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A B S T R A C T

Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a
minimal structural and functional unit for absorbing photons and utilising their energy for the generation of
ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside
the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2),
and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid en-
vironments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool
to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA
has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving
lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency
of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high
susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich
region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6
phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium
Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII)
complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus,
lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable
local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites.

1. Introduction

Intracytoplasmic vesicles (chromatophores) in the photosynthetic
bacterium Rhodobacter (Rba.) sphaeroides (Fig. 1A) are spherical in-
vaginations of the membrane. These structures represent a minimal
structural and functional unit for absorbing photons and utilising their
energy to produce ATP via an efficient energy generation mechanism
[1,2]. The cytochrome bc1 complex (cytbc1) is one of the four major
components of the chromatophore alongside the reaction centre-light

harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2
complex (LH2), and ATP synthase [1]. The stoichiometry and organi-
sation of these complexes, revealed by mass spectrometry and atomic
force microscopy (AFM) [1,3], appears to be optimised for photo-
synthetic growth at low light intensities, below 50 μmol m−2 s−1

[1,2,4], when Rba. sphaeroides cells contain up to 1500 in-
tracytoplasmic vesicles [5], observed both as single and budded struc-
tures [6,7]. Chromatophores house short rows of dimeric RC-LH1-PufX
complexes surrounded by tens of LH2 complexes [1,2], which provide a
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variable antenna that can adjust to changeable light levels [5]. Close
packing between these complexes promotes rapid and efficient energy
transfer and trapping. The overall trapping time of ~60 ps [8] is ac-
counted for by energy migration between LH2 complexes, and from
LH2 to LH1, on a picosecond timescale [9–11]. Transfer from the en-
circling LH1 ring to the special pair (P) BChl dimer within the RC
(Fig. 1B) [12] drives picosecond charge separation within the RC [13].

Following two rounds of charge separation, and re-reduction of
oxidised P (Fig. 1B, red arrow) by cytochrome c2 (cytc2), a ubiquinone-
10 (UQ10) molecule bound to the QB site becomes fully reduced, and
binds two protons from the cytoplasm to generate a quinol (Fig. 1B)
(see [13] for a comprehensive review of the RC). The reduced quinol
leaves the RC, traverses the surrounding LH1 antenna through a pore
created by the PufX polypeptide [14], and diffuses within the mem-
brane to the cytbc1 complex [15] via the free quinone pool (Fig. 1B
black arrows). The cytbc1 generates a proton motive force (PMF) via a
modified Q-cycle [16] in which quinol binds to the Q0 site releasing two
protons into the lumen of the chromatophore (Fig. 1B orange arrows).
One electron is transferred along the high potential chain via the Rieske
Fe-S subunit to reduce an oxidised cytc2, which diffuses to a photo-
oxidised RC to reduce P, completing the cyclic electron transfer chain.
The second electron enters the low potential chain via two b-type cy-
tochromes to reduce a second UQ10 molecule bound at the Qi site.
Arrival of another quinol and a repeat of the above reactions generates
an ‘extra’ quinol at the Qi site, so this Q-cycle mechanism effectively
amplifies the yield of protons for each absorbed photon [16]. The PMF

generated by these processes is utilised by ATP synthase to generate
ATP from ADP and inorganic phosphate. There are approximately 4
cytbc1 complex dimers present in each chromatophore, and this number
is rate limiting for photosynthetic ATP formation [1,2].

Cartron et al. [1] demonstrated that dimeric cytbc1 complexes and
dimeric RC-LH1-PufX complexes are found in close proximity, but not
necessarily in direct contact, an arrangement that minimises the cycling
time for diffusion of Q/QH2 and cytc2 between them. It was also shown
that the cytbc1 complex was much more susceptible to detergent solu-
bilisation than RC-LH1-PufX and LH2, suggesting that its local en-
vironment may be lipid-rich, consistent with a proposed quinone- and
lipid-rich phase surrounding the cytbc1 complexes [17]. The cyto-
chrome b6f (cytb6f) complex in cyanobacteria, algae and plants [18],
which performs an analogous function to cytbc1 in purple bacteria,
could also sit in a lipid- and quinone-rich nanoenvironment. AFM of
plant thylakoids showed that cytb6f complexes are found within 20 nm
of photosystem II (PSII) RCs, again consistent with predictions from
kinetic studies showing confinement of quinones within the local PSII-
cytb6f environment [19–21].

New approaches are required to characterise the membrane en-
vironments of the photosynthetic complexes described, and poly
(styrene-alt-maleic acid) (SMA) co-polymers represent one such tool. In
recent years there has been growing interest in SMA for membrane-
protein solubilisation; once converted to the acid form 2:1 or 3:1
styrene to maleic-acid ratio polymers can effectively solubilise biolo-
gical membranes and their constituent protein complexes [22–27].
Unlike detergents, SMAs do not remove the annular lipids of membrane
protein complexes, instead forming nanodiscs in which the protein is
embedded in a belt of lipids from the source membrane stabilised by the
polymer. These structures are termed native nanodiscs or styrene-
maleic acid lipid particles (SMALPs) and have been found to improve
the stability of complexes as well as give more native-like biophysical
properties when compared to preparations using detergents
[22,23,28–33]. The resultant SMALPs are amenable to both biophysical
analysis and characterisation of the co-purified lipids, providing insight
into the local lipid environments of the proteins within [28,31,34]. A
recent investigation of the properties of SMA has revealed that these
polymers effectively preserve even weak protein-protein contacts, such
as those involved in formation of RC-LH1-PufX arrays, allowing for
enrichment of native large-scale protein architectures [27]. To this end
we have utilised SMA as a tool to probe the local lipid environment of
the RC-LH1-PufX, LH2 and cytbc1 complexes from Rba. sphaeroides

chromatophores. As hypothesised by previous studies we find that the
cytbc1 complex resides in a lipid-rich environment whereas the RC-LH1-
PufX and LH2 complexes reside in relatively lipid-poor domains. By
purifying cytbc1 SMALPs we further characterised the local lipid en-
vironment of this complex. We extended this methodology to mem-
branes of the model oxygenic photosynthetic cyanobacterium Sy-

nechocystis sp. PCC 6803 and find that the PSII and cytb6f complexes are
highly susceptible to SMA solubilisation, indicating they also reside in
lipid-rich environments. Together these data suggest that lipid-rich
membrane regions provide a favourable local solvent to promote rapid
quinol/quinone binding and release at the Q0 and Qi sites of cytbc1 and
cytb6f complexes.

2. Materials and methods

2.1. Preparation of SMA

Xiran SZ30010 polystyrene-maleic anhydride (2:1 ratio styrene to
maleic anhydride, 10 kDa mass average molecular weight (Mw)) was a
generous gift from Polyscope EU. The polymer was converted to the
acid form by refluxing in excess KOH as previously described [27] at a
concentration of 5% w/v. The pH was adjusted to 8.0 with solid KOH
prior to use to avoid dilution of the solution.

Fig. 1. A: Molecular model of the chromatophore comprised of LH2 (green), LH1 (red),

PufX (beige), the reaction centre (RC, blue), cytbc1 (purple) and ATP synthase (yellow).

This figure was produced from a model featured in refs [1,2]. B: Schematic representation

of LH2, RC-LH1-PufX and cytbc1 as a cross-section of part of the chromatophore vesicle in

panel A. Two successive photons (red) incident on an LH2 complex, then excitation en-

ergy transfer (wavy yellow arrows) to LH1 then a RC, drives two charge separations

eventually producing a quinol (QH2), which migrates via the quinone pool to a nearby

cytbc1 complex. Electron holes at the RC are filled by reduced cytc2 which receives

electrons from the cytbc1 complex (red arrows), completing this cyclic electron transfer

process. These protons are finally utilised by the ATP synthase to generate ATP from ADP

and inorganic phosphate (Pi). Diffusion of mobile electron carriers at the membrane

surface and Q/QH2 within the membrane bilayer are shown with black arrows. Orange

arrows denote movement of protons; for every four turnovers at the RC, six protons ac-

cumulate in the lumen; the diagram shows the average for two RC turnovers, i.e. for each

quinol produced.
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2.2. Growth of Rba. sphaeroides

The construction and growth of a Rba. sphaeroides mutant con-
taining a His10 tagged cytbc1 c-subunit (PetC) was described pre-
viously [1]. For solubilisation assays cells were grown in M22+
medium either photosynthetically in 1 L of medium with illumination
from ORSAM CLASSIC 116 W halogen light bulbs under “medium
light” (approximately 100 μmol m−2 s−1 illumination for 16 h) or
“low light” (approximately 30 μmol m−2 s−1 illumination for 48 h)
conditions, or semi-aerobically in 1.6 L of medium in the dark for
48 h. Cells (8 L) for protein preparations were grown photo-
synthetically under approximately 30 μmol m−2 s−1 illumination for
72 h. Cells were harvested by centrifugation at 4000 RCF for 20 min
and stored at −20°C until required.

2.3. Generation of histidine-tagged cytb6f in Synechocystis sp. PCC 6803

A DNA sequence encoding the thrombin cleavable His10 tag from
pET52b (Novagen) was added in frame to the end of the petA gene
(sll1317), which encodes apocytochrome f. This is the same tag added
to the C-terminus of the Rba. sphaeroides cytochrome c1 component of
the cytbc1 complex described in Section 2.2 [1]. The tag was followed
by a stop codon and the first 25 bp of the chloramphenicol acetyl
transferase (cat) cassette from pACYC184. This construct was syn-
thesised (Integrated DNA Technologies) and the cat cassette and
500 bp of DNA immediately downstream of the petA gene were am-
plified separately by PCR, from pACYC184 with primers catF/catR or
from Synechocystis sp. PCC 6803 genomic DNA with primers pe-
tA_ds_F/petA_ds_R, respectively. These three fragments were joined by
overlap extension PCR using primers petA_F and petA_ds_R, and the
resulting product was cloned into the BamHI and HindIII sites of
pUC18. The sequence verified (GATC Biotech) fragment was excised
with BamHI/HindIII and introduced to wild-type (WT) Synechocystis as
described previously [35]. Tranformants were selected using
5 μg mL−1 chloramphenicol and genome copies segregated by se-
quential doubling of the antibiotic concentration to 40 μg mL−1.
Segregation was confirmed by PCR screening with oligos petA_s-
creen_F and petA_screen_R, resulting in a product of 1941 bp for
transformants, compared to 1076 bp in the WT. The petA locus am-
plified from transformant genomic DNA was sequenced to ensure the
His-tag was in frame with the petA gene.

2.4. Preparation of Rba. sphaeroides chromatophore membranes

Cells were suspended in 20 mM Tris pH 8 containing a few crystals
of DNAse1 and Roche complete EDTA-free protease inhibitors. Cells
were lysed either by two passes through a French press (AminCo, USA),
or a single pass through a cell disruptor (Constant systems), both at
20000 PSI. Insoluble material was removed by centrifugation at 18459
RCF (avg) for 15 min at 4 °C. Soluble material was loaded onto 40/15%
w/w sucrose step gradients and centrifuged at 107400 RCF (avg) for
10 h at 4 °C. Membranes were harvested from the 40–15% sucrose so-
lution interface and stored in aliquots at −20 °C.

2.5. Preparation of Synechocystis sp. PCC 6803 thylakoid membranes

Synechocystis sp. PCC 6803 cells producing C-terminally His-tagged
apocytochrome f were grown to an optical density (OD) at 750 nm of
approximately 1 in a volume of 16 L BG11 [36] medium with aeration
and 100 μmol m−2 s−1 illumination from ORSAM CLASSIC 116 W ha-
logen light bulbs at room temperature (approximately 21 °C) and har-
vested by centrifugation at 17700 RCF (avg) at 4 °C for 20 min. Pellets
from 8 L of culture were washed and re-suspended in thylakoid buffer
(25 mM sodium phosphate pH 7.4, 5 mM MgCl2 and 200 mM NaCl and
complete EDTA-free protease inhibitors [Roche]) and mixed with an
equal volume of 0.1 mm glass beads (BioSpec).

To prepare membranes for SMA solubilisation assays the cells were
broken in a Mini-Beadbeater-16 (BioSpec) for eight 20 s cycles with
samples cooled on ice between each cycle. The cell lysate was pelleted
at 38000 RCF (avg) at 4 °C for 30 min before being re-suspended in
thylakoid buffer. Aliquots of 3 mL cell lysate were loaded onto multiple
sucrose step gradients consisting of 2 mL 50% w/w sucrose and 8 mL
30% w/w sucrose and centrifuged for 30 min at 111000 RCF (avg) in a
Beckman SW41 Ti rotor for 1 h at 4 °C. The bands containing thylakoid
membranes were harvested from the interface between the 30 and 50%
sucrose steps.

To prepare membranes for the purification of His10-tagged cytb6f,
the cells were broken by bead beating using ten 55 s cycles. Soluble and
membrane proteins were separated by centrifugation at 38000 RCF
(avg) at 4 °C for 30 min and the membranes were resuspended in
100 mL 20 mM Tris pH 8 containing 200 mM NaCl.

2.6. Solubilisation assays

The solubilisation assay was adapted from the method described by
Swainsbury et al. [27]. 2 mL Rba. sphaeroidesmembranes with an OD850

of 3 (1 cm pathlength) were prepared in solutions of 20 mM Tris pH 8
containing 200 mM NaCl and either 2.5% w/v SMA, 3% w/v n-Dodecyl-
beta-Maltoside Detergent (β-DDM) or without solubilising agents. Sy-
nechocystis sp. PCC 6803 membranes were solubilised at OD 5 (680 nm,
1 cm pathlength) in 25 mM sodium phosphate buffer pH 7.4 containing
200 mM NaCl, 5 mM MgCl2 and 2.5% w/v SMA in a total volume of
2 mL. Samples were incubated at room temperature in the dark for 1 h.

A volume of 1 mL was centrifuged at 100000 RCF (avg) for 2 h at
4 °C. After this, 0.9 mL was removed with care taken not to disturb the
pellet; this sample will be termed the “soluble fraction”. The remaining
1 mL of each sample, hereafter referred to as the “total fraction”, was
stored at 4 °C in the dark until required.

Spectra of the “total” and “soluble” fractions were collected in the
short (0.33 cm) path of a quartz semi-micro cuvette between 1000 and
400 nm. Samples were then transferred into 1 mL disposable cuvettes
and spectra were collected before and after the addition of a few grains
of sodium dithionite.

Spectra collected in the 0.33 cm path were processed by scatter
correcting and deconvoluting the contributions of RC-LH1-PufX and
LH2 using a modified version of an Excel spreadsheet by available at
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html. The
spreadsheet adds spectra of the two complexes and a scatter curve to
achieve a best fit to the data and returns spectra for the three compo-
nents according to their fitted contributions. The scatter curve used was
calculated using ʎ

−2.6, and the RC-LH1-PufX and LH2 reference spectra
were produced from proteins purified as described elsewhere [37,38].
The reference spectra used are shown normalised to their maxima in
Supplementary Fig. 1 panel E. The extraction efficiency of RC-LH1-PufX
and LH2 was calculated from the difference in absorbance at 875 and
850 nm respectively, in the “total” and “soluble” fractions. The 1 cm
pathlength spectra were processed by generating oxidised minus re-
duced spectra and using the difference at 560 nm between the “total”
and “soluble” fractions to estimate extraction efficiency of the cytbc1
complex.

For Synechocystis sp. PCC 6803 membranes the same procedure was
used, except samples had an OD680 of 5; the short pathlength UV/Vis
spectra were collected in a 0.2 cm quartz cuvette and reference spectra
for PSI and PSII were used for deconvolution using the procedure de-
scribed above for RC-LH1-PufX and LH2 using the reference spectra
presented in Supplementary Fig. 5C [39].

The extractions of cytbc1 and cytb6f were also estimated by haem
blot [40]. 20 μl volumes from “soluble” and “total” fractions were
separated on SDS-PAGE gels, transferred to a polyvinylidene di-
fluoride (PVDF) membrane and the cytochrome c/f subunits were vi-
sualised using Westar 2.0 solution (Cyanagen). Band intensities were
integrated using ImageJ [41] and extraction efficiencies were

D.J.K. Swainsbury et al. BBA - Bioenergetics 1859 (2018) 215–225

217



calculated by comparison of the band intensity of “total” and “soluble”
fractions.

2.7. Native PAGE electrophoresis

Synechocystis sp. PCC 6803 membranes with an OD680 of 6, 12 and
24 were solubilised in 2.5% w/v SMA as described in Section 2.6. 15 μL
of each sample was incubated in 4% w/v β-DDM for 1 h at room tem-
perature in the dark. Samples were then diluted 2-fold in either clear
native buffer (125 mM Tris pH 6.8, 30% glycerol) or blue native buffer
(125 mM Tris pH 6.8, 30% v/v glycerol, 0.01% w/v bromophenol
blue). Samples were run on NuPAGE Tris-acetate 3–8% gels (Novex) at
150 v for ~2 h. For clear native page the upper buffer was supple-
mented with 0.05% w/v deoxycholate and 0.04% w/v β-DDM and blue
native gels were supplemented with 1 mL blue native additive.

Gels were imaged using an Amasham Imager 600 in colour. Clear
native gels were also imaged by fluorescence with excitation at 460 nm
monitoring emission using the cy5 filter with 12 s exposure. Bands were
assigned according to [42].

2.8. Purification of cytbc1 and cytb6f complexes

Membranes from a 4 L culture of photosynthetically grown Rba.

sphaeroides cells or 8 L Synechocystis sp. PCC 6803 cells were solubilised
in 20 mM Tris pH 8 containing 200 mM NaCl and 1.5% w/v SMA at
room temperature for 1 h in the dark. Insoluble material was removed
by centrifugation at 113000 RCF (avg) for 1 h at 4 °C. Solubilised cytbc1
or cytb6f complexes were bound to a 20 mL HisPrep FF Ni-NTA column
(GE Healthcare) pre-equilibrated with 5 column volumes (CV) binding
buffer (20 mM Tris pH 8 containing 200 mM NaCl and 20 mM imida-
zole) by recycling overnight at 5 mL min−1. The column was washed
with 20 CV binding buffer followed by 10 CV binding buffer containing
40 mM imidazole. The cytbc1 or cytb6f complexes were eluted in 20 mM
Tris pH 8 containing 200 mM NaCl and 250 mM imidazole. For Rba.

sphaeroides cytbc1 further purification and buffer exchange were per-
formed by size-exclusion chromatography on a HiPrep Sephacryl 16/60
S-300 column (GE Healthcare) in 20 mM Tris pH 8 containing 200 mM
NaCl. Fractions with an absorbance at 415 nm to absorbance at 280 nm
ratio above 1.25 were concentrated and stored at −80 °C until re-
quired. The concentrations of cytbc1 haem b and haem c in the pre-
paration were determined using dithionite reduced samples with ex-
tinction coefficients of ε561–575 of 22 mM−1 cm−1and ε551–540 of
19 mM−1 cm−1, respectively, as described in [1].

2.9. Thin layer chromatography

Thin layer chromatography (TLC) was performed according to [43]
with some modifications. Lipids were extracted from ~0.5 nmol cytbc1
SMALPs or ~0.4 OD850 units of membranes in 50 μl 1:1 methanol:
chloroform. Samples were loaded alongside pure lipid standards on
Whatman Partsil Diamond LK6DF TLC plates. Plates were developed in
either 85:15:10:3.5 or 85:25:10:3.5 chloroform:methanol:acetic acid:water
(by volume) for 30 min. Lipids were visualised by incubating the plate in
50% v/v H2SO4 for 30 s followed by heating at 160 °C for 60 min. Plates
were imaged and band intensities were integrated in Image J [41]. Data
from both conditions were combined to give six data-sets for membranes
and eight for SMALPs and all data were normalised to the intensity of the
phosphatidylglycerol (PG) band.

2.10. Ubiquinone-10 quantification

Ubiquinone-10 (UQ10) was quantified according to “Determination
of Coenzyme Q10 by High Pressure Liquid Chromatography” customer
application brief #101 by Dionex and the method in [44] with several
modifications. Standards were prepared by dissolving pure UQ10 in
50:50 v/v chloroform:methanol containing 0.02% w/v ferric chloride.

Lipids were extracted from 0.5 nmol cytbc1 in the same solvent. Sam-
ples were analysed by high performance liquid chromatography (HPLC)
using a Beckman Coulter ODS 4.6 mm× 2.5 cm C18 column and eluted
at 1 mL min−1 in 80:20 v/v methanol:2-propanol over 45 min. Peaks at
29.5 and 32 min were integrated and used for calculations. Three
samples of cytbc1 were analysed and the calculated concentrations of
UQ10 were averaged.

2.11. Lipid quantification

Phospholipids were quantified according to [1]. A total of 0.46 nmol
cytbc1 was dissolved in approximately 50 μl chloroform in pre-cleaned
glass test-tubes. Phosphate standards were prepared using solutions of
0, 0.25, 0.5, 1, 5, 10, 20, 50, 75, 100 and 200 nMol KH2PO4 dissolved in
50 μL chloroform. All samples were dried at 140 °C for 20 min. Lipids
were hydrolysed by adding 0.15 mL perchloric acid and incubating at
180 °C for 2 h. Phosphate was visualised colourimetrically by adding
0.5 mL H2O, 1.25% w/v ammonium hepta-molybdate and 5% w/v
0.2 mL ascorbic acid followed by incubation at 100 °C for 5 min.
Spectra were collected and the absorbance at 800 nm was used to de-
termine phosphate concentrations.

2.12. Preparation of nanogold labelled membranes

Membranes were labelled with nanogold according to Cartron et al.
[1]. Membranes (OD850 of 10) were incubated for 1 h in 20 mM Tris
pH 8, or 20 mM Tris pH 8 containing 0.02% w/v β-DDM or 2.5% w/v
SMA for 1 h in a final volume of 2.4 mL. After incubation, 0.6 mL
0.5 mM 5 nm Ni-NTA-Nanogold (Nanoprobes) was added and samples
were incubated for an additional 1 h. Samples were loaded onto gra-
dients of 50/40/30/20/15% w/v sucrose in 20 mM Tris pH 8 and
centrifuged at 178305 RCF (avg) for 2 h at 4 °C. Fractions were col-
lected from the gradients in 1 mL volumes with a peristaltic pump and
spectra were collected between 400 and 1000 nm. A second set of
membranes was prepared as above without the addition of nanogold.
The relative cytbc1 content of gradient fractions was estimated by haem
blot as described for solubilisation assays (Section 2.6).

2.13. Transmission electron microscopy

Samples, either 5 μL 1 μM cytbc1 or OD850 0.3 membranes, were
incubated on glow-discharged carbon-coated copper grids for 30 s fol-
lowed by washing with deionised water and staining with 0.75% w/v
uranyl formate for 30 s. Grids were imaged in a Phillips CM100 TEM
equipped with a Gatan Ultrascan 667 camera at between 27000 and
52000× magnification.

2.14. Dynamic light scattering

Solutions containing 1 μM cytbc1 were prepared in 20 mM Tris pH 8
containing 200 mM NaCl and aggregates were removed by centrifuga-
tion at 15000 RCF in a benchtop centrifuge for 10 min. Samples were
filtered through a 0.2 μm syringe filter prior to measurement in a
Zitasizer nano ZS in a 1 mL cuvette collecting three sets of ten × 10 s
measurements at 25 °C.

3. Results

3.1. Solubilisation of chromatophore membranes with SMA

SMA has been shown to preferentially solubilise proteins within
lipid-rich membrane environments whilst leaving lipid-poor domains,
such as densely packed antenna arrays, intact [27]. In order to probe
the local lipid environment of the cytbc1 complex we performed solu-
bilisation trials with SMA and measured its ability to solubilise RC-LH1-
PufX, LH2 and cytbc1. We selected 10 kDa Mw SMA with a 2:1 styrene to
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maleic acid ratio for this study. This polymer has previously been shown to
efficiently solubilise proteins residing in lipid-rich environments from in
Rba. sphaeroides membranes whereas RC-LH1-PufX arrays are left intact
[27]. Thus, this SMA should allow the best possible discrimination of lipid-
rich and lipid-poor domains. As the level of LH2 expression can affect the
morphology of chromatophore membranes, solubilisation trials were per-
formed onmembranes prepared from cells grown either semi-aerobically in
the dark, or photosynthetically under ~30 μmol m−2 s−1 (low light) for
48 h, or ~100 μmol m−2 s−1 (medium light) for 16 h. By deconvolution of
the spectra the molar ratios of LH2 to RC-LH1-PufX in these membranes
were estimated to be 2.5:1, 2.4:1 and 2.0:1, respectively.

To estimate the percentage of each complex extracted, UV/Vis spectra
of SMA solubilised membranes were collected before and after ultra-
centrifugation. The contributions of RC-LH1-PufX and LH2 complexes, and
of light scattering, were deconvoluted by fitting spectra of pure complexes
and a calculated scatter curve to a spectrum of the SMA treated chroma-
tophores. Example spectra and their deconvoluted components are shown
in Supplementary Fig. 1. The deconvoluted spectra were used to estimate
the solubilisation efficiencies for RC-LH1-PufX and LH2, shown in Fig. 2
with blue and green bars respectively, calculated by the differences in
absorbance before and after removal of the insoluble material. The solu-
bilisation of cytbc1 was estimated by comparing the change in absorbance
at 560 nm upon dithionite treatment before and after ultracentrifugation
(Fig. 2, magenta bars). A second estimate was made by detection of the
covalently linked c-type cytochrome of the 30 kDa cytc1 subunit by haem
staining [40] and comparing the intensity of the bands in the total and
soluble fractions (Fig. 2, shaded bars). Example haem blots and difference
spectra are shown in Supplementary Fig. 2. These blots also contained a
24 kDa band, consistent with the apparent mass of the membrane-asso-
ciated cytcy [45], which was omitted from these calculations.

Treatment of chromatophore membranes with 2.5% w/v SMA re-
vealed that the major photosynthetic complexes are not solubilised with
uniform efficiency. As shown in Fig. 2, the RC-LH1-PufX complexes are
highly resistant to SMA solubilisation, and are extracted with
3.3 ± 1.1% efficiency from membranes from semi-aerobically grown
cells. This value is similar to that previously determined by Swainsbury
et al. [27] for RC-LH1-PufX containing membranes lacking LH2 from
cells grown under the same conditions. The low solubilisation efficiency
arises because SMA is unable to disrupt the highly ordered and closely
packed arrays formed by these complexes [27]. The solubilisation ef-
ficiency increases slightly in membranes from low and medium light
grown cells at 6.4 ± 0.2 and 9.5 ± 0.3%, respectively. The LH2
complex is slightly less resistant to SMA solubilisation with efficiencies
of 7.8 ± 1.7, 17.9 ± 0.3 and 22.0 ± 0.4% for membranes from semi
aerobically grown, low light and medium light grown cells, respec-
tively. This level of LH2 solubilisation is similar to that in trials per-
formed on membranes from strains lacking the RC-LH1-PufX complex
(data not shown). It should be noted that the increase in solubilisation
efficiency correlates with the reduction of the LH2 to RC-LH1-PufX
ratio. This is presumably a consequence of the somewhat different ar-
rangements of the RC-LH1-PufX and LH2 within these membranes.
Estimated solubilisation of cytbc1 was much more efficient at 64 ± 4,
62 ± 9 and 70 ± 7% for semi aerobic, low light and medium light
membranes respectively, as determined by reduced-oxidised spectra
shown in Fig. 2 by the solid magenta bars (see Supplementary Fig. 2 for
raw spectra). Haem blots also demonstrate that cytbc1 is very effectively
solubilised by SMA with estimated efficiencies of 92 ± 2, 87 ± 12
and 88 ± 24% for semi aerobic, low light and medium light mem-
branes respectively, as shown by hatched bars in Fig. 2 (see Supple-
mentary Fig. 2 for raw data). Additionally, there was no apparent trend
in relation to the LH2 to RC-LH1-PufX ratio. To demonstrate that this
effect is specific to SMA, control solubilisations were performed using
3% w/v β-DDM. Solubilisation efficiency was above 74% under all
growth conditions for all complexes (only data from low light mem-
branes are shown for clarity). In the absence of solubilising agents,
solubilisation was< 2% for the RC-LH1-PufX and LH2 complexes and
below the limit of detection for cytbc1.

3.2. Characterisation of insoluble material after SMA treatment

To examine RC-LH1-PufX and LH2 after treatment of chromato-
phores with SMA, solubilisation mixtures were fractionated on sucrose
density gradients then analysed by UV/Vis spectroscopy, haem blotting
and negative-stain TEM imaging. For comparative purposes we also
analysed chromatophores treated with sub-solubilising concentrations
(0.02% w/v) of β-DDM to generate flattened membrane patches, which
are more amenable to nanogold labelling and TEM imaging than un-
treated chromatophores [1]. This β-DDM concentration allows imaging
of membrane patches containing all of their native complexes. Panel A
in Fig. 3 shows sucrose gradients of Rba. sphaeroides chromatophores
after these treatments. The untreated membranes form an abundant
band at the 20/30% w/w sucrose interface (at the boundary of fractions
4 and 5 in Fig. 3A). After treatment with 0.02% w/v β-DDM this band is
still present suggesting the membranes remain intact, although the
band appears more diffuse suggesting the population has become more
heterogeneous. After treatment in fully solubilising concentrations of
SMA, a band remains at the 20/30% w/w sucrose interface, suggesting
that much of the membrane remains intact after SMA solubilisation.
These gradients were separated into 1 mL fractions, with fraction 1
being at the bottom and 11 at the top of the tube. The membrane bands
(fraction 5 for all samples) have distinctive absorbance spectra for RC-
LH1-PufX and LH2 demonstrating that the integrity of these complexes
has been maintained. As shown in Fig. 3 panel B, haem blotting reveals
that for the untreated and β-DDM-treated samples the cytc1 subunit
remained associated with the RC-LH1-PufX and LH2 containing mem-
brane band (raw data are shown in Supplementary Fig. 3). However,

Fig. 2. Extraction efficiencies of RC-LH1-PufX (blue), LH2 (green) and the cytbc1 complex

(magenta) in membranes prepared from cells grown under semi-aerobic (SA), or low light

(LL) and medium light (ML) photosynthetic conditions. The left panel shows solubilisa-

tions in 2.5% w/v SMA, the centre panel shows low light membranes solubilised in 3% w/

v β-DDM, and the right panel shows results where no solubilising agents were added.

Solid bars show values obtained by spectroscopy and hatched bars show values for cytc1
by haem staining. Error bars show standard error of the mean for three replicates.
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after SMA solubilisation the cytc1 subunit is found in the upper portion
of the gradient and no longer co-migrates with the remaining mem-
brane material, showing that cytbc1 has been solubilised and separated
from the RC-LH1-PufX and LH2 complexes.

In a second set of gradients Ni-NTA nanogold was used to selectively
label the His10 tag of the cytbc1 complexes. As shown in Supplementary
Fig. 4A, a significant band was observed at the 30/40% w/w interface,
below the position of the major band in Fig. 3A at the 20/30% w/w
interface, for untreated and β-DDM treated samples. Free nanogold
migrated to the bottom of the tube (data not shown). For the SMA

solubilised sample the lower band (40/30% interface) was very faint
with the upper band (20/30% interface) being prominent, suggesting a
reduced degree of membrane labelling. TEM images of grids prepared
from each band revealed that the upper bands of untreated and β-DDM
treated membranes contain mostly unlabelled circular objects with
diameters of approximately 50 nm (shown in Supplementary Fig. 4B
and C, zoomed images on the left show typical particles), consistent
with the expected morphology of intact closed chromatophores. The
lower band of the untreated membranes also contained similar struc-
tures with a low level of nanogold labelling, as shown in Supplementary
Fig. 4D. In contrast the lower band of the β-DDM treated complexes
contained large patches of 100–200 nm diameter (shown in Fig. 4A and
Supplementary Fig. 4E), with multiple nanogold beads often appearing
in pairs. Measurement of the patch area and number of nanogold beads
gave a labelling density of 0.41 ± 0.19 beads per square micron (from
5 patches with an average area of 17500 ± 10400 μm2; errors re-
present standard deviations of values for the individual patches). This
result is consistent with the expected dimeric structure of the cytbc1
complexes and is similar to images obtained by Cartron et al. [1] fol-
lowing the same sample preparation procedure. Together with the UV/
Vis spectra we conclude that the membrane patches in the β-DDM-
treated lower band are flattened chromatophores containing physiolo-
gical quantities of cytbc1 complexes. The TEM images of the SMA-so-
lubilised and β-DDM treated samples are clearly different. Membrane
patches in the upper band were smaller than those from the β-DDM
treated samples at 50–100 nm in size and did not resemble intact
chromatophores (shown in Fig. 4B and Supplementary Fig. 4E). These
patches contained between 0 and 2 nanogold labels on average and
each label was observed in isolation with a density of 0.17 ± 0.11
beads per square micron (from five patches with an average area of
5900 ± 1300 μm2). The lower SMA band also contained 50–100 nm
membrane patches, which had a slightly higher degree of nanogold
labelling (0.3 ± 0.23 beads per square micron, from 5 patches with
average area of 8100 ± 5200 μm2) than the upper band, although this
fraction accounted for only a minor proportion of the pigmented ma-
terial. Together, data from the sucrose gradients in Fig. 3 and TEM
imaging suggest that the majority of membrane fragments remaining
after SMA solubilisation (seen in the upper SMA band, Fig. 4B) are
smaller than those expected for flattened intact chromatophore mem-
branes (DDM lower band, Fig. 4A), and have a greatly reduced cytbc1
content. This is likely to be the result of preferential solubilisation of
lipid-rich regions containing cytbc1 by SMA, so they no longer co-mi-
grate with the protein-rich RC-LH1-PufX and LH2 arrays (as shown in
Fig. 3).

3.3. Purification and characterisation of cytbc1 SMALPs

Multiple reports of solubilisation of proteins with SMA have de-
monstrated that the annular lipids of membrane complexes are co-

Fig. 3. A: Images of 15–50% w/w sucrose density

gradients of untreated, 0.02% w/v β-DDM

treated and SMA-solubilised chromatophore

membranes. The scale on the right-hand side

shows the approximate positions of the fractions

taken from the gradient. B: UV/Vis absorbance

profiles of fractions from the sucrose gradients

shown in panel A. Absorbance of LH1/LH2

(squares connected by lines, based on absorbance

at 850 nm) and relative intensities of the cytc1
subunit from haem blots (bars) are shown.

Fig. 4. Low resolution TEM images of typical membrane patches from nanogold-labelled

chromatophores treated with 0.02% w/v β-DDM (A, left panels) or after complete solu-

bilisation in 2.5% w/v SMA (B, right panels). Wide-field images are shown in

Supplementary Fig. 4. Scale bars in the lower right of each image are 50 nm.
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purified and amenable to analysis [28,31,34,46]. To this end we
purified cytbc1 SMALPs by nickel-affinity chromatography. Eluted
fractions had a red colour and UV/Vis spectra revealed strong absor-
bance at 415 nm, which is indicative of haem containing proteins.
Further purification by size exclusion chromatography removed re-
sidual RC-LH1-PufX and LH2, which eluted in the void volume. As
shown in Fig. 5A, SDS-PAGE of purified cytbc1 SMALPs revealed four
major bands with masses corresponding to those of the cytb (50 kDa),
cytc1-His (30.6 kDa), Rieske Fe-S (20 kDa) and Subunit IV (15 kDa)
polypeptides [46]. A fifth faint band is observed at ~25 kDa; identi-
fication of the gel band by tryptic digestion and mass spectrometry
showed that both cytc1 (presumably a degradation product) and the
zinc transporter ZnuC (UniProtKB ID: Q3IWB5) are present. ZnuC has
a molecular weight of 26.5 kDa and eight histidine residues in its N-
terminal 15 amino acids. This unusually high histidine content may
give ZnuC a natural affinity for the nickel resin. Nevertheless, the lack
of RC-LH1-PufX and LH2 in the final preparation demonstrates that
the cytbc1 complex has been effectively separated from the other
major components of the chromatophore. Spectra of the pure com-
plexes are shown in Fig. 5B and C. Upon reduction of the complexes
with dithionite signals for both b- and c-type haems are observed.
Analysis of reduced minus oxidised spectra estimated that the haem b

to c ratio was 1.7:1 demonstrating that the cytbc1 complexes are intact
and fully functional.

TEM images of the purified cytbc1 SMALPs (Fig. 6A) shows objects
with a roughly elliptical shape. The average dimensions of the selected
objects shown in the right-hand panels of Fig. 6A are
14 ± 2 × 9 ± 1 nm, roughly consistent with the size of the crystal
structure of the Rba. sphaeroides cytbc1 complex shown in Fig. 6B [47].
Analysis of the wide-field images (left) shows that larger structures are
not present, demonstrating the preparation contains discrete cytbc1
dimers rather than small membrane fragments, such as those in Fig. 4B.
The presence of cytbc1 dimers is further supported by dynamic light
scattering of the cytbc1 SMALPs, which detected particles with hydro-
dynamic diameters of 24 ± 10 nm corresponding to 97.9% of the
material by mass.

As the cytbc1 SMALPs are expected to contain lipids and quinones in
addition to the identified polypeptides, analysis of the lipid content was
performed. Thin layer chromatography of methanol/chloroform ex-
tracts of cytbc1 SMALPs shows that five lipid species co-purified with
the protein, identified as cardiolipin (CL), phosphatidylethanolamine
(PE), phosphatidylglycerol (PG) and phosphatidylcholine (PC) by the

matched migration of pure standards. The fifth lipid, sulfoquinovosyl
diacylglycerol (SQDG), was assigned based on data from Swainsbury
et al. [22,27] where the same five components were identified in Rba.

sphaeroides RCs prepared from membranes lacking both LH1-PufX and
LH2 complexes. It should be noted that recent publications on the rapid
exchange of lipids in SMALPs suggest that conclusions cannot be drawn
on particular lipid enrichment of the target complexes unless they are
tightly bound to the protein [48,49]. Nevertheless, lipid extracts of bulk
chromatophores show a similar lipid profile suggesting SMALP lipids
originated from the source membrane and remained associated with the
complex during preparation (Fig. 7). Quantification of the phospholi-
pids estimates that there is an average of 56 ± 6 phospholipids per
cytbc1 dimer. To further characterise the co-purified membrane en-
vironment we used HPLC to show that 0.96 ± 0.18 UQ10 molecules
are associated with each cytbc1 complex. Pre-treatment of the mem-
branes with antimycin A prior to purification yielded complexes where
UQ10 was not detected (data not shown) suggesting any co-purified
quinone is associated with the tight-binding Qi site [47]. It should be
noted that the aforementioned lipid exchange between SMALPs, or
some as yet unexplored effect of SMA, may preclude enrichment of
UQ10 molecules that natively reside within the lipid annulus of the
cytbc1 complex. This may explain why only a single, tightly bound UQ10

molecule was co-purified with each cytbc1, but we also note that in the
case of cytbc1 there is no physical confinement of quinones by a defined
protein environment surrounding the complex. In contrast, a pool of
10–15 UQ10 molecules/RC is sequestered within the solubilised and
purified RC-LH1-PufX complex prepared using β-DDM [43], but in this
case the quinones are effectively trapped between the RC and the en-
circling LH1 ring.

3.4. Extraction of cytb6f from Synechocystis sp. PCC 6803 membranes

To further examine the ability of SMA to sample the lipid environ-
ments of complexes in photosynthetic membranes we attempted to re-
plicate the study of Rba. sphaeroides cytbc1 with the cytb6f complex of
the model freshwater cyanobacterium Synechocystis sp. PCC 6803
(hereafter Synechocystis). Using a procedure similar to the one described
in Section 3.1, we found that SMA efficiently solubilises the cytb6f
complex. We estimated an extraction efficiency of 67 ± 11% by
comparison of reduced minus oxidised spectra in total and soluble
fractions, and 85 ± 2% by haem staining, as shown in Fig. 8A by the
solid and hatched magenta bars, respectively (see Supplementary Fig. 5

Fig. 5. A: SDS-PAGE gel of cytbc1 SMALPs. * denotes a fifth con-

taminating band (see text). B: UV/Vis absorbance spectra of SMA

purified cytbc1 complexes either as prepared (black) or after re-

duction with sodium dithionite (red). Labels correspond to promi-

nent peaks in the reduced spectrum. C: Reduced minus oxidised

spectra calculated from spectra in panel B. The cytc1 to cytb ratio

was calculated as 1.7:1 (see Materials and methods for details).
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for raw spectra). By deconvolution of the UV/Vis spectra of the total
and soluble fractions following SMA treatment we could also estimate
the extraction efficiency of both photosystems, PSI and PSII. This gave
values of 2 ± 0.5% and 61 ± 11%, respectively (Fig. 8A, solid red
and blue bars, and Supplementary Fig. 5). It should be noted that the
values here are subject to large errors given their strongly overlapping
absorption spectra. Nevertheless, as shown in Supplementary Fig. 5
panel D, the shift of the chlorophyll absorbance from 678 nm in the

total fraction to 673 nm after removal of insoluble material clearly
demonstrates that PSII is the dominant species solubilised by SMA
whilst PSI mostly remains insoluble. This conclusion is supported by
analysis of the soluble and total fractions by native PAGE. From blue
native PAGE gels we observe that PSI complexes are depleted from the
soluble fraction whereas PSII is not (Supplementary Fig. 5E). Fluores-
cence images of clear native PAGE gels also showed a strong signal for
PSII in both the total and soluble fractions (Supplementary Fig. 5E).
Integration of the fluorescence from three solubilisation trials gave an
estimated PSII extraction efficiency of 58 ± 4% as shown in Fig. 8A by
the blue hatched bar. This value is in good agreement with the estimate
by deconvolution of the spectra.

To further analyse the solubilised cytb6f complexes we enriched
cytb6f SMALPs by nickel-affinity chromatography. As shown in Fig. 8B
the UV/Vis absorbance spectrum is typical of this complex showing a
670 nm chlorophyll peak, a strong haem Soret band at 420 nm and
carotenoid absorbance between 400 and 550 nm [50]. Upon dithionite
reduction two distinct peaks at 565 and 559 nm for the b- and c-type
haems become apparent, suggesting that the cytb6f complex is intact
within SMALPs with all of its cofactors present. This spectrum matches
that of pure cytb6f reported previously [50]. These spectra also suggest
that the cytb6f complex does not co-purify with other pigmented com-
ponents of the photosynthetic membranes as PSI or PSII absorbance
features were not observed. We further analysed these complexes by
negative stain TEM as shown in Fig. 8C. The typical wide-field image
shown is free of large objects indicative of membrane patches or ag-
gregates. The six zoomed objects, shown in the Fig. 6D, are consistent
with cytb6f viewed from multiple angles. The objects have average di-
mensions of 12 ± 3 × 8 ± 1 nm and are similar in shape to the
roughly scaled images of the Nostoc sp. PCC 7120 crystal structure
shown in Fig. 8E [51]. Taken together the analysis of the pure cytb6f
SMALPs shows that they are solubilised as discrete dimeric complexes
rather than as part of larger membrane fragments. They also do not co-
purify with other membrane proteins.

4. Discussion

SMA preferentially solubilises cytbc1 complexes from Rba. sphaer-

oides chromatophore membranes, leaving RC-LH1-PufX and LH2

Fig. 6. Panel A: Negative stain TEM images of purified cytbc1-SMALPs. Left: wide field image with selected complexes highlighted. Scale bar is 50 nm. Right: Zoomed images of six

selected objects. The average dimensions were 14 ± 2× 9 ± 1 nm. Inset scale bars are 10 nm. Panel B. Surface views of the cytbc1 crystal structure [47] (PDB ID: 2QJP) from the end,

side, or top. Images have been approximately scaled to match the sizes of zoomed objects in panel A. The two cytbc1 monomers are shown in blue and red. Grey ovals show the area in

which the lipid disc is expected to be located.

Fig. 7. Left panel (A): Lipid profiles of chromatophore membranes (blue) and cytbc1-

SMALPs (grey) determined by thin layer chromatography. Identified lipids were phos-

phatidylethanolamine (PE), cardiolipin (CL), phosphatidylglycerol (PG), phosphati-

dylcholine (PC) and sulfoquinovosyl diacylglycerol (SQDG). All band intensities are

normalised to PG, labelled with asterisks. Error bars show standard error of the mean
from seven (membranes) or eight (cytbc1-SMALPs) samples. Right panel (B):

Representative TLC lanes for membranes and cytbc1-SMALPs.
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complexes largely unaffected. SMA acts efficiently on membrane com-
plexes that sit in lipid-rich environments, as shown by work on several
proteins including the bacterial SecYEG translocon and KcsA potassium
channel [23,28]. Conversely, arrays of well-ordered and/or closely
packed protein complexes such as RC-LH1-PufX and bacteriorhodopsin
are poorly solubilised [27,52]. The liberation of cytbc1 complexes from
chromatophores by SMA fits with the proposed architecture of chro-
matophore membranes [1] in which LH2 and RC-LH1-PufX complexes
form closely packed protein-rich arrays, whereas cytbc1 complexes are
found in lipid-rich regions of the membrane, which is ideal for the
production of SMALPs due to the abundance of lipids from which a
nanodisc can be formed.

There are several compelling reasons for cytbc1 complexes residing
in lipid-rich domains, with no tight, stoichiometric interaction with
another complex such as RC-LH1-PufX. First, strong association of the
cytbc1 with RC-LH1-PufX could lower the number of potential inter-
actions between antenna complexes. Second, cytbc1 complexes residing
in lipid-rich domains are able to utilise quinols from any source such as
from Complex I or succinate dehydrogenase rather than those in
strongly localised pools. In some bacteria the presence of cytbc1

complexes in lipid-rich domains might also improve the potential for
interacting with the membrane-associated electron carrier cytcy which
is utilised alongside cytc2 during aerobic and semi-aerobic growth for
electron transfer between the cbb3-type cytc oxidase and the cytbc1
complex [45]. A final advantage to residing in a lipid-rich domain may
be ready access to a local pool of reduced quinols, in this case fed by
turnover at nearby RCs. It is known that quinones form strongly loca-
lised pools around sub-populations of RCs to improve the efficiency of
quinone reduction [17], so it is therefore not unreasonable to suggest
that such pools may also form around the cytbc1 complexes. Such an
arrangement would allow accumulation of quinols during high light
growth where reduction of quinone at the RC exceeds the capacity of
the cytbc1 complexes to oxidise them, which occurs at just 5% of full-
sunlight intensity [2]. In general, cytbc1 complexes are the limiting
factor in the overall conversion of absorbed solar energy to ATP by Rba.

sphaeroides [1,2].
The benefits of placing the cytbc1 complex in a lipid-rich domain

may not just be limited to Rba. sphaeroides. This theory is supported by
the finding that the cytb6f complex of the model freshwater cyano-
bacterium Synechocystis sp. PCC 6803 is susceptible to SMA

Fig. 8. Cytochrome b6f extraction from Synechocystis thylakoids with SMA. (A): Estimated extraction efficiencies of PSI (solid red) and PSII (solid blue) from deconvoluted absorbance

spectra. PSII solubilisation was also estimated from clear native page in-gel fluorescence (hatched blue bar). Solubilisation estimates for cytb6f from reduced minus oxidised spectra and

haem staining are shown with solid and hatched magenta bars, respectively. Error bars show standard errors of the mean. Raw data are shown in Supplementary Fig. 5. (B): UV/Vis

spectra of purified cytb6f either as prepared in buffer (black line) or after reduction with dithionite (red line). Labels show wavelengths of prominent peaks of the reduced spectrum. (C):

Wide field negative stain TEM images of purified cytb6f-SMALPs. (D): Zoomed images of selected complexes highlighted in panel C. Scale bar is 50 nm. The average dimensions were

12 ± 2 × 9 ± 1 nm. (E): Surface views of the cytb6f crystal structure from Nostoc sp. PCC 7120 (PDB ID: 4OGQ) from the end, side and top. Images have been approximately scaled to

match the sizes of zoomed objects in panel D. The two cytbc1 monomers are shown in blue and pink. Grey ovals show the area in which the lipid-disc is expected to be located.
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solubilisation, with an efficiency similar to that of the Rba. sphaeroides

cytbc1 PSII is similarly affected by SMA. These data support the hy-
pothesis that PSI resides in highly ordered, protein-rich arrays whereas
PSII and cytb6f are likely to reside in less ordered regions of the thy-
lakoid membrane [35]. The Synechocystis cytb6f complex has been de-
scribed to reside at the “crossroad of photosynthetic electron transport
pathways” [18] and thus requires plasticity in terms of its molecular
interactions to accept quinols and oxidised cytochrome c6 or plasto-
cyanin from a variety of sources [18,53,54]. Finally, it is possible that
cytb6f is also found in lipid-rich environments in the thylakoid mem-
branes of chloroplasts; this is supported by the finding of Bell et al. [32]
who solubilised spinach thylakoids with SMA and found that the in-
soluble PSI containing fraction was devoid of cytb6f and PSII complexes.
This suggests that, like in Synechocystis, cytb6f and PSII are susceptible
to SMA solubilisation. Johnson et al. [55] have also observed that
treatment of spinach thylakoid membranes with the α isomer of DDM
specifically removes cytb6f leaving the PSI and PSII complexes in the
membrane, also consistent with a lipid-rich environment for this com-
plex.

5. Conclusion

Using the unique ability of SMA to preferentially solubilise protein
complexes from lipid-rich regions of native biological membranes, we
have demonstrated that the cytbc1 complex resides in lipid-rich regions
of the otherwise protein-rich chromatophore. These lipid-rich regions
have a similar lipid composition to the bulk chromatophore membrane,
with around 56 lipids co-purifying with the dimeric cytbc1 complex.
The observation that the insoluble fraction contains large membrane
patches of RC-LH1-PufX and LH2, whereas cytbc1 is purified from the
soluble fraction in the form of discrete dimers in small nanodisc
structures, further highlights the ability of SMA to remove some com-
plexes from a specific membrane environment whilst preserving protein
arrays.

Together these data provide support for the model of chromato-
phore membranes whereby light-harvesting and RC complexes reside in
densely packed arrays for optimal energy transfer efficiency, whereas
the cytbc1 complexes occupy lipid-rich areas [1]. Placing cytbc1 com-
plexes in lipid-rich domains rather than in arrays or supercomplexes
may allow them to accept quinols from a range of electron transport
chains to provide both protons and electrons to drive efficient energy
generation under a wide-range of growth conditions.

We have extended our study to show that the cytb6f complex of the
cyanobacterium Synechocystis is highly susceptible to SMA solubilisa-
tion suggesting that it also resides in a locally lipid-rich environment.
Our data, along with other published data regarding SMA solubilisation
of energy producing membranes, suggest that cytbc1-type complexes
universally reside in lipid-rich membrane regions to aid their critical
functions for proton translocation during cellular energy generation
under a variety of growth conditions.
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