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ABSTRACT Cationic and anionic block copolymer worms are prepared by polymerization-

induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) 

aqueous dispersion copolymerization of 2-hydroxypropyl methacrylate (HPMA) and glycidyl 

methacrylate (GlyMA), using a binary mixture of a non-ionic poly(ethylene oxide) (PEO) 

macromolecular RAFT agent and either a cationic poly([2-(methacryloyloxy)ethyl] 

trimethylammonium chloride) (PQDMA) or an anionic poly(potassium 3-sulfopropyl 

methacrylate) (PKSPMA) macromolecular RAFT agent. Covalent stabilization of the resulting 

cationic or anionic block copolymer worm cores was achieved via reaction of the epoxide groups 

on the GlyMA repeat units with 3-mercaptopropyltriethoxysilane (MPTES). Aqueous 

electrophoresis studies indicated a pH-independent mean zeta potential of +40 mV and -39 mV for 

the cationic and anionic copolymer worms, respectively. These worms are expected to mimic the 
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rigid rod behavior of water-soluble polyelectrolyte chains in the absence of added salt. The kinetics 

of adsorption of the cationic worms onto a planar anionic silicon wafer was examined at pH 5 and 

found to be extremely fast at 1.0% w/w copolymer concentration in the absence of added salt. 

Scanning electron microscopy (SEM) analysis indicated that a relatively constant worm surface 

coverage of 16% was achieved at 20 °C, for adsorption times ranging from just 2 seconds up to 2 

minutes. Furthermore, the successive layer-by-layer deposition of cationic and anionic copolymer 

worms onto planar surfaces was investigated using SEM, ellipsometry and surface zeta potential 

measurements. These techniques confirmed that the deposition of oppositely-charged worms 

results in a monotonic increase in mean layer thickness, with concomitant surface charge reversal 

occurring on addition of each new worm layer. Unexpectedly, two distinct linear regimes were 

observed when plotting the mean layer thickness against the total number of adsorbed worm layers, 

with a steeper gradient (corresponding to thicker layers) being observed after the deposition of six 

worm layers. 

INTRODUCTION 

Following seminal work by Decher,1-3 layer-by-layer (L-b-L) deposition of oppositely-charged 

polyelectrolytes has become increasingly popular for the convenient preparation of functional 

multilayers at either planar surfaces or colloidal interfaces under exceptionally mild conditions 

(e.g. aqueous solution, neutral pH and ambient temperature).4-8 In essence, the L-b-L technique 

simply involves alternately immersing the desired substrate into successive aqueous solutions of 

anionic and cationic polyelectrolytes with intermediate washing steps.9 According to Laschewsky 

and co-workers,5 adsorption of a polyelectrolyte onto an oppositely-charged surface is driven by 

the gain in entropy that results from the release of small molecule counter-ions (e.g. Na+ or Cl-). 
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Particularly strong adsorption is achieved in the absence of salt, which can otherwise screen the 

electrostatic interactions. Under such conditions, the adsorbed polyelectrolyte chains adopt a 

relatively flat conformation at the surface and the adsorbed amount, ī, is relatively low (typically 

ī ~ 0.1–0.5 mg m-2). A wide range of thin films comprising polyelectrolyte multilayers (PEMs) 

have been prepared on planar substrates,10-15 including antimicrobial surfaces.16 However, the 

design of PEMs is not just restricted to polyelectrolytes. In principle, any charged species can be 

incorporated into a PEM. For example, composite PEMs have been prepared using 

polyelectrolytes in combination with oppositely-charged inorganic colloids17-20 or biologically-

active species such as enzymes,21 DNA,22-24 viruses25-26 or proteins.27-29 Furthermore, the L-b-L 

protocol has been extended from flat surfaces to include colloidal substrates30-34 and even human 

red blood cells.35-36 PEM-modified surfaces have been evaluated for biomedical applications9, 37-

38 but also for corrosion protection39 or for the preparation of electrically conductive films.40 Of 

particular interest are PEMs comprising block copolymer micelles41-43 and vesicles,32 which have 

significantly larger dimensions than soluble polyelectrolytes. The scientific literature also contains 

a few examples of composite PEMs comprising highly anisotropic particles such as cellulose 

nanocrystals,44-47 microfibrillated cellulose48 or mixtures of cellulose nanocrystals and single-

walled carbon nanotubes.49  

It is relatively straight-forward to prepare highly functional block copolymers as a result of 

recent developments in pseudo-living radical polymerization techniques such as atom transfer 

radical polymerization (ATRP)50-51 and reversible addition-fragmentation chain transfer (RAFT) 

polymerization.52-53 Furthermore, RAFT-mediated polymerization-induced self-assembly 

(PISA)54-56 offers a robust strategy for the rational design of highly anisotropic functional block 

copolymer worms at relatively high copolymer concentrations. Such vermicious particles are 
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typically rather polydisperse in length (although Sumerlin and co-workers have recently claimed 

to achieve better control over this parameter57) but have relatively well-defined worm widths 

(≈ 20 – 40 nm). However, Semsarilar and co-workers reported that the preparation of highly 

charged worms directly in water can be problematic, because of strong electrostatic repulsion 

between neighboring polyelectrolytic stabilizer chains usually limits the copolymer morphology 

to kinetically-trapped spheres.58-59 Diluting such lateral electrostatic interactions by incorporating 

a suitable non-ionic stabilizer60 can enable convenient access to either cationic or anionic diblock 

copolymer worms directly in the form of concentrated aqueous dispersions via aqueous PISA.58-62 

In principle, this should enable investigation of the L-b-L adsorption of oppositely-charged worms 

onto planar surfaces. It is well-known that polyelectrolyte chains behave as rigid rods in salt-free 

solutions.63-64 In principle, cross-linking the worm cores should increase their persistent length and 

rigidity.65 Hence covalently-stabilized block copolymer worms should serve as useful mimics for 

understanding individual polyelectrolyte chains in terms of their L-b-L behavior in the absence of 

salt. However, unlike molecularly-dissolved polyelectrolytes, it should be possible to visualize 

each layer of adsorbed worms via electron microscopy. Herein, we investigate the successive L-

b-L deposition of cross-linked cationic and anionic block copolymer worms onto planar surfaces 

using scanning electron microscopy (SEM), ellipsometry and surface zeta potential measurements. 

 

RESULTS AND DISCUSSION 

Synthesis of macromolecular chain transfer agents 

The use of poly(ethylene oxide) (PEO) macro-CTAs as a stabilizer block for PISA syntheses 

has dramatically grown over the past few years.66-73 For example, we recently reported60, 70 the 

preparation of a PEO113 macro-CTA via amidation. However, this synthetic route requires 
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relatively long reaction times. In the present work, a PEO113 macro-CTA is instead prepared via 

esterification of a hydroxy-capped poly(ethylene oxide) methyl ether using 4-cyano-4-(2-

phenylethanesulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC), see Scheme S1.67 This 

synthesis route reduces the total reaction time from approximately two weeks to just three days. 

1H NMR analysis indicated a mean degree of esterification of 95% by comparing the integrated 

signals associated with the aromatic end-groups at 7.2–7.5 ppm with the PEO backbone signals at 

3.3 – 4.6 ppm (see Figure S1a). THF gel permeation chromatography (GPC) analysis indicated an 

Mn of 5,500 g mol-1 and an Mw / Mn of 1.05 against a series of near-monodisperse poly(ethylene 

oxide) (PEO) calibration standards (see Figure S1b). 

A poly(2-(methacryloyloxy)ethyl trimethylammonium chloride) (PQDMA) macro-CTA was 

synthesized by RAFT aqueous solution polymerization using MPETTC74-75 as the RAFT agent 

(see Scheme S2). 1H NMR was used to calculate a mean degree of polymerization (DP) of 140, by 

comparing the integrated aromatic signals at 7.2 – 7.5 ppm against those assigned to the 

methacrylic backbone at 0.5 – 2.5 ppm (see Figure S2). Aqueous GPC studies indicated an 

Mn of 19,200 g mol-1 and an Mw / Mn of 1.26 (expressed relative to PEO calibration standards) (see 

Figure S2). Potassium 3-sulfopropyl methacrylate (KSPMA) was selected as the anionic monomer 

because Semsarilar et al.58 had previously reported the preparation of highly anionic PKSPMA-

based block copolymer nanoparticles via RAFT aqueous dispersion polymerization of 2-

hydroxypropyl methacrylate (HPMA). Accordingly, a PKSPMA macro-CTA was synthesized by 

RAFT solution polymerization in a 13:7 v/v methanol/water mixture using PETTC as a RAFT 

agent (see Scheme S3). This solvent composition was selected to ensure full solubility of all 

reagents at both 20 °C and 70 °C. A mean DP of 150 was targeted using a [PETTC] / [ACVA] 

molar ratio of 5.0. 1H nuclear magnetic resonance (NMR) studies confirmed that a KSPMA 
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conversion of 69% was achieved after heating for 3 h at 70 °C. The purified PKSPMA macro-

CTA had a mean DP of 111, as judged by comparing the integrated aromatic signals at 7.2 – 7.5 

ppm to that of the oxymethylene proton signal at 4.0 – 4.2 ppm (Figure S3). Aqueous GPC studies 

at pH 9.8 indicated an Mn of 28,700 g mol-1 and an Mw / Mn of 1.15 (see Figure S3). 

Unfortunately, there is no common GPC eluent that dissolves all four of the constituent 

(co)polymers that make up the polyelectrolytic worms reported in this study. In view of this 

problem, experiments were performed to investigate the living character and blocking efficiency 

of the three macro-CTAs. Thus the PEO113 macro-CTA was chain-extended with 300 units of 

HPMA via RAFT aqueous dispersion polymerization at 10 % w/w solids to yield diblock 

copolymer vesicles.70 The final HPMA conversion was determined to be more than 99% by 

1H NMR spectroscopy. Importantly, THF GPC analysis indicated an Mn of 53,700 g mol-1, an 

Mw / Mn of 1.21 and a relatively high blocking efficiency for the PEO113 macro-CTA (see Figure 

S4a). The cationic PQDMA140 and anionic PKSPMA111 macro-CTAs were subjected to self-

blocking experiments via RAFT aqueous solution polymerization of either QDMA or KSPMA 

respectively to yield well-defined PQDMA255 and PKSPMA335 homopolymers at 30% w/w solids. 

In both cases, final monomer conversions exceeded 99% as judged by 1H NMR spectroscopy and 

aqueous GPC analyses indicated high blocking efficiencies in each case (see Figure S4b and S4c). 

 

Synthesis and Characterization of Core Cross-linked Polyelectrolytic Worms 

As previously described by Penfold et al.,60 core cross-linking of cationic block copolymer 

worms is essential for retention of the original worm morphology following adsorption onto 

micrometer-sized silica spheres. Without such covalent stabilization, the strong torsional forces 

exerted on the worms by the colloidal silica particles are much greater than the weak hydrophobic 
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forces holding the linear, non-cross-linked worms together, thus resulting in worm dissociation. In 

contrast, this work is focused on the layer-by-layer deposition of polyelectrolytic worms onto 

planar silica surfaces. Nevertheless, core cross-linking was considered desirable to maximize the 

mean persistence length of the charged worms (cf. the ‘rigid rod’ nature of polyelectrolytes in the 

absence of any salt),63-64 as well as to prevent potential loss of the worm morphology after 

adsorption. The polyelectrolytic block copolymer worms were prepared using similar protocols as 

previously described:60 RAFT statistical copolymerization of HPMA and glycidyl methacrylate 

(GlyMA) was conducted using a binary mixture of a non-ionic (PEO113) and polyelectrolytic 

(either PQDMA140 or PKSPMA111) macro-CTAs, as outlined in Scheme 1. In both cases the core-

forming block comprised 80 mol % HPMA and 20 mol % GlyMA.65 A series of exploratory 

experiments were conducted to identify the precise diblock copolymer compositions required to 

access well-defined cationic (0.90 PEO113 + 0.10 PQDMA140)-P(HPMA137-stat-GlyMA35) worms 

and anionic (0.90 PEO113 + 0.10 PKSPMA111)-P(HPMA168-stat-GlyMA39) worms, respectively. 

3-Aminopropyltriethoxysilane (APTES) has been reported as a suitable cross-linking agent65 for 

preparing core cross-linked, cationic worms.60 However, the primary amine functionality of 

APTES is undesirable in this context: secondary amines are formed when this reagent reacts with 

epoxy groups which could potentially reduce the negative surface charge on the anionic worms. 

In contrast, epoxy-thiol chemistry only produces neutral species and hence does not confer cationic 

character. Cross-linking of the worm cores is achieved by ring-opening of the epoxy groups in the 

GlyMA residues using 3-mercaptopropyltriethoxysilane (MPTES). This epoxy-thiol reaction 

occurs with simultaneous hydrolysis/condensation of the pendent triethoxysilane groups with 

themselves and also with the secondary hydroxyl groups located on neighboring HPMA residues 

(see Scheme S4). 
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Scheme 1. Schematic representation of the synthesis of either cationic or anionic core cross-linked 

block copolymer worms via RAFT aqueous copolymerization of HPMA and GlyMA using a 

binary mixture of PEO113 macro-CTA with either a cationic PQDMA140 macro-CTA or an anionic 

PKSPMA111 macro-CTA. Here, n represents the mol fraction of the polyelectrolytic macro-CTA. 

Core cross-linking is achieved by the post-polymerization addition of MPTES. 

Prior to MPTES addition (using a [GlyMA] / [MPTES] molar ratio of 1.0), the worm gels were 

diluted to 5.0 % w/w (below the critical gelation concentration) using deionized water to aid 

MPTES dissolution. MPTES was then added and the worm dispersions were stirred at 20 °C for 

n PQDMA140 macro-CTA

[1-n] PEO113 macro-CTA

+

[1-n] PEO113 macro-CTA

+

n PKSPMA 111 macro-CTA

Cross-linkable cationic worms
(0.90 PEO113 + 0.10 PQDMA140)-P(HPMA137-stat-GlyMA 35) 

followed by MPTES addition

or

Cationic worms Anionic worms

80% 
HPMA

20% 
GlyMA

80% 
HPMA

20% 
GlyMA

Cross-linkable anionic worms
(0.90 PEO113 + 0.10 PKSPMA111)-P(HPMA168-stat-GlyMA 39) 

followed by MPTES addition
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24 h. Transmission electron microscopy (TEM) analysis of the core cross-linked polyelectrolytic 

nanoparticles was performed to confirm that the original worm morphology was preserved (see 

Figure 1). ImageJ analysis of the core cross-linked cationic and anionic worms TEM images 

indicated a mean thickness of 27 ± 3 nm and 31± 5 nm, respectively.  

 

 

Figure 1. Representative TEM images obtained for (a) cationic (0.90 PEO113 + 0.10 PQDMA140)-

P(HPMA137-stat-GlyMA35) and (b) anionic (0.90 PEO113 + 0.10 PKSPMA111)-P(HPMA168-stat-

GlyMA39) worms after core cross-linking using MPTES. Images were obtained for 

0.1 % w/w  aqueous copolymer dispersions dried at pH 5. 

The mean worm thickness was calculated from fifty measurements, comprising five width 

measurements equally spaced across the worm length for ten worms. Aqueous electrophoresis 

studies were conducted on 0.1% w/w aqueous dispersions of core cross-linked polyelectrolytic 

worms from pH 9.5 to pH 3 in the presence of 1 mM KCl (see Figure 2). As expected, the core 

500 nm

(a)

500 nm

(b)
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cross-linked cationic worms exhibited positive zeta potentials of approximately +41 mV across 

this pH range.60 Similarly, the core cross-linked anionic worms exhibited a pH-independent mean 

zeta potential of approximately –39 mV.  

 

 

Figure 2. Zeta potential vs. pH curves obtained for (a) cationic (0.90 PEO113 + 0.10 PQDMA140)-

P(HPMA137-stat-GlyMA35) and (b) anionic (0.90 PEO113 + 0.10 PKSPMA111)-P(HPMA168-stat-

GlyMA39) core cross-linked worms. Zeta potentials were determined at 20 °C for 0.1% w/w 

aqueous copolymer dispersions in the presence of 1 mM KCl. Aqueous dispersion pH was adjusted 

using 0.1 M or 1 M HCl. Error bars represent one standard deviation. 

 

Adsorption of Core Cross-Linked Cationic Worms onto Planar Silicon Wafers 

In initial experiments a clean silicon wafer was dipped into a dispersion of cationic cross-linked 

worms at concentrations of 0.1 % w/w or 0.5 % w/w for 10 min at pH 5. However, only rather low 

surface coverages (< 5 %) were indicated via ImageJ analysis of the corresponding SEM images. 
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Thus, in order to ensure relatively high surface coverage the worm concentration was increased to 

1.0 % w/w, while the dispersion pH remained at pH 5. Thus, the kinetics of adsorption of cationic 

cross-linked worms onto anionic planar silicon wafers was investigated under these conditions. In 

these experiments, silicon wafers were dipped into the cationic worm dispersion for various time 

intervals, washed with deionized water and then dried under a stream of nitrogen gas. SEM images 

of the dried wafers were recorded to visualize the adsorbed cationic worms on the wafer surface. 

However, an interesting observation was made in initial experiments: worm coverage was not 

uniform across the whole wafer. A significantly higher surface coverage was frequently observed 

along the wafer edge (see Figure S5a and S5b), which in principle might be a drying protocol 

artefact. However, similar observations were also made when drying the wafers in a 25 °C oven 

overnight (see Figure S5c and S5d) without nitrogen blowing. Thus this phenomenon may be 

related to the so-called ‘coffee ring’ effect often observed following evaporation of water from an 

aqueous dispersion of nanoparticles.76-78 Interestingly, Decher and co-workers reported very 

similar observations during the alternate adsorption of anionic and cationic polyelectrolytes onto 

planar silicon wafers.3 The kinetics of adsorption for cationic cross-linked worms on an anionic 

silicon wafer was quantified using ImageJ software to analyze SEM images recorded at various 

time points (see Figure 3a). Only the central section of each wafer was analyzed, thus ignoring any 

edge effects. Ten separate SEM images were recorded from central sections of the wafer for each 

time point at the same magnification; the total surface area analyzed was approximately 900 µm2
 

per time point.  
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Figure 3. (a) Surface coverage vs. adsorption time plot indicating the remarkably rapid adsorption 

of cationic cross-linked worms onto the surface of a clean anionic silicon wafer. Surface coverages 

were determined using ImageJ software threshold analysis to analyze ten separate areas for each 

silicon wafer per time point; the total surface area analyzed per time point is approximately 

900 µm2.  (b) Representative SEM images obtained after dipping an anionic planar silicon wafer 

into a 1.0 % w/w aqueous dispersion of (0.90 PEO113 + 0.10 PQDMA140)-P(HPMA137-stat-

GlyMA35) cationic cross-linked worms at pH 5 for 2 s, 8 s, 20 s and 40 s. Adsorption conditions: 

pH 5, no added salt, 1.0 % w/w worms, 20 °C. 
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Representative SEM images obtained for wafers dipped into a 1.0 % w/w aqueous dispersion of 

(0.90 PEO113 + 0.10 PQDMA140)-P(HPMA137-stat-GlyMA35) cationic cross-linked worms at pH 

5 for various time periods are shown in Figure 3b. As expected, the cationic cross-linked worms 

retained their morphology after adsorption onto anionic silicon wafers. The kinetics of electrostatic 

adsorption of these worms is remarkably fast, with a surface coverage of approximately 16% 

obtained within just 2 s under the stated conditions (1.0 % w/w copolymer worms at 20 °C). No 

further increase in worm surface coverage occurred on extending the adsorption time up to 2 min 

or even 24 h (data not shown). An important control experiment was performed to demonstrate 

that the observed rapid worm adsorption was actually the result of electrostatic interactions, rather 

than merely gravitational sedimentation. A clean silicon wafer (manipulated using tweezers) was 

immersed into a 1.0% w/w aqueous dispersion of cationic worms at pH 5 for either 20 s or 60 s 

with its anionic surface facing upside down. SEM analysis of the dried wafers indicated a near-

identical surface coverage of approximately 16% for both time periods (see Figure S6). 

Ellipsometry is an established technique for determining the mean thickness of thin films.79 It 

has been widely applied to characterize both polymer brushes80-83 and layer-by-layer systems.23, 48, 

84 It is a model-dependent technique that assumes a uniform thickness for the adsorbed layer (slab 

model). This is not strictly the case for these adsorbed multilayers of oppositely-charged worms, 

particularly at lower surface coverages. Nevertheless, ellipsometry is expected to provide 

complementary information to SEM analysis and perhaps offer greater reliability for thicker worm 

layers, where determining the fractional surface coverage by digital image analysis becomes 

increasingly subjective.  Furthermore, the projected ellipsometer beam dimensions on the wafer 

surface are 8 mm x 3 mm, thus the surface area analyzed by ellipsometry (24 mm2) is far greater 

than that analyzed by SEM (900 µm2). Ellipsometry parameters Ȍ and ǻ were collected from 370 
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to 1000 nm. Firstly, analysis of a clean silicon wafer indicated a mean native oxide thickness of 

1.97 nm. The mean-square error (MSE) of this measurement is low at 1.40, which validates the 

data fit for the experimental ȥ and ǻ values against the native oxide model within the 

CompleteEase modeling software. MSE values of less than 2 indicate satisfactory fits to the model 

used.85 Secondly, the kinetics of cationic worm adsorption onto a clean silicon wafer (1.0% w/w, 

pH 5, 20 °C, no added salt) was monitored via ellipsometry to determine the dry worm layer 

thickness. The Cauchy model (see equation S1) uses three Cauchy parameters (An, Bn and Cn) to 

describe the Ȝ dependence of the refractive index (n) of an optically transparent material. An is a 

dimensionless parameter describing the refractive index of the material such that as Ȝ tends to 

infinity, then n(Ȝ) tends to An. The constants Bn and Cn are parameters that characterize the non-

linear relationship between the refractive index and Ȝ. Figure S7a shows the fitted Ȍ and ǻ data 

after adsorption of 1.0 % w/w core cross-linked cationic worms onto the anionic silicon surface 

for 2 min at pH 5 without added salt. In this case, the refractive index of the surface is not known, 

but this value must lie between 1.00 and 1.50 as the surface comprises an anionic silicon wafer, 

block copolymer cationic worms and air voids within the adsorbed worm layer. Thus all three 

Cauchy parameters were fitted to the data, enabling a mean worm layer thickness of 8.9 nm to be 

calculated. The excellent fit provided by the experimental Ȍ and ǻ data to the Cauchy model was 

validated by a low MSE of 1.29 when An = 1.257 (Figure S7b). The latter value is reasonable 

because the adsorbed worms form a non-uniform patchy layer, rather than a homogeneous thin 

film. Since these cationic worms exhibit a mean worm width of 27 ± 3 nm and a surface coverage 

of approximately 16% as judged by ImageJ threshold analysis, an ellipsometric worm layer 

thickness of 8.9 nm seems to be physically realistic. Similar worm layer thicknesses were also 

determined by ellipsometry when anionic silicon wafers were dipped into the cationic worm 
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dispersion for 2 s, 20 s and 40 s, which confirms the remarkably fast kinetics of adsorption of these 

worms onto the silicon surface. Furthermore, when an inverted bare anionic silicon wafer was 

immersed into the copolymer worm dispersion, a similar mean worm layer thickness was observed. 

This suggests that purely electrostatic interactions, rather than gravitational sedimentation, is the 

primary driving force for worm adsorption. Thus worm adsorption is essentially complete within 

a few seconds under the stated conditions. One reviewer of this manuscript has suggested that, if 

the cationic worms are strongly adsorbed at the air-water interface, then perhaps this could explain 

our unexpected observation of remarkably rapid cationic worm adsorption onto the anionic silicon 

wafer. This is an interesting idea that clearly warrants further studies. 

 

Layer-by-Layer Deposition of Oppositely-Charged Worms onto Planar Surfaces 

Formation of polyelectrolytic worm multilayers was achieved by successive adsorption of 

oppositely-charged worms onto a clean anionic silicon wafer using a L-b-L protocol (see 

Scheme 2). The adsorption conditions were fixed at an arbitrary time of 2 min, pH 5, no added salt 

and an aqueous copolymer worm concentration of 1.0% w/w. SEM, ellipsometry and surface zeta 

potential studies were performed for each successive layer. The results obtained from each 

technique are discussed in turn below. Representative SEM images obtained for layers 1-9 are 

shown in Figure 4. Visual inspection of these images suggests an increase in surface coverage with 

layer number, indicative of the formation of polyelectrolytic worm multilayers. Threshold analysis 

using ImageJ software was performed to estimate the increase in surface coverage for each 

successive worm layer. Adsorption of cationic worms to form the first adsorbed layer only results 

in a surface coverage of approximately 16% (see Figure 3a).  
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Scheme 2. Schematic representation of layer-by-layer protocol used to prepare polyelectrolytic 

worm multilayers. (a) The first worm layer is prepared by dipping a bare silicon wafer into a 

dispersion of cationic worms. (b) Secondly, the cationic worm-coated silicon wafer is dipped into 

a dispersion of anionic worms to prepare the second worm layer. (c) This protocol is then repeated 

to fabricate the desired number of polyelectrolytic worm layers by the successive electrostatic 

adsorption of oppositely-charged worms onto the silicon wafer. The green and purple worms 

represent cationic and anionic worms, respectively. Rinsing steps are performed between the 

depositions of new worm layers, but have been omitted from this scheme for clarity. 

 

Formation of a further four consecutive worm layers results in an approximate increase in 

surface coverage of 4% per layer (see Figure 5). Digital image analysis of the corresponding SEM 

images is straightforward for layers 1 to 5 because it is relatively easy to judge an appropriate 

threshold cut-off (see Figure S8a and S8b). Increasing the layer number results in a higher surface 

coverage, as expected. However, it becomes increasingly problematic to judge the appropriate 

threshold limit to apply when assessing surface coverage. For example, the two threshold cut-off 

limits indicated in Figure S8c and S8d for layer 7 both appear to be reasonable choices, even 

though the corresponding worm surface coverages differ significantly. Thus the experimental 

(b)

(c)

Bare wafer
Cationic worm-

coated wafer
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uncertainty in the surface coverage rises as the number of worm layers is increased and quickly 

becomes unacceptably large. 

 

   

Figure 4. Representative SEM images obtained for the gradual build-up of worm multilayers 

obtained via alternating layer-by-layer deposition of cationic and anionic cross-linked worms onto 

a planar anionic silicon wafer. Odd layer numbers correspond to the adsorption of cationic worms 

and even layer numbers correspond to the adsorption of anionic worms. Adsorption conditions: 

1.0 % w/w aqueous worm dispersions, pH 5, 20 °C, time allowed for the adsorption of each worm 

layer was 2 min. 
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Figure 5. Relationship between surface coverage of a planar silicon wafer and layer number for 

the consecutive deposition of five layers of (0.90 PEO113 + 0.10 PQDMA140)-P(HPMA137-stat-

GlyMA35) cationic cross-linked worms (layers 1, 3 and 5) and (0.90 PEO113 + 0.10 PKSPMA111)-

P(HPMA168-stat-GlyMA39) anionic cross-linked worms (layers 2 and 4). Surface coverages were 

determined using ImageJ software threshold analysis to analyze ten separate areas per silicon wafer 

for each layer number; total surface area analyzed per layer number is approximately 900 µm2. 

Adsorption conditions used for each worm layer: pH 5, 20 °C, 1.0 % w/w worm dispersion, no 

added salt, 2 min per adsorption event. 

 

In view of this problem, ellipsometric measurements were also undertaken to assess the extent 

of worm adsorption. As described earlier, the Cauchy equation provides an appropriate model. The 

experimental Ȍ and ǻ data were fitted using the three Cauchy parameters (An, Bn and Cn). The 

relationship between dry layer thickness and worm layer number is shown in Figure 6.  
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Figure 6. Relationship between the dry ellipsometric thickness of adsorbed worm layers and layer 

number for the consecutive deposition of ten layers of (0.90 PEO113 + 0.10 PQDMA140)-

P(HPMA137-stat-GlyMA35) cationic cross-linked worms (layers 1, 3, 5, 7 and 9) and (0.90 PEO113 

+ 0.10 PKSPMA111)-P(HPMA168-stat-GlyMA39) anionic cross-linked worms (layers 2, 4, 6, 8 

and 10). Conditions used for each adsorbed worm layer: pH 5, 20 °C, 1.0 % w/w worms, no added 

salt, 2 min per layer. The open circles represent layers 1 to 6 for which the mean increase in the 

dry film thickness per layer is 3 nm. A change in gradient is observed for layers 7 to 10 (closed 

circles), for which the mean increase in the dry film thickness per layer is 7 nm. 

According to the literature, the L-b-L deposition of strong (water-soluble) polyelectrolyte chains 

onto a planar surface is typically characterized by a linear increase in film thickness with layer 

number.8, 86 However, non-linear (exponential) growth in film thickness has been reported in some 

cases when using weak polyelectrolytes. This has been attributed to either film roughness effects 

and/or the ‘in-and-out’ diffusion of at least one of the two polyelectrolytes throughout the film.8, 

87 For example, Yuan and Li prepared relatively thick nanoporous films via L-b-L assembly using 
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poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA).88 Importantly, basic conditions (pH 9.5) 

were employed for PEI adsorption, whereas acidic solutions (pH 2.9) were utilized for PAA 

adsorption. This approach reduced the charge density on these two weak polyelectrolytes. 

Interestingly, increasing the PEI/PAA charge density by adjusting the solution pH suppressed the 

exponential film growth. Furthermore, Podsiadlo and co-workers reported exponential growth for 

multilayer films composed of PEI, PAA and montmorillonite clay particles.87  

 

In the present work, non-linear film growth is observed for the successive deposition of ten 

layers of oppositely-charged worms onto a planar silicon surface (see Figure 6). Two growth 

regimes are observed. For layers 1 to 6 (open circles), the mean increase in dry film thickness per 

layer is 3 nm. A change in gradient is observed for layers 7 to 10 (closed circles), for which the 

mean increase in dry film thickness per layer is 7 nm. A plausible explanation for this unexpected 

discontinuity is discussed later. 

 

SEM images recorded for layers 1 to 5 (see Figure 4) gradually reveal the build-up of a relatively 

rough nanoporous film, with a comparable morphology to that reported by Yuan and Li.88 

Presumably, the rigidity and much longer contour lengths of these cross-linked polyelectrolytic 

worms leads to greater surface roughness, which accounts for the non-linear growth observed over 

the whole layer range. On the other hand, it seems rather unlikely that the ‘in-and-out’ diffusion 

mechanism proposed to account for the enhanced adsorption of water-soluble weak 

polyelectrolytes is applicable to the present study.  

Although higher surface coverages and thicker adsorbed layers are observed with increasing 

layer number, neither SEM nor ellipsometry can distinguish between the cationic and anionic 
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worms adsorbed at the wafer surface. However, reversal of surface charge with increasing layer 

number would be expected for the successive adsorption of oppositely-charged worms. In 2012, 

Corbett et al.89 reported a convenient method for determining the surface zeta potential. This new 

approach requires no sealing, so relatively fragile surfaces can be measured. Furthermore, the 

planar substrate is inverted relative to the aqueous solution. This means that the tracer particles 

cannot sediment onto the surface during measurement, thus minimizing sample contamination. A 

Uzgiris90 dip cell was used in conjunction with a standard Malvern Zetasizer Nano instrument. To 

calculate the surface zeta potential, the motion of non-adsorbing tracer particles dispersed in 

aqueous electrolyte and subjected to an electric field is monitored via phase analysis light 

scattering.89 Thus no modification of a conventional Malvern Zetasizer Nano-SZ instrument is 

required.91 One parameter that requires careful consideration in such experiments is selection of 

appropriate tracer particles. The sole role of the tracer particles is to scatter light: chemical 

functionality or surface chemistry does not affect their performance. However, it is essential that 

the tracer particles must not interact with the sample surface. Typical tracer particles include either 

sterically-stabilized polystyrene latexes92 or a food-grade milk substitute emulsions (Coffee 

Compliment).89 However, in both cases such tracer particles possess non-negligible surface charge 

at pH 5. This is clearly problematic for the present worm multilayer study, because universal tracer 

particles are desired that are suitable for both anionic and cationic surfaces. Cationic tracer 

particles would be prone to electrostatic adsorption onto an anionic surface and vice versa. Thus 

non-ionic spherical nanoparticles exhibiting zero surface charge at pH 5 are required to ensure no 

interaction with either type of worm layer. Alswieleh and co-workers93 recently reported that 

sterically-stabilized latexes prepared using a zwitterionic macromonomer can be used as tracer 

particles to determine surface zeta potentials for zwitterionic polymer brushes grown from silicon 
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wafers. However, such bespoke latexes require a four-step synthesis.94 On the other hand, a 

recently reported PISA formulation for poly(glycerol monomethacrylate)-poly(benzyl 

methacrylate) (PGMA-PBzMA) nanoparticles reported by Cunningham and co-workers offers a 

relatively straightforward and convenient route on non-ionic tracer nanoparticles.95 Thus, a 

PGMA58 macro-CTA prepared as previously reported75 was chain-extended with BzMA (target 

DP = 500) at 10% w/w solids via RAFT aqueous emulsion polymerization (see Scheme S6).95 1H 

NMR spectroscopy studies confirmed a monomer conversion of 97% was achieved after 5 h at 50 

°C (Figure S9a). DMF GPC studies confirmed a high blocking efficiency for the PGMA58 macro-

CTA and indicated an Mn of 66,600 g mol-1 and an Mw / Mn of 1.31 (using a series of near-

monodisperse poly(methyl methacrylate) (PMMA) calibration standards) for the PGMA58-

PBzMA500 copolymer chains (Figure S9b). Furthermore, TEM analysis of the dried dilute aqueous 

dispersion confirmed a well-defined spherical morphology (Figure S9c). Dynamic light scattering 

(DLS) and aqueous electrophoresis studies were performed to examine the effect of varying the 

solution pH on both the intensity-average particle diameter and zeta potential (Figure S9d). As 

expected, these spherical nanoparticles exhibit pH-independent behavior: their intensity-average 

diameter (approximately 120 nm) and zeta potential (around 0 mV) remain essentially constant 

across a wide pH range.  

Corbett et al.89, 92 reported that a relatively low derived count rate of 250 – 500 kcps is required 

for surface zeta potential measurements. For the PGMA58-PBzMA500 nanoparticles, this 

corresponds to a concentration of 0.0025% w/w when the Malvern Zetasizer Nano-SZ attenuator 

is set to 100% light transmittance. All surface zeta potentials were determined at pH 5 using 1 mM 

KCl as background electrolyte. Two control experiments were performed to demonstrate that these 

tracer particles were indeed suitable for surface zeta potential measurements. Firstly, a clean 
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anionic silicon wafer was analyzed at pH 5. The zeta potential vs displacement plot obtained for 

the tracer nanoparticles and the raw phase data are shown in Figure S10. Figure S10a displays the 

raw phase plots obtained for SFR measurements at four displacements (125 µm, 250 µm, 375 µm 

and 500 µm) and the FFR measurement made at 1000 µm. High signal-to-noise ratios were 

obtained in all cases, indicating the expected Doppler shift for the non-ionic tracer nanoparticles. 

From these phase data, the tracer nanoparticle zeta potential was plotted against displacement 

(Figure S10b). The surface zeta potential for a clean bare anionic silicon wafer is calculated to be 

-53 ± 4 mV at pH 5 in the presence of 1 mM KCl using equation S2. This value is comparable to 

literature data obtained via streaming potential measurements under the same conditions.96 

The same surface zeta potential studies were performed on a worm-coated silicon wafer (layer 1) 

after immersion of a clean bare anionic silicon wafer into a 1.0% w/w aqueous dispersion of 

cationic cross-linked worms for 2 min at pH 5. Figure S11 depicts the raw phase plots obtained for 

SFR measurements at four displacements (125 µm, 250 µm, 375 µm and 500 µm) and also the 

FFR measurement made at 1000 µm for this cationic worm-coated wafer. In this case, the sign of 

the phase plot has changed, indicating surface charge reversal as the original anionic silicon wafer 

is converted into a cationic worm-coated silicon wafer. A surface zeta potential of +22 ± 1 mV is 

calculated from this phase data set. These experiments also confirm that the PGMA58-PBzMA500 

spheres are appropriate tracer nanoparticles for both cationic and anionic substrates. Surface zeta 

potential measurements were performed on subsequent worm multilayer films (see Figure 7).  

 



 24 

 

Figure 7. Variation in surface zeta potential with worm layer number for the sequential adsorption 

of cationic and anionic cross-linked worms onto a planar anionic silicon wafer. Odd layer numbers 

correspond to the adsorption of cationic worms, while even layer numbers correspond to the 

adsorption of anionic worms. All measurements were performed at 25 °C with a Malvern 

ZEN1020 Surface Zeta Potential Dip Cell using a 0.0025% w/w aqueous dispersion of PGMA58-

PBzMA500 nanoparticles as a non-adsorbing tracer to determine surface zeta potentials at pH 5 in 

the presence of 1 mM KCl. 

As previously mentioned, the initial clean anionic silicon wafer (layer 0) exhibits a surface zeta 

potential of -53 ± 4 mV at pH 5. Surface charge reversal is observed after deposition of the first 

worm layer (layer 1) to give a surface zeta potential of +22 ± 1 mV. Adsorption of anionic worms 

(layer 2) onto this cationic worm layer again results in surface charge reversal, giving a surface 

zeta potential of -30 ± 2 mV. The sequential adsorption of oppositely-charged worms results in 

surface charge reversal, as expected.97 Thus these surface zeta potential measurements confirm 
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successive deposition of cationic and anionic worms onto an anionic planar silicon wafer and are 

consistent with the corresponding SEM and ellipsometric data.  

 

In the light of the surface zeta potential data, it is worth reconsidering the ellipsometric data 

shown in Figure 6. For layer 1, a mean surface coverage of just 16% is sufficient to achieve surface 

charge reversal. Clearly, although the mean surface zeta potential is now cationic, a substantial 

proportion of the wafer remains uncoated and such areas possess local anionic charge. This means 

that, during the formation of layer 2, the anionic worms are somewhat less likely to adsorb on such 

bare patches owing to electrostatic repulsion. Such local ‘patchiness’ leads to a relatively slow 

build-up of surface coverage and worm layer thickness up to layer 6. At this point, the mean 

thickness of the adsorbed worm layer determined by ellipsometry approximately corresponds to 

that expected for full monolayer coverage (since 24 nm is close to the mean worm cross-sectional 

diameter of 27 ± 3 nm estimated from TEM studies). Thereafter, the increase in mean worm layer 

thickness per layer is significantly greater, presumably because there is no longer any unfavorable 

electrostatic repulsive interactions. 

 

The anionic and cationic block copolymer worms employed in the present study have been 

deliberately prepared with covalently crosslinked cores to ensure that they remain intact during 

electrostatic deposition. In view of this rigidity, they are likely to be useful mimics for 

understanding the L-b-L behaviour of soluble polyelectrolyte chains in the absence of added salt, 

which are known to adopt a ‘rigid rod’ conformation.63-64 In principle, linear (i.e. non-crosslinked) 

worms could also be used for such L-b-L experiments. In this case their greater flexibility should 
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mean that they are more appropriate mimics for understanding the adsorption of polyelectrolytes 

in the presence of added salt. This possibility warrants further studies. 

 

CONCLUSIONS 

RAFT-mediated PISA can be used to prepare cationic and anionic block copolymer worms via 

RAFT aqueous dispersion polymerization using a judicious binary mixture of a non-ionic (PEO) 

and a polyelectrolytic (PQDMA or PKSPMA) stabilizer macro-CTA. Both types of worms 

contained reactive epoxy groups located within their core-forming blocks, which enabled their 

covalent stabilization on addition of MPTES. Kinetic studies indicated that the electrostatic 

adsorption of cationic worms from aqueous solution onto a clean bare anionic planar silicon wafer 

was complete within just a few seconds at 20 °C, although the final surface coverage achieved for 

this first layer was only 16% as determined by ImageJ analysis. The successive layer-by-layer 

deposition of the cationic and anionic polyelectrolytic worms onto a planar anionic silicon wafer 

was investigated at pH 5.  SEM analysis confirmed the gradual build-up of worm multilayers, but 

assessing the fractional surface coverage via digital image analysis became somewhat subjective 

after the first few worm layers. Surface zeta potential studies using bespoke non-ionic tracer 

nanoparticles confirmed that surface charge reversal occurs on addition of each successive worm 

layer. Ellipsometric studies confirmed that the worm layer thickness initially increased linearly 

with layer number, as expected. However, a second adsorption regime corresponding to a 

significantly steeper linear gradient was observed after the sixth worm layer. According to the 

literature, this latter regime may be the result of a surface roughness effect for these relatively large 

rigid worms. However, this discontinuity occurs at a mean film thickness that corresponds to 

approximately monolayer coverage of the silicon wafer. In view of the surface charge reversal 
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observed for each successive worm layer, we attribute the relatively low surface coverages 

obtained for the first few worm layers to local electrostatic repulsive forces arising from bare 

anionic patches of underlying silicon wafer for layers 2, 4 and 6 (or exposed cationic worms for 

layers 3 and 5). Finally, these worms are a useful mimic for understanding the adsorption behavior 

of soluble ‘rigid rod’ polyelectrolytes, since their much larger size facilitates their direct 

visualization via electron microscopy. 
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