method. All of these approaches, either implicitly or ex-
plicitly, rely on stabilizability assumptions. These usually
require the existence of a global linear feedback with a
certain structure affine to the interaction pattern of the
global system. This type of assumption is also present in
DMPC techniques that are not based on robust approaches
such as Conte et al. (2016); Maestre et al. (2011).

In this paper, a fundamental relation that exists between
this type of stabilizability assumption, and the various
concepts of invariance employed by (tube-based) DMPC
architectures, is made explicit. To the best of the authors’
knowledge, this relation has not been studied explicitly
before (although some related results have been published,
which we survey in Section 3), albeit the global stabilizabil-
ity assumption is present (either explicitly or implicitly) in
many of the DMPC approaches proposed to date. First, a
collection of linear local robust controllers is introduced
in order to study the stabilizability of the global plant
from a decentralized perspective. The main result states
that a sufficient condition for global stabilizability is that
these local controllers are locally stabilizing and constraint
admissible. Although very simple, the proposed controllers
sit at the core of many tube-based DMPC architectures,
which makes this result relevant to the state of the art in
DMPC.



The remainder of the paper is organized as follows: Sec-
tion 2 defines the preliminaries and standard assumptions
found in many tube-based DMPC implementations. In or-
der to contextualize the results given in this paper, Section
3 discusses two approaches that are commonly used to
meet the previously stated assumptions. The main result
is given in Section 4, and three examples are presented in
Section 5 to illustrate it, and highlight its advantages and
limitations. Finally, Section 6 provides some conclusions.

Notation. The set of consecutive integers {1,..., M} is
denoted by M. A block-diagonal matrix S with blocks
S; and i € M is denoted as diagy, (S;). A vector x that
is formed by vertically stacked vectors z* with ¢ € M is
denoted as @ = colpq (2). If S is a matrix, p(S) is the
spectral radius of S; if p (S) < 1 then S is Schur. If A and
B are sets, then A® B :={c=a+b|Va € A,be B} and
AcB:={ac A|Vbe B,a+be A} (Minkowski sum and
Pontryagin difference respectively). If S; is a collection of
sets with ¢ € M, then @,S; =S; @ - - - ® Sps. The matrix
I, is the identity of dimension n. If z; is the value of =
at time ¢, then xy/; is the prediction of z; made at time
t<k.

2. PRELIMINARIES
2.1 Local and global dynamics

First consider the general problem of regulating a network
of M, possibly heterogeneous, linear time invariant (LTT)
systems that interact with each other via states and inputs.
For all i € M the dynamics of subsystem ¢ are represented
by the following state space model

Ii-{-l = A“I; + B”U; + Z (A”$£ + Bwui) s
JEN;
where xim € R" and u;(J) € R™it) are the state and
input vectors belonging to subsystem i(j) at time ¢, with
matrices (A;j, B;j) of corresponding dimension. The set
N; C M is referred to as the set of neighbours of subsys-
tem 7, and contains the indexes of all the other subsystems
that affect the dynamics of i. Given the assumed non-
centralized nature of the plant, consider the case in which
each subsystem i is subject to local constraints of the form

i e X, cRY, w'eU; cR™. (1)
Assumption 1. (Local behaviour). For all ¢ € M, the pair
(A4, By;) is stabilizable and the set (X; x U;) is compact,
convex and contains the origin in its interior.

To simplify the analysis, assume that the subsystems do
not share states and/or inputs. The collection of local
models forms the following global constrained LTI model:

Tiy1 = Az, + Buy,
where (z,u) = (colM (:rl) , colpq (u’)) € X x U, matrices
A and B are composed by the blocks (A;;, B;j), and
X=X;x--xXy CR"
U=U1 Koo XUM ng

K

2.2 Distributed control

One of the main questions in distributed control is how to
guarantee certain properties at the global scale (stability,

constraint satisfaction, etc.), from a possibly distributed
design. In order to achieve these global properties, many
DMPC implementations employ synthesis procedures that
are either centralized (Maestre et al., 2011; Lucia et al.,
2015), or require the solution of problems that can be
computationally expensive (Conte et al., 2016; Kern and
Findeisen, 2013). In this context, and in particular with
tube-based DMPC controllers, the following assumption
is usually required (see for example Farina and Scattolini
(2012); Riverso and Ferrari-Trecate (2012); Baldivieso and
Trodden (2016); Hernandez and Trodden (2016)),

Assumption 2. (Block-diagonal stabilizability). There ex-
ists a collection of local linear feedbacks K; such that
Fy; = A;;+B;; K; is Schur foralli € M and F = A+ BK
is Schur, with K = diag, (K;).

Assumption 2 demands the existence of a globally stabi-
lizing linear feedback K with a block-diagonal structure.
This definitively limits the class of systems that can be
controlled with such techniques, but a more pressing issue
in the context of decentralized control, is that searching
for a collection of local feedbacks that fulfils Assumption
2 usually requires centralized computations. There is a
vast literature dedicated to analysing the impact that
naive local control design has over global behaviour (see
for example Cui and Jacobsen (2002)), but perhaps an
example is enough to clarify the problem.

Ezample 3. Consider the coupled integrators

1 1 1
Typr| _ |1 O] |2y 1 0.5 |u
i) = [o3] 1] Lo ) 4]

The local linear feedbacks K1 = Ky = —1.5 result in
p (Fi1) = p (F22) = 0.5, however, p (F') = 1.25.

Example 3 makes clear that careful (perhaps centralized)
design is required to meet Assumption 2. The main result
of this paper is to make explicit the fundamental relation
that exists between the stabilizability requirements in
Assumption 2 and the standard notions of invariance that
are usually implicit in DMPC controllers. To aid this,
various concepts of invariance are now defined.

Definition 4. (Positive invariant (PI) set). A set X, is said
to be a PI set for the dynamics x;41 = Fa, if FX, C X,,.
Definition 5. (Robust positive invariant (RPI) set). A set
Z is said to be a RPI set for the disturbed dynamics
2yy1 = Fay + w, and disturbance w € W if FZ & W C Z.

Remark 6. Non-compact or singleton invariant sets are
not considered a valid solution in the following analysis.

Remark 7. In view of Remark 6, unstable closed-loop
dynamics do not accept invariant sets as described by
Definitions 4 and 5.

3. GLOBAL STABILIZATION: EXISTING
APPROACHES

The task of finding local linear feedbacks that fulfil As-
sumption 2 (or a similar one) appears in different steps
of the implementation of DMPC controllers. Some of the
techniques used to compute these feedbacks also exploit
notions of invariance, and are implicitly related to the
more fundamental result shown in this paper. In order to
put this result into context, two of these approaches are
briefly discussed.



3.1 Linear matriz inequalities

In the general DMPC framework (not necessarily tube-
based approaches), a common practice is to tackle the
distributed controller synthesis problem from a centralized
perspective, and to pose a set of LMIs whose solution(s)
provides an adequate candidate for the required controller
(these LMISs represent standard Lyapunov stability condi-
tions in the context of MPC). In Maestre et al. (2011) a
global linear feedback, which is forced to be zero wherever
there is no dynamical coupling, is proposed to play the
role of the local terminal controller often used in the MPC
framework (Mayne et al., 2005). In order to find this
feedback, a set of local LMIs is posed alongside with a
single global LMI of dimension 4n X 4n (where n is the
overall dimension of the plant). A similar problem is found
in Conte et al. (2016), where a distributed optimization
approach is proposed to find the solution to the local LMIs,
in the presence of a system-wide coupled LMI.

The problem of finding separable PI sets is tackled in a
similar way in Nilsson and Ozay (2015), where a set of
LMIs is proposed to find simultaneously a set of local
independent feedbacks K; that fulfil Assumption 2, and
a corresponding collection of joint PI sets. This procedure
is proposed to tackle disturbed local dynamics, but even
when no disturbance is considered, the smaller LMI is of
dimension 2n x 2n.

3.2 Positively invariant families of sets

Although not explicitly stated, the concept of positively in-
variant families of sets (PIFs), introduced by Rakovié et al.
(2010), can also be used to analyse the link between local
and global closed-loop behaviour (in a centralized fashion).
The concept of PIFs is more general than Definition 4
but it is based on the same invariance properties. The
main advantage of the specific parametrization proposed
in Rakovié et al. (2010) is that, in the context of global
to local dynamics, the dimension of the problem can be
considerably reduced (from n to M) by looking at what
the authors call a comparison system.

It is shown in Rakovi¢ and Gielen (2014) that: (i) a stable
comparison system is a sufficient condition for the true
system to accept a PIFs, and (ii) if a system admits a
PIF's, then it admits a PI set, which therefore means that
the closed-loop dynamics are stable. In this context, it
might prove easier to find a stable comparison system (of
dimension M) and then relate it to the global system in
closed loop form with a particularly structured K.

This notion is the underlying idea of the approach pro-
posed in Kern and Findeisen (2013), where local LMIs
are constructed to find, in a non-centralized fashion, a
collection of local gains K; that fulfils Assumption 2, and
a corresponding PIFs.

In all of the these approaches, there is no guarantee that a
solution does exist for the proposed set of LMIs (or stable
comparison system). This should not be a surprise, given
that the successful synthesis of a non-centralized controller
depends greatly on the size of the interaction between
neighbouring subsystems, and how these are dealt with
(communication, iterative optimization, etc.).

4. GLOBAL STABILIZATION VIA TUBES

The fundamental result shown in this paper stems from
the invariance notions implicit in the robust control tech-
nique known as Tube MPC (Mayne et al., 2005), and its
application to distributed control.

4.1 Decentralized linear robust control (inside the tube)

Suppose that subsystem i has no means of obtaining infor-
mation about what its neighbours’ plans are. A sensible,
yet conservative, way of performing non-centralized con-
trol is to view the dynamical interaction between subsys-
tems as disturbances that must be rejected. In order to
move forward, the following assumption is required.
Assumption 8. State and input constraints are satisfied by
all subsystems: x! € X; and u! € U; for all i € M, t > 0.

If Assumption 1 is fulfilled, then the following disturbance
sets are compact for all i € M

W; = P (45%; @ B,;U;) = P Wiy (2)

JEN; JEN;
Moreover, if Assumption 8 is fulfilled, the sets W, represent
a suitable bound for the interaction between subsystems:

wi=3" (Aijx{ + Biju{) eW;, VieM,t>0.
JEN;
In view of this and Definition 5, for any linear feedback K;

that renders Fj; Schur, there exists a compact RPI set Z;
for the local disturbed dynamics

Given ) € Z; and the invariance of Z;, it follows that

Ii € Zi, UiEKiZu VtZO,wé e W,.
Proposition 9. If for all i € M (i) Z; C X; and K;Z; C U,
and (ii) zf € Z;, then z} € X; and v} € U; for all i € M
and for all t > 0.

Remark 10. In the context of TMPC, the sets Z; are the
cross section of the local tubes.

i i i
Ty = Fyzy +wy,

Proposition 9 provides a decentralized perspective to the
problem of finding stabilizing and constraint admissible
local linear feedbacks. Indeed, as long as the hypotheses
of Proposition 9 are met (for all i € M), independent RPI
sets could be designed for each subsystem. The closed-loop
global system would then take the form FF = A + BK,
which as shown in Example 3, could be unstable. This
seems to defy the invariance properties of the collection of
sets Z;.

In spite of the local invariance arguments, the analysis
of the local dynamics does evidence an unexpected be-
haviour. Consider a network with M = 2 and suppose
that K; are indeed chosen such that F;; are Schur and
that the hypotheses of Proposition 9 are met, but F is
not Schur. Given ®g € Z = Z; X Zo C X and unstable
closed-loop global dynamics, there must exist a ¢; > 0
such that, z; _; € Z; but x} ¢ Z;. This means that the
robust invariant property of Z; has been broken, which
can only mean that the disturbances affecting subsystem
1 (see (2)) have been larger than initially assumed. A
similar argument can be made for 4 = 2, which prompts
the following conclusion:



Proposition 11. Suppose K; are chosen such that Fj; are
Schur but F' is not, and that the hypotheses of Proposition
9 are met. Then there exists a finite time ¢ > 0 such that
x;  €EZbut z; ¢ Xoru; ¢ U.

Remark 12. Proposition 11 implies either a state jump
from inside Z to outside X, or an input jump from
inside KZ to outside U. This, in some cases, might
mean a discontinuity of the state trajectories, which is
not characteristic of the type of (linear) systems being
analysed.

4.2 From local robustness to global stability (main result)

The uncharacteristic behaviour made explicit by Remark
12 can be explained by the fundamental relation that
exists between Assumption 2 and the notions of invariance
employed in Proposition 9 (and by TMPC). Consider the
following definition:

Definition 13. (Admissibility of tube 7). A tube 4 corre-
sponding to a particular linear feedback K; is said to be
constraint admissible if the first part of the hypothesis of
Proposition 9 holds, i.e., if Z; C X; and K;Z; C U,.

The main result of this paper is now stated:

Theorem 14. If there exists constraint admissible tubes for
all subsystems i € M, then the collection of local gains K;
related to these admissible tubes fulfils Assumption 2.

Proof. First, in view of Remark 7, if Fj; admits a RPI
set Z;, then Fj; is Schur. Given Definition 5, and standard
Minkowski sum properties, it is clear that if Z; is RPI for
the disturbed dynamics in (3), then

F;7; V; CZ;, YV; CW, Vie M. (4)
Moreover, for all i, 5 € M with i # 7,
Vij = (AZ] + Binj) Zj g Aiij D Binij (5&
C Ainj ©® BijUj = Wij (5b
- Vij C Wij (50
JEN;
where the first inclusion follows from Minkowski sum
properties and the second inclusion from the constraint
admissibility of tube i. Equations (4) and (5) imply
F,Z; ® @ Fiij CZ;, YieM,
JEN;
and hence, Z = Zy X --- X Zp; € R™ is a PI set for the

closed-loop dynamics F'. In view of this and Remark 7, F'
is Schur.

)
)
)
)

Remark 15. Theorem 14 presents sufficient conditions for
a collection of locally stabilizing linear feedbacks to be
globally stabilizing.

Remark 16. Unstable global dynamics, as demanded by
Proposition 11, imply Assumption 8 is not met, and
therefore (some of) the disturbance sets are unbounded.
The corresponding RPI sets are also unbounded, thus,
the set inclusions required for constraint admissibility of
the tubes cannot be met. This implies that the behaviour
described by Remark 12 is not possible, because the tubes
would not have been admissible.

A collection of constraint admissible tubes Z; is a family of
jointly RPI sets. This collection forms what can be referred

to as a square PI set, given that Z is defined by the cross
product of subsets of the local dynamics state space. This
is also pointed out in Maestre et al. (2011); Lucia et al.
(2015); Nilsson and Ozay (2015); Conte et al. (2016).

Remark 17. The existence of such a particular PI set is a
necessary condition for the tubes to be system-wide ad-
missible. This clarifies the main source of conservativeness

of Theorem 14.

Large constraint sets for a single subsystem might render
impossible to find admissible tubes for the affected neigh-
bours. However, Theorem 14 remains useful for the task of
analysing local-to-global stabilizability (the constraint sets
could be shrunk, similar to the approach taken in Maestre
et al. (2011)).

In the parametrization of PIFs proposed by Rakovié et al.
(2010), each element in the family of sets is also square.
A marginally stable comparison system that admits the
corresponding eigenvector as an initial scaling factor, also
provides a square PI, and therefore, a collection of local
linear feedbacks K; that fulfils Assumption 2.

4.8 Tube MPC

The main purpose of the linear robust controller presented
in Section 4.1 was to show the fundamental result given by
Theorem 14. On its own, this controller can only guarantee
robust stabilizability of its region of attraction (the set Z).
However, such a controller is at the core of many tube-
based DMPC architectures. In order to make this clear,
TMPC is now briefly described.

TMPC aims to solves the regulation problem for a nominal
undisturbed version of the plant, while securing that
the state of the true plant remains bounded inside a
tube centred (at each time) at the nominal undisturbed
trajectory. Define the nominal model for subsystem i as

PeX;, a' el (6b)
then, the control action to be applied to the true plant,

at each time step, is computed via the following control
policy

up = ﬂi/t + K; (lﬂ; - jji/t) : (7)
The first term in (7) is a stabilizing control action for the
nominal model, and the second one is designed to reject
the disturbances. The local feedback K; is any stabilizing
gain for the pair (A, B;;). The dynamics of the trajectory
deviation z; = x} — 2} are therefore defined by

21 = Fuzf + wi, (8)
where the disturbance w? represents the unknown dynam-

ical coupling, and therefore belongs to W; as defined in (2)
(exact same dynamics as (3)).

The pair (121 Jt a?; /t) is obtained from the following open
loop optimal control problem, which is standard in nomi-
nal MPC implementations,

t+N—1
Ajmi}} Z i (j’.;c/t’ﬁ;c/t) + VJ} (‘%;JrN/t)
Tejotest et

subject to the dynamics in (6a) and, for k =¢,... t+N—1:

PN({L‘;) :



Fig. 1. Global plant: four dynamically coupled trucks.

az/t elU, CU, e K;Z; (90)
i‘i-ﬁ—N/t EX{ QXZ (gd)

Theorem 18. If (i) Z; is an RPI set for the dynamics in (8)
and disturbance w® € W, (ii) I;, V)? and X{ are designed
following standard MPC arguments to ensure asymptotic
stability of the nominal undisturbed system, and (iii) the
set X; x U; fulfils Assumption 1, then (a) the set Z; is
robustly asymptotically stable for system (3) in closed loop
with (7) and (b) constraints (1) are met at all times.

Proof. The reader is referred to Mayne et al. (2005) for
the proof.

Note that, for all ¢ > 0, constraint (9a) may be replaced
by ii/t = .fi/t71 (i.e., independent time evolution of the
nominal system, see Rawlings and Mayne (2014)). Given
xo € 7Z, the closed-loop dynamics reduce to F = A +
BK , which, again, could show the behaviour described
by Proposition 9 and Remark 12. However, Theorem 14
shows that this is not the case.

Corollary 19. If the hypotheses of Theorem 18 are met for
all i € M, then F is Schur.

Proof. Hypotheses (i) and (iii) of Theorem 18 are equiv-
alent to the existence of a constraint admissible tube for
subsystem i, hence, if met for all i € M, the hypothesis
of Theorem 14 is met, and the collection of local linear
feedbacks K; fulfils Assumption 2.

5. NUMERICAL EXAMPLE

In order to illustrate the main result of this paper, consider
a global plant composed by four trucks modelled by
point masses, aligned in an horizontal plane (see Fig.
1). Each truck is dynamically coupled to its immediate
neighbours through springs k;; and dampers c;;. The
control objective is to steer the whole system towards an
arbitrary equilibrium point using locally applied horizontal
forces. This plant is used as a numerical example for
various DMPC algorithms, see for example Riverso and
Ferrari-Trecate (2012); Baldivieso and Trodden (2016);
Hernandez and Trodden (2016); Trodden et al. (2016).

The state vector of the global plant is composed of the
horizontal position and velocity of all trucks, and so
(xz,u) € R® x R*. A single subsystem is associated to each
truck, the local state and input vectors (xi, uz) represent
the position, velocity and force of the corresponding truck.
A sampling time of T; = 0.1 is used to discretize the
system (the values of the matrices A and B are omitted).
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Fig. 2. 23 Constraint set X, RPI set Z;.

5.1 Case 1: admissible tubes

Suppose first that the following homogeneous local con-
straints are enforced for all i € M,

wo= o] [ =< [])

U= {u'| —4<u’ <4}.
Table 1 shows a collection of locally stabilizing linear feed-
backs, which produce admissible tubes. These local gains
correspond to the LQR feedback obtained for (A;;, By;),
Q; = I, and R; = 1. Figure 2 shows that the RPI set Z;
is contained inside the constraint set X; for all i € M (the
inclusion K;Z; C U, is also met). In view of Theorem 14 it
must be then, that K is globally stabilizing. This is indeed
the case, with p (F') = 0.572.

Table 1. Tube admissible local linear feedbacks

Feedback K;r K; K;— KI
Val ~1.203 ~0.949 ~1.188 —1.612
ae ~0.283 ~0.203 ~0.303 —0.482
o (Fi) 0.423 0.328 0.422 0.572

5.2 Case 2: Large constraints for a single subsystem

Suppose now that, by any reason, truck 2 is allowed
thrice the size of the constraints of the other subsystems,
ie. X5 = 3Xj,. This effectively means WiV = 3W;.
Although, this new disturbance set is still contained in
the state constraint set Xy, Fig. 3 shows that the same K;
from Table 1 produces a RPI set Z}*" that is not inside X;
(the RPI set for subsystem 3 also increases in size). This
implies that, although the collection of local feedbacks is
indeed globally stabilizing, Theorem 14 cannot be used to
guarantee it.

5.8 Case 3: Non-existence

Heterogeneous constraints are not the only source of
conservatism that Theorem 14 suffers from. As made
explicit by Remark 17, a necessary condition for the tubes
to be system-wide admissible is that a square PI set exists.



12 — T T T T T T T T

Consider the following global system with M = 2 (scalar
subsystems):

A— 2.070 1.924 B 0.660 —1.274
~10.316 0.203| >~ — [0.113 0.810 |-

When the loop is closed with K11 = —2.924 and Koy =
0.977, Assumption 2 is fulfilled with p(Fy;) = 0.140,
p(Fa2) = 0.994 and p(F) = 0.983. However, it is easy
to show that there is no square PI set for the closed-loop
F', and therefore, no matter the constraints, the tubes
corresponding to the block-diagonal linear feedback will
never be simultaneously admissible.

6. CONCLUSION

The properties of many distributed MPC techniques usu-
ally rely on structured stabilizability assumptions, and
standard notions of invariance. In this paper, a fundamen-
tal relation between these two concepts has been made
explicit. Theorem 14 shows that the constraint admissi-
bility of very simple local robust controllers is a sufficient
condition for the global plant to be block-diagonal stabi-
lizable. The main source of conservatism for Theorem 14 is
the structure requirement. A necessary condition for the
tubes to be system-wide feasible, is that the closed-loop
system accepts a square PI. Future work will be focused
on finding conditions over the coupling terms under which
such a particular type of PI set exist.
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