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A quantum channel from a system A of dimension dA to a system B of dimension

dB is a completely positive trace-preserving map from complex dA × dA to dB × dB

matrices, and the set of all such maps with Kraus rank r has the structure of a smooth

manifold. We describe this set in two ways. First, as a quotient space of (a subset

of) the rdB × dA dimensional Stiefel manifold. Secondly, as the set of all Choi-states

of a fixed rank r. These two descriptions are topologically equivalent. This allows

us to show that the set of all Choi-states corresponding to extreme channels from

system A to system B of a fixed Kraus rank r is a smooth submanifold of dimension

2rdAdB − d2A− r2 of the set of all Choi-states of rank r. As an application, we derive

a lower bound on the number of parameters required for a quantum circuit topology

to be able to approximate all extreme channels from A to B arbitrarily well.
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b)Electronic mail: roger.colbeck@york.ac.uk
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I. INTRODUCTION

We describe the differential structure of the set Es,t,r consisting of all completely positive

trace-preserving (CPTP) maps from C
s×s to C

t×t (which we refer to as s to t channels) of

fixed Kraus rank r. A linear map E : Cs×s 7→ C
t×t is called positive if it sends positive

semi-definite matrices to positive semi-definite matrices. It is called completely positive

(CP) if E ⊗Ip is positive for all p ∈ N, where Ip : C
p×p 7→ C

p×p denotes the identity channel.

Choi [1] showed that a map E is completely positive if and only if it admits an expression

E(X) =
∑r′

i=1AiXA
∗
i (for all X ∈ C

s×s), where the Ai ∈ C
t×s are called Kraus operators in

quantum information theory [2]. The Kraus representation is not unique in general and the

minimum number of Kraus operators r′, such that a representation of the form above exists,

is called the Kraus rank r of the map E (and the corresponding representation is called a

‘minimal’ Kraus representation). Note that, by Remark 4 of [1], a Kraus representation is

minimal if and only if the Kraus operators A1, A2, . . . , Ar′ are linearly independent. Finally,

a map E is called trace preserving if tr E(X) = trX for all X ∈ C
s×s, which corresponds to

the requirement
∑r

i=1A
∗
iAi = I on the Kraus operators.

CPTP maps are of interest in physics, because they describe the most general evolution

a quantum system can undergo. Since the set Es,t of all s to t quantum channels is convex,

one can investigate the decomposition of a quantum channel into a convex combination

of extreme channels. In particular, such decompositions can help to implement quantum

channels in a cheaper way [3; 4]. However, there are open questions about the structure of

the (closure of the) set of extreme channels and finding convex decompositions into such

channels. In particular, a tight bound on the number of generalized extreme channels, i.e.,

channels which lie in the closure of the set of all extreme channels, required for such a

convex decomposition is not known [5]. The set of extreme channels has been described

by Friedland and Loewy [6] using the framework of semi-algebraic geometry. In contrast,

we consider the set of extreme channels in the framework of differential geometry. In other

words, this work focuses on assigning a smooth structure to the set of all extreme channels

and we refer to [6] for other interesting properties of this set.

The paper is structured as follows. First we give an overview of the notation used in
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the paper. In Section III we describe the smooth manifold structure of the set Ee
s,t,r of s to

t extreme channels of a fixed Kraus rank r [Note that we do not require a manifold to be

connected.]: First, we adapt the characterization of unital extreme channels given by Choi [1]

to trace-preserving channels in Section IIIA. [Recall that a channel E is unital if E(I) = I,

where I denotes the identity.] Then, in Section III B, we describe the set of channels and

extreme channels with the smooth structure induced by the standard smooth structure on

the Kraus operators. In this picture, we find that Ee
s,t,r ⊂ Es,t,r is an open subset and hence

a smooth submanifold. In Section III C, we transfer this topological property (founded

in the Kraus representation picture) to the Choi-state picture, which will show that Ee
s,t,r

can be considered as a smooth submanifold of the set of all Choi-states of fixed rank r.

In Section IV, we give a rigorous proof of the known fact [5] that every channel can be

decomposed into a finite convex combination of extreme channels. Finally, we look at an

application to quantum information theory in Section V, where we derive a lower bound

on the number of parameters required for a quantum circuit topology for extreme channels,

which we have used in [3].

II. NOTATION AND BACKGROUND

A. Notation

We use the notation [A,B] ∈ C
t×(sA+sB) to denote the (horizontal) concatenation of two

matrices A ∈ C
t×sA and B ∈ C

t×sB , i.e., the first sA columns of [A,B] correspond to the

columns of A and the (sA + 1)th column to the (sA + sB)th column to the columns of B.

And we denote the vertical concatenation of the matrices AT and BT by [AT ;BT ] = [A,B]T .

For arbitrary s, t, r ∈ N, we define:

• C
s×t: Complex s× t matrices

• Hs: Hermitian s× s matrices

• Hs,+: Positive semi-definite s× s matrices

• Hr
s,+: Elements in Hs,+ of rank r

• Vs,t: Set of all V ∈ C
t×s s.t. V ∗V = I (i.e., set of all isometries from an s to a t

dimensional system)
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• Vs,t,r: Set of all V = [A1;A2; . . . ;Ar] ∈ Vs,rt, such that the elements in {Ai}i∈{1,2,...,r} ∈

C
t×s are linearly independent (over C)

• U(s) = Vs,s: Unitary s× s matrices

• Es,t: CPTP (C-linear) maps from C
s×s to C

t×t

• Ev
s,t: CP and unital (C-linear) maps from C

s×s to C
t×t

• Ee
s,t: Elements in Es,t that are extreme

• Es,t,r: Elements in Es,t of Kraus rank r

• Es,t,6r =
⋃r

j=1 Es,t,j: Elements in Es,t with Kraus rank at most r

• Ee
s,t,r = Ee

s,t ∩ Es,t,r: Elements in Es,t,r that are extreme in Es,t

• Cs,t: Set of all Choi-states corresponding to channels from an s dimensional system A

to a t dimensional system B, i.e., CAB ∈ Hst,+, such that trB CAB = 1
s
I

• Ce
s,t: Elements in Cs,t that are extreme

• Cs,t,r: Elements in Cs,t with rank r

• Cs,t,6r =
⋃r

j=1 Cs,t,j: Elements in Cs,t with rank at most r

• Ce
s,t,r: Elements in Cs,t,r that are extreme in Cs,t

B. Restriction of the Domain or Image of a Smooth Map

The following propositions give sufficient conditions for a map to remain smooth when

its domain or image is restricted.

Proposition 1 (Theorem 5.27 of [7]). Let M and N be smooth manifolds (with or without

boundary). If F : M 7→ N is a smooth map and D ⊂ M is an (immersed or embedded)

submanifold, then F
∣

∣

D
: D 7→ N is smooth.

Proposition 2 (Corollary 5.30 of [7]). Let M and N be smooth manifolds, and S ⊂ N be

an embedded submanifold. Then any smooth map F : M 7→ N whose image is contained in

S is also smooth as a map from M to S.
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III. SMOOTH MANIFOLD STRUCTURE FOR EXTREME CHANNELS

A. Characterization of Extreme Channels

We want to characterize the set of extreme points Ee
s,t ⊂ Es,t. For this purpose we have

to slightly modify Theorem 5 of [1]. This modification was also considered in [6].

Theorem 3 (Characterization of extreme channels). Let E ∈ Es,t with minimal Kraus rep-

resentation E(X) =
∑r

i=1AiXA
∗
i . Then E is extreme in Es,t if and only if all elements of

the set {A∗
iAj}i,j∈{1,2,...,r} are linearly independent.

Remark 1. If the Kraus rank r of the channel E in Theorem 3 is bigger than s, then E

cannot be extreme, since in this case |{A∗
iAj}i,j∈{1,2,...,r}| > dimC(C

s×s).

Proposition 4. There exists a bijection Ψ : Es,t 7→ Ev
t,s that sends extreme points of Es,t to

extreme points of Ev
t,s and vice versa.

Proof. Note first that Cl×l together with the Frobenius inner product is a (finite dimensional)

Hilbert space for l ∈ N. Let E ∈ Es,t. Then E is C-linear by definition and bounded. By

the Fréchet-Riesz representation theorem there exists an injective map Ψ(E) = E∗ : Es,t 7→

B(Ct×t,Cs×s), where B(Ct×t,Cs×s) denotes the set of linear bounded operators from C
t×t

to C
s×s and E∗ denotes the adjoint map of E , i.e., for all C ∈ C

s×s and D ∈ C
t×t we

have 〈E(C), D〉 = 〈C, E∗(D)〉. Let {Ai}i∈{1,2,...,r} be the Kraus operators of E . By a direct

computation one finds that the Kraus operators of E∗ are {A∗
i }i∈{1,2,...,r}, and therefore,

E∗ ∈ Ev
t,s. Since (E∗)∗ = E , we can set C = I in the adjoint property above to see that Ψ−1

sends unital maps to trace-preserving maps. Therefore the map Ψ : Es,t 7→ Ev
t,s is a bijection.

Assume that E ∈ Es,t is not extreme, i.e., there exist E1, E2 ∈ Es,t, E1 6= E , E2 6= E and

p ∈ (0, 1) s.t. E = pE1 + (1 − p)E2. By the linearity of the adjoint map we have E∗ =

pE∗
1 + (1− p)E∗

2 , which shows that elements of Es,t that are not extreme cannot be mapped

to extreme elements of Ev
t,s. The reverse direction follows analogously.

Proof of Theorem 3. Theorem 5 of [1] shows that E∗ ∈ Ev
t,s (with linearly independent Kraus

operators Ãi ∈ C
s×t) is extreme if and only if the elements in {ÃiÃ

∗
j}i,j∈{1,2,...,r} are linearly

independent. By Proposition 4, this leads to a characterization of the extreme points in Es,t.

Since the Kraus operators of E (where E denotes the adjoint map of E∗) are Ai := Ã∗
i ∈ C

t×s
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(cf. the proof of Proposition 4), the map E ∈ Es,t is extreme if and only if the elements in

{A∗
iAj}i,j∈{1,2,...,r} are linearly independent.

B. Structure of the Set of Extreme Channels in the Kraus Representation

In this section we consider the smooth structure of the set Ee
s,t,r working with the Kraus

representation of channels. Our first goal is to describe the set Es,t,r of s to t channels

with Kraus rank r. We can assume that s 6 rt and r 6 st, since Es,t,r = ∅ if s > rt (cf.

Lemma 6 of [6]) or r > st. Let {Ai}i∈{1,2,...,r} denote a set of (linearly independent) Kraus

operators of E ∈ Es,t,r. Then we define V = [A1;A2; . . . ;Ar] which lies in Vs,t,r, because

V ∗V =
∑r

i=1A
∗
iAi = I. Since the Kraus representation is not unique, we do not have a

one-to-one correspondence between Es,t,r and Vs,t,r. However, we can exploit the desired

correspondence by taking the quotient of Vs,t,r with respect to the unitary freedom of the

Kraus operators.

In the following, we always assume that s 6 rt and r 6 st. The next Lemma is generally

known (see for example [8]).

Lemma 5 (Stiefel manifold). Let s 6 t. Then the Stiefel manifold Vs,t is a compact, smooth

embedded submanifold of R2ts of dimension 2st− s2.

Proposition 6. The set Vs,t,r is an open subset of Vs,rt. In particular, Vs,t,r is a smooth

embedded submanifold of Vs,rt.

Proof. We can write all coefficients of a complex t× s matrix in a column vector leading to

a natural correspondence ψ : Ct×s 7→ C
ts. Let l =

(

ts

r

)

. We define the map F : Vs,rt → C
l

sending V = [A1;A2; . . . ;Ar] to all r × r minors of the matrix [ψ(A1), ψ(A2), . . . , ψ(Ar)]

(ordered in an arbitrary way). [Recall that an r× r minor of a matrix D is the determinant

of an r×r sub-matrix of D formed by ‘deleting’ rows (or columns).] Then the condition that

the elements of the set {Ai}i∈{1,2,...,r} are linearly independent reads: F (V ) 6= (0, 0, . . . , 0).

Since F is continuous, F−1({(0, 0, . . . , 0)}c) = Vs,t,r is open.

We can use Theorem 21.10 of [7] to describe the manifold structure of the orbit space

Vs,t,r/U(r).
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Definition 1. A group G acts freely on a set S if the only element of G that fixes any

element of S is the identity, i.e., for all p ∈ S and g ∈ G, g · p = p implies g = I.

Definition 2. Let G be a Lie group that acts continuously on a manifold M . The action is

said to be proper if the map G×M 7→M ×M given by (g, p) 7→ (g · p, p) is a proper map,

i.e., the preimage of a compact set is compact.

The following Proposition gives a sufficient condition for a group action to be proper.

Proposition 7 (Corollary 21.6 of [7]). Any continuous action by a compact Lie group on a

manifold is proper.

Theorem 8 (Quotient Manifold Theorem [7]). Suppose a Lie group G acts smoothly, freely,

and properly on a smooth manifold M . Then the orbit space M/G is a topological manifold

of dimension equal to dim(M)−dim(G), and has a unique smooth structure with the property

that the quotient map π :M 7→M/G is a smooth submersion.

Lemma 9 (Lemma 21.1 of [7]). For any continuous action of a topological group G on a

topological space M , the quotient map π :M 7→M/G is open.

Proposition 10. The Lie group U(r) acts smoothly, freely and properly on the manifold

Vs,t,r by the action U · V = (U ⊗ I)V , where U ∈ U(r), V ∈ Vs,t,r and I denotes the t × t

identity matrix.

Proof. We first show that U · V ∈ Vs,t,r for all U ∈ U(r) and V ∈ Vs,t,r. Note that

V ∗(U∗ ⊗ I)(U ⊗ I)V = I and that the linear independence of the matrices Ai (where V =

[A1;A2; . . . ;Ar]) is preserved under the unitary action: Assume
∑r

i=1 αi

(

∑r

j=1(U)ijAj

)

= 0

for some coefficients αi ∈ C. This is equivalent to
∑r

j=1 (
∑r

i=1 αi(U)ij)Aj = 0 which implies
∑r

i=1 αi(U)ij = 0 for all j ∈ {1, 2, . . . , r}, since the Aj are linearly independent. Since U is

unitary, this implies αi = 0 for all i ∈ {1, 2, . . . , r}. We conclude that the group action is

well defined. To show that the action is free, choose a V ∈ Vs,t,r and a U ∈ U(r) and assume

that U ·V = V . Writing V = [A1;A2; . . . ;Ar], the last equation becomes
∑r

j=1(U)ijAj = Ai

for all i ∈ {1, 2, . . . , r}. Since V ∈ Vs,t,r, the Aj are linearly independent and we conclude

that (U)ij = δij or equivalently U = I. To see that the action is smooth, consider the map

F (U, V ) = (U ⊗ I)V : C
r×r × C

rt×s → C
rt×s. [Note that we always identify C ∼= R

2, and

hence we can treat F as a map from R
2(r2+rts) to R

2rts.] Since taking tensor products is a
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smooth operation, the map F is smooth. By Propositions 1 and 6 and Lemma 5, the map

F̃ (U, V ) = (U ⊗ I)V : U(r)× Vs,t,r 7→ C
rt×s is smooth. Then, by Propositions 2 and 6 and

Lemma 5, the map F ′ (U, V ) = (U ⊗ I)V : U(r) × Vs,t,r 7→ Vs,t,r is also smooth. Since the

Lie group U(r) is compact, the action is proper by Proposition 7.

Definition 3. We define the equivalence relation ∼ as follows: Let V1, V2 ∈ Vs,t,r. Then

V1 ∼ V2 if there exists a U ∈ U(r), such that U · V1 = V2. The orbit space is Vs,t,r/U(r) :=

{[V ] : V ∈ Vs,t,r} (together with the quotient topology).

Lemma 11. The orbit space Vs,t,r/U(r) is a topological manifold of dimension equal to

dim(Vs,t,r) − dim(U(r)) = 2srt − s2 − r2 with a unique smooth structure such that the

quotient map π : Vs,t,r 7→ Vs,t,r/U(r) is a smooth submersion. Moreover, π is an open map.

Proof. The first part of the theorem follows from Theorem 8, where the assumption for the

theorem are satisfied because of Proposition 10. The quotient map π is open by Lemma 9.

Lemma 12. There is a one-to-one correspondence between the set Es,t,r of channels of Kraus

rank r and the orbit space Vs,t,r/U(r).

Proof. We define the quotient map π(V ) = [V ]: Vs,t,r 7→ Vs,t,r/U(r) and the map ψ :

Es,t,r 7→ Vs,t,r/U(r), by sending a channel E ∈ Es,t,r with (linearly independent) Kraus

operators {Ai}i∈{1,2,...,r} to π ([A1;A2; . . . ;Ar]). To show that this map is well defined, we

must show that it is independent on the choice of the Kraus operators. By Remark 4

of [1], two Kraus representations {Ai}i∈{1,2,...,r} and {Bi}i∈{1,2,...,r} describe the same channel

E ∈ Es,t,r if and only if there exist a unitary U ∈ U(r), such that Bj =
∑r

i=1(U)jiAi for

all j ∈ {1, 2, . . . , r} or equivalently VB = (U ⊗ I)VA, where VA = [A1;A2; . . . ;Ar] ∈ Vs,t,r

and VB = [B1;B2; . . . ;Br] ∈ Vs,t,r. Therefore, the two Kraus representation describe the

same channel if and only if VA ∼ VB. We conclude that the map ψ is well defined and

injective. On the other hand, for all W ∈ Vs,t,r/U(r), we can define a channel E ∈ Es,t,r

with ψ(E) = W by choosing a representative element V ∈ π−1(W ), breaking it into blocks

V = [A1;A2; . . . ;Ar] and treating those as the channel’s Kraus operators. This shows that

ψ is also surjective.

We are now ready to study the structure of the set Ees,t,r of extreme channels. In the

following we show that we can identify Ees,t,r with a smooth manifold.
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Proposition 13. The set Õ := {[A1;A2; . . . ;Ar] ∈ Vs,t,r : {A∗
iAj}i,j∈{1,2,...,r} are linearly

independent} is an open subset of the manifold Vs,t,r.

Proof. Works analogously to the proof of Proposition 6.

Lemma 14 (Manifold structure for Ees,t,r). Let O := π(Õ) ⊆ Vs,t,r/U(r), where π is the

quotient map of Lemma 11. O is a smooth manifold of dimension 2srt− r2− s2 and there is

a one-to-one correspondence between the set Ees,t,r of extreme channels of Kraus rank r and

O. Moreover, Ees,t,s 6= ∅.

Proof. Since π is an open map and Õ is an open subset of Vs,t,r, O is an open subset of the

orbit space Vs,t,r/U(r). Together with Lemma 12 and Theorem 3, this implies the first part

of the Lemma.

For the second part, we borrow an argument from [6]. Consider a channel E with Kraus

operators Ai = |ψ〉〈i| for i ∈ {1, 2, . . . , s}, where |ψ〉 ∈ C
t is of unit length and |i〉 ∈ C

s

denotes the ith standard basis vector. [Note that 〈φ| ∈ C
1×d denotes the conjugate transpose

of a d-dimensional vector |φ〉 ∈ C
d×1.] Note that

∑s

i=1A
∗
iAi = I and that the elements in

the set {A∗
iAj}i,j∈{1,2,...,s} = {|i〉〈j|}i,j∈{1,2,...,s} are linearly independent. By Theorem 3, we

have E ∈ Ees,t,s and therefore Ees,t,s 6= ∅.

Note that the above shows that the channel corresponding to the operation of discarding

a system (tracing out) and then generating a new pure state is extremal.

C. Structure of the Set of Extreme Channels in the Choi-State

Representation

We found a smooth description of the set of extreme channels Ees,t,r in Section III B.

This will allow us to transfer the characterization of extreme channels to the Choi-state

representation.

Lemma 15 (Manifold structure for Hr
s,+). The set Hr

s,+ is a smooth embedded submanifold

of R2s2 of dimension 2sr − r2 .

The ‘real case’ of Lemma 15 was shown in [9] (cf. also [10]), where they considered

the manifold of real symmetrical s × s matrices of rank r. Our proof is a straightforward
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generalization of the proof given in [9] to the complex case. We begin with some preparatory

results.

Definition 4. We define Er to be a square matrix, whose first r diagonal entries are equal

to one and all the other entries are equal to zero. [The dimension of the matrix will always

be clear from the context.]

Proposition 16. We have Hr
s,+ = {AErA

∗ : A ∈ GL(C, s)}.

Proof. The inclusion “⊇” is clear. To see the inclusion “⊆”, let H ∈ Hr
s,+. By the spectral

theorem there exists a U ∈ U(s) such that H = UDU∗, where D is a s × s matrix with

positive diagonal entries d1, d2, . . . , dr and zeros elsewhere. We define D̃ as the matrix D

where we replace the zeroes on the diagonal by ones. Then we have D =
√

D̃Er
√

D̃, and

hence H = U
√

D̃Er
√

D̃U∗ = AErA
∗, where we set A = U

√

D̃ ∈ GL(C, s).

A sufficient condition for orbits of Lie group actions to be smooth manifolds was given

in [11].

Definition 5. A map f : D → R
t with D ⊂ R

s is semialgebraic if the graph of f is

semialgebraic in R
s × R

t.

Theorem 17 (Theorem B4 of Appendix B of [11]). Let Φ : G×S 7→ S be a smooth action of

a Lie group G on a smooth manifold S. And suppose that the action is semialgebraic. Then

all the orbits are smooth embedded submanifolds of S. [Note that “smooth submanifolds” in

Theorem B4 of Appendix B of [11] correspond to “smooth embedded submanifolds” in our

terminology.]

Proof of Lemma 15 (part 1). We define the map Φ(A,H) = AHA∗ : GL(C, s) × C
s×s 7→

C
s×s. Note that Φ describes a smooth action of the Lie group GL(C, s) on the smooth

manifold C
s×s. Moreover, Φ is a semialgebraic map: The (complex) graph of Φ corresponds

to the set {(A,H, H̃) ∈ (Cs×s)×3 : det(A) 6= 0 and AHA∗ − H̃ = 0}. We can embed

the complex space (Cs×s)×3 into (R2s×s)×3 and rewrite the conditions as real polynomial

equations. By Theorem 17 and Proposition 16, we conclude that the orbit Hr
s,+ = {AErA

∗ :

A ∈ GL(C, s)} is a smooth embedded submanifold of R
2s×s ∼= R

2s2 . To determine the

dimension of this manifold, we need an additional result.
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Proposition 18. Let p ∈ Hr
s,+ and write p = ApErA

∗
p for some Ap ∈ GL(C, s). Then the

tangent space at p is given by TpH
r
s,+ = {∆ErA

∗
p + ApEr∆

∗ : ∆ ∈ C
s×s}.

Proof. We define the map φ(A) = AErA
∗ : GL(C, s) → Hr

s,+ (where we used Proposition 16

to determine the image space). Note that the map φ is smooth, since from the first part

of the proof of Lemma 15, the set Hr
s,+ is a smooth embedded submanifold (and hence we

can apply Proposition 2 to the smooth map φ′(A) = AErA
∗ : GL(C, s) 7→ C

s×s). Then the

pushforward of φ at Ap is given by DφAp
(∆) = ∆ErA

∗
p+ApEr∆

∗ : TAp
GL(C, s) 7→ TpH

r
s,+.

The inclusion “⊇” of the claim in Proposition 18 follows, because TAp
GL(C, s) ∼= C

s×s. To

see the inclusion “⊆”, we show that φ has constant rank. To see this, note that the pushfor-

ward of φ at an arbitrary A ∈ GL(C, s) is related to the pushforward at the identity in the

following way DφA (∆A) = ∆AErA
∗ + AErA

∗∆∗ = A
(

A−1∆AEr + ErA
∗∆∗ (A∗)−1)A∗ =

ADφI (A
−1∆A)A∗. This implies that ∆̃ ∈ ker (DφA) if and only if A−1∆̃ ∈ ker (DφI) and

hence dim (ker (DφI)) = dim (ker (DφA)) for all A ∈ GL(C, s). By the rank-nullity theorem,

we conclude that rank (DφI) = rank (DφA) for all A ∈ GL(C, s), i.e., φ has constant rank.

Since φ is also surjective by Proposition 16, we can apply the global rank theorem (cf. for

example Theorem 4.14 of [7]) to see that φ is a submersion. In particular, DφAp
is surjective,

which shows the inclusion “⊆”.

We are now ready to determine the dimension of the manifold Hr
s,+.

Proof of Lemma 15 (part 2). We define the map φ as in the proof of Proposition 18. Then

DφI(∆) = ∆Er + Er∆
∗. Since φ is a submersion (cf. proof of Proposition 18), DφI is

surjective and hence, by the rank-nullity theorem, dim
(

TEr
Hr
s,+

)

= dim (image (DφI)) =

dim (TIGL(C, s))−dim (ker (DφI)), where dim (TIGL(C, s)) = 2s2. Note that ∆ ∈ ker (DφI)

if and only if ∆Er = −Er∆
∗. Writing ∆ in block matrix form ∆ = [∆11,∆1,2; ∆21,∆22],

where ∆11 ∈ C
r×r, the condition above is equivalent to the two conditions ∆21 = 0 and

∆11 = −∆∗
11. Therefore dim (ker (DφI)) = 2s(s − r) + r2 and hence dim

(

TEr
Hr
s,+

)

=

2s2 − (2s(s− r) + r2) = 2sr − r2.

Lemma 15 allows us to show that the set of all Choi-states corresponding to channels

from an s-dimensional to a t-dimensional system of Kraus rank r is a smooth manifold.
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Lemma 19 (Manifold structure for Cs,t,r). The set Cs,t,r is a smooth embedded submanifold

of R2s2t2. Its dimension is 2srt− r2 − s2.

Proof. Define the smooth map Ψ(HAB) = trBHAB : Hr
st,+ 7→ Hs (the smoothness follows

again from Proposition 1 and 2). By the Regular Level Set Theorem (cf. Corollary 5.14

of [7]) and because dim(Hs) = s2 and dim(Hr
st,+) = 2srt − r2 (cf. Lemma 15), it suffices

to show that p′ := 1
s
I ∈ Hs is a regular value of Ψ, i.e., that for all p ∈ Ψ−1(p′) the

pushforward DΨp : TpH
r
st,+ 7→ Tp′Hs is surjective. To see this, choose p ∈ Ψ−1(p′) and

write p = ApErA
∗
p for some Ap ∈ GL(C, st). Choose a tangent vector X ′ ∈ Tp′Hs

∼= Hs

and write X ′ = C + C∗, where C = 1
2
X ′ ∈ C

s×s. Define ∆ := s(C ⊗ I)Ap ∈ C
st×st and

X = ∆ErA
∗
p + ApEr∆

∗ ∈ TpH
r
st,+ (by Proposition 18). Since the partial trace is a linear

(and continuous) map, we have: DΨp(X) = Ψ(X) = trB ∆ErA
∗
p+

(

trB ∆ErA
∗
p

)∗
. Using the

definition of ∆, we have trB ∆ErA
∗
p = s trB (C ⊗ I)ApErA

∗
p = sC trB ApErA

∗
p = sCΨ(p) =

sCp′ = C. We conclude that DΨp(X) = C + C∗ = X ′. Since X ′ ∈ Tp′Hs was arbitrary, we

showed that the pushforward DΨp is surjective for any p ∈ Ψ−1(p′).

To describe the set of extreme channels in the Choi-state representation, we transfer the

description of Lemma 14 to Cs,t,r.

Definition 6. We use |γ〉A′A = 1√
s

∑

i |i〉A′ ⊗ |i〉A ∈ C
s2 to denote the maximally entangled

state between the s-dimensional system A and a copy of this system, denoted by A′. We

define the Choi map Γ(E) = IA′ ⊗E(|γ〉〈γ|A′A) : Ls,t 7→ C
st×st, where IA′ is the identity map

on A′ and where Ls,t denotes the set of all linear maps from C
s×s to C

t×t. The Choi map

sends a channel to its Choi-state.

Definition 7 (Definition of the map T ). Let VA 7→CB ∈ C
rt×s, where the systems A, B

and C have the (complex) dimensions s, t and r respectively. We define the linear map

EVA 7→CB
(MA) = trC VA 7→CBMAV

∗
A 7→CB : Cs×s 7→ C

t×t. This allows us to define the smooth

map T (VA 7→CB) = Γ (EVA 7→CB
) : Crt×s 7→ C

st×st.

Note that the map T sends a Stinespring dilation V ∈ Vs,rt of a channel E ∈ Es,t,6r to the

Choi-state representation of E .

Lemma 20. The manifolds Vs,t,r/U(r) and Cs,t,r are homeomorphic.
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Proof. Since the Kraus rank of a channel is equal to the rank of the corresponding Choi-

state [1], we can consider the map T as a map from Vs,t,r to Cs,t,r. This map (which we

still denote by T ) is smooth by Proposition 1 and 2. Let π : Vs,t,r 7→ Vs,t,r/U(r) denote

the quotient map introduced in Lemma 11. For all U ∈ U(r) we have T ((U ⊗ I)VA 7→CB) =

T (VA 7→CB), because the unitary action corresponds to a change of the basis of the system

C, which is traced out. [We can also think of the unitary action as exploiting the unitary

freedom on the Kraus representation, so the channel itself is unchanged under the unitary

action.] In other words, the map T is constant on the fibers of the quotient map π. By

Theorem 4.30 of [7], there is a unique smooth map φ : Vs,t,r/U(r) 7→ Cs,t,r, such that the

following diagram commutes.

Vs,t,r

Vs,t,r/U(r) Cs,t,r

T
π

φ

By Lemma 12 we have a one-to-one correspondence between Es,t,r and Vs,t,r/U(r) (which

we denote by Es,t,r ↔ Vs,t,r/U(r)) and by the Choi-Jamiolkowski isomorphism we have

Es,t,r ↔ Cs,t,r. Together, this implies that φ is a bijection.

We have left to show that φ−1 is continuous. We would like to use the fact that a bijective

continuous map from a compact space to a Hausdorff space has a continuous inverse (cf.

Lemma A.52 of [7]). To make our domain Vs,t,r/U(r) compact, we enlarge it to Vs,rt/U(r).

Let π̃ : Vs,rt 7→ Vs,rt/U(r) denote the quotient map. [The action of the Lie group U(r) on

Vs,rt is not free in general.] Since π̃ is continuous and the Stiefel manifold Vs,rt is compact,

π̃(Vs,rt) = Vs,rt/U(r) is compact. We enlarge the domain of the map T and denote this map

by T̃ : Vs,rt 7→ Cs,t,6r. Note that T̃ is continuous. Since T̃ is constant on the fibers of π̃, we

can define a map ψ : Vs,rt/U(r) 7→ Cs,t,6r, such that the following diagram commutes.

Vs,rt

Vs,rt/U(r) Cs,t,6r

T̃
π̃

ψ

Note that ψ is a bijection, because Es,t,6r ↔ Vs,rt/U(r) by Remark 4 of [1], and Es,t,6r ↔

Cs,t,6r by the Choi-Jamiolkowski isomorphism. The map ψ is continuous, because T̃ is

13



continuous (and by the definition of the quotient topology). Since Vs,rt/U(r) is compact and

Cs,t,6r is Hausdorff, ψ
−1 is continuous.

To see that φ−1 is continuous we restrict ψ−1 to Cs,t,r. For this purposes, we define the

inclusion map ı(V ) = V : Vs,t,r 7→ Vs,rt. Note that ı is continuous and open (because Vs,t,r is

an open subset of Vs,rt by Proposition 6). Since the map π̃ ◦ ı is constant on the fibers of π,

we can define a map ı̃ such that the following diagram commutes.

Vs,t,r Vs,rt

Vs,t,r/U(r) Vs,rt/U(r)

ı

π̃ ◦ ı
π

ı̃

π̃

By Lemma 9, π̃ is an open map. Then π̃ ◦ ı is an open and continuous map and hence,

we can conclude that ı̃ is continuous and open (and injective). We are now ready to show

that φ−1 is continuous. Note that the restriction ψ̃−1 : Cs,t,r 7→ Vs,rt/U(r) of ψ−1 is still

continuous. Because ı̃ is injective and ψ−1(Cs,t,r) = ı̃(Vs,t,r/U(r)) we can define a map

χ : Cs,t,r 7→ Vs,t,r/U(r) such that the following diagram commutes.

Cs,t,r Vs,rt/U(r)

Vs,t,r/U(r)

ψ̃−1

χ
ı̃

The map χ is continuous because ı̃ is open and note that χ = φ−1.

Theorem 21 (Manifold structure for Ce
s,t,r). The set Ce

s,t,r is an open subset of Cs,t,r. In

particular it is a smooth embedded submanifold of Cs,t,r (and of R2s2t2). Its dimension is

2srt− r2 − s2. Moreover, Ce
s,t,s 6= ∅.

Proof. Follows from Lemma 14 together with Lemma 20.

Remark 2. An alternative and more explicit characterization of extremality in the Choi-

state representation is given in Theorem 4 in [6].
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IV. DECOMPOSITION OF CHANNELS INTO CONVEX

COMBINATIONS OF EXTREME CHANNELS

We show that every element E ∈ Es,t can be decomposed into a convex combination of at

most s2(t2 − 1) + 1 extreme channels in Ee
s,t.

Theorem 22 (Convex decomposition). For every channel E ∈ Es,t there exists a set

{(pj, Ej)}j∈{1,2,...,k}, where k 6 s2(t2 − 1) + 1, pj ∈ [0, 1],
∑k

j=1 pj = 1 and Ej ∈ Ee
s,t,

such that E =
∑k

j=1 pjEj.

Remark 3. It is conjectured by Ruskai and Audenaert [5] that k 6 t if we allow convex

combinations of channels Ej ∈ Es,t,6s (note that Es,t,6s is equal to the closure of the set of all

s to t extreme channels [5]). However, as far as we know, this remains unproven.

Proof of Theorem 22. In the proof of Lemma 20 we saw that Vs,st2/U(st) is compact and

homeomorphic to Cs,t,6st. Therefore, Cs,t = Cs,t,6st is compact. Since Cs,t ⊂ R
2s2t2 is also

convex, by the Minkowski Theorem (see for example Theorem 2.3.4 of [12]), Cs,t is the

convex hull of its extreme points. By Carathéodory’s theorem (see for example Theo-

rem 1.3.6 of [12]), we can always find a decomposition of the required form for which

k 6 dim (aff[Cs,t]) + 1 = s2(t2 − 1) + 1, where aff[Cs,t] denotes the affine hull of the set

Cs,t, i.e., aff[Cs,t] = {CAB ∈ Hst : trB CAB = 1
s
I}.

V. APPLICATION: IMPLEMENTATION OF QUANTUM CHANNELS

Methods for implementing quantum channels from a system A to a system B with

low experimental cost as a sequence of simple-to-perform operations were considered

in [3; 4; 13; 14]. In [3], a lower bound on the number of parameters required for a quantum

circuit topology that is able to perform arbitrary extreme channels from m to n qubits (i.e.,

from a system A of dimension dA = 2m to a system B of dimension dB = 2n) was given.

Here, we give a rigorous mathematical proof of this statement and strengthen the result by

showing that a circuit topology that has fewer parameters than required by the lower bound

is not able to approximate every extreme channel from m to n qubits arbitrarily well.

From a mathematical point of view, a quantum circuit topology can be defined as follows.
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Definition 8. A quantum circuit topology is a 5-tuple Z := (dA, dB, dC , p, h), where

dA, dB, dC ∈ N, dBdC > dA, p ∈ N0 and h : [0, 2π]p 7→ VdA,dBdC is a smooth function.

The physical interpretation is the following: We consider a quantum system BC of di-

mension dBC := dBdC , where an input state for a quantum channel is given on a subsystem

A of dimension dA and where the other part of the system BC starts in a fixed pure state.

We think of a fixed sequence of unitary operations performed on the system BC, where

the unitaries have p free parameters between them. Since the parameters corresponds to

rotational angles in [3], we take them to lie in the interval [0, 2π]. [We could replace 2π by

any positive real number without changing one of the following statements.] Each choice of

parameters corresponds to the implementation of a certain isometry from the system A to

the system BC. The function h maps each choice of the parameters to the corresponding

isometry. After performing the isometry, the system C is discarded (traced out), and we

read out the output of the channel on the remaining system B.

Definition 9. The set of quantum channels (in the Choi-state representation) that can be

generated by the quantum circuit topology Z = (dA, dB, dC , p, h) is defined by H(Z) :=

T (h([0, 2π]p)), where the map T was introduced in Definition 7 and where we take the

partial trace over the first dC-dimensional system, i.e., the partial trace trC(·) corresponds

to
∑dC

i=1 (〈i| ⊗ I) ·(|i〉 ⊗ I). [Note that this specification does not restrict the physical setting

since we can always adapt the map h, such that the output of a channel is read out at the

last dB dimensional system.]

Lemma 23. Let r ∈ N be fixed and O ⊂ CdA,dB ,r open (and non empty). A quantum circuit

topology Z = (dA, dB, dC , p, h) with p < dim (CdA,dB ,r) = 2dAdBr − d2A − r2 or dC < r can

only generate a set of measure zero in O, i.e., H(Z) ∩O is of measure zero in O.

Proof. The idea of the proof is based on Sard’s theorem (similar to [15; 16]). Let us fix a

quantum circuit topology Z = (dA, dB, dC , p, h), r ∈ N and an open set O ⊂ CdA,dB ,r. We

define the map T : VdA,dBC
7→ CdA,dB as in Definition 7, and a map F = T ◦ h, such that the

following diagram commutes.

Case 1 (dC < r): In this case, note that H(Z) = F ([0, 2π]p) ⊂ T (VdA,dBC
). But

T (VdA,dBC
) contains only (Choi-states of) channels of Kraus rank at most dC < r. There-

fore, H(Z) ∩O = ∅.
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VdA,dBC

[0, 2π]p CdA,dB

T
h

F

Case 2 (dC > r): Define the set S := F ([0, 2π]p)∩O. To show that S has measure zero,

define the domain D = F−1(O) and the function F̃ = F
∣

∣

D
: D 7→ O. By Sard’s theorem

(see Appendix A for the full technical details) we conclude that S = F̃ (D) is of measure

zero in the smooth submanifold O if dim(D) 6 p < dim(O) = dim(Cs,t,r).

Theorem 24 (Strong lower bound). Let q ∈ N and consider a set of quantum circuit

topologies R = {Zi = (dA, dB, dCi
, pi, hi)}i∈{1,2,...,q} where for each i ∈ {1, 2, . . . , q} either

pi < 2d2A (dB − 1) or dCi
< dA. Then there exists an extreme channel E0 ∈ Ce

dA,dB ,dA
and a

neighborhood B(E0) ⊂ CdA,dB of E0, such that for all E ∈ B(E0) we have E /∈
⋃q

i=1H(Zi).

This theorem considers a finite set of circuit topologies each of which either has fewer

free parameters than the dimension of the set of extreme channels or discards a system

whose dimension is too low to generate channels of the maximal Kraus rank for any extreme

channel. The theorem says that there exist extreme channels that cannot be approximated

arbitrarily well using circuit topologies from this set.

Proof. By Theorem 21, the set Ce
dA,dB ,dA

6= ∅ is an open subset of CdA,dB ,dA . Hence, H(Zi) ∩

Ce
dA,dB ,dA

is of measure zero in Ce
dA,dB ,dA

by Lemma 23. Since a finite union of set of measure

zero is again of measure zero, we conclude that S :=
⋃q

i=1

(

H(Zi) ∩ Ce
dA,dB ,dA

)

is of measure

zero. Since Ce
dA,dB ,dA

6= ∅, we can choose a channel E0 ∈ Ce
dA,dB ,dA

∩ Sc and hence E0 ∈ Hc,

where we set H :=
⋃q

i=1H(Zi). We have left to show that H is closed in CdA,dB . To see

this, note that the map Ti : VdA,dBCi
7→ CdA,dB (as defined in Definition 7) is continuous

and hence Fi := Ti ◦ hi : [0, 2π]
pi 7→ CdA,dB is also continuous. Since [0, 2π]pi is compact,

H(Zi) = Fi([0, 2π]
pi) is closed in CdA,dB and therefore H is also closed.
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Appendix A: Smoothness of F̃ and a version of Sard’s theorem

The domain D of the function F̃ in the proof of Lemma 23 might not be open. We

therefore first clarify the meaning of smoothness in the case of arbitrary domains.

Definition 10. Let D ⊂ R
s. A function F : D 7→ R

t is smooth if for all p ∈ D there exists

a neighborhood B(p) of p in R
s, such that there exists an extension F̂ : B(p) 7→ R

t of F ,

with F̂ smooth.

Lemma 25 (Measure of the image). Let s < t, D ⊂ R
s and F : D 7→ R

t be smooth. Then

F (D) has measure zero in R
t.

Proof. We define D′ := D×{0}×{0}×· · ·×{0} ⊂ R
t. Note that D′ lies in a affine subspace

of Rt and is therefore of measure zero (in R
t). Let F ′ := F ◦π : D′ 7→ R

t, where π : Rt 7→ R
s

denotes the projection map to the first s coordinates. To show that F ′ is smooth, choose

p′ ∈ D′ and let p := π(p′). Because F is smooth by assumption, there exists a neighborhood

B(p) ⊂ R
s around the point p and a smooth extension of F denoted by F̂ : B(p) → R

t.

Hence F̂ ′ := F̂ ◦ π : B(p) × R
t−s 7→ R

t is a smooth extension of F ′ around p′. Therefore,

F ′ is a smooth map and by Proposition 6.5 of [7], we conclude that F ′(D′) = F (D) is of

measure zero.

Lemma 26 (Restrict the range of a smooth map). Let D ⊂ R
s be arbitrary and let N be

a smooth manifold. Let N ′ be a smooth embedded submanifold of N and F : D 7→ N be a

smooth map, such that F (D) ⊂ N ′. Then F̃ : D 7→ N ′ is smooth.

Proof. The proof works analogously to the proof of Theorem 5.29 of [7] (see also Corol-

lary 5.30 of [7]).

Proof: F̃ (D) is of measure zero (completes the proof of case 2 of Lemma 23).

We use the notation of the proof of Lemma 23. First note that the function F
∣

∣

D
: D 7→

C
dAdB×dAdB is smooth. By Lemma 26 the function F̃ : D 7→ O is also smooth. To show that

S := F̃ (D) ⊂ O is of measure zero, we choose a collection of smooth charts {(Uα, φα)} of

the submanifold O whose domains cover S. By Lemma 6.6 of [7] we have left to show that

for all α the image φα(S ∩ Uα) is of measure zero in R
d, where d denotes the dimension of

O. Consider the smooth map F̃α := φα ◦ F̃ : Dα := F̃−1(Uα) → Vα := φα(Uα) ⊂ R
d.

By Lemma 25, the image F̃α(Dα) = φα(S ∩ Uα) is of measure zero if p < d.
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