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Abstract: 
Purpose: The purpose is to propose a seamless active interaction control method integrating the 
electromyography (EMG)-triggered assistance and the adaptive impedance control scheme for 
parallel robot-assisted lower limb rehabilitation and training. 
Design/methodology/approach: An active interaction control strategy based on EMG motion 
recognition and adaptive impedance model is implemented on a six-DOF parallel robot for lower 
limb rehabilitation. The autoregressive (AR) coefficients of EMG signals integrating with a 
support vector machine (SVM) classifier are utilized to predict the movement intention and trigger 
the robot assistance. An adaptive impedance controller is adopted to influence the robot velocity 
during the exercise, and in the meantime the user’s muscle activity level is online evaluated and 
the robot impedance is adapted in accordance with recovery conditions. 
Findings: Experiments on healthy subjects demonstrated that the proposed method was able to 
drive the robot according to the user’s intention and the robot impedance can be updated with the 
muscle conditions. Within the movement sessions, there was a distinct increase in the muscle 
activity levels for all subjects with the active mode in comparison to the EMG-triggered mode.  
Originality/value: Both users’ movement intention and voluntary participation are considered, not 
only triggering the robot when people attempt to move, but also changing the robot movement in 
accordance with user’s efforts. The impedance model here responds directly to velocity changes, 
and thus allows the exercise along a physiological trajectory. Moreover, the muscle activity level 
depends on both the normalized EMG signals and the weight coefficients of involved muscles. 
Keywords: rehabilitation robot; EMG signals; motion recognition; muscle activity level; 
adaptive impedance control 
 
1. Brief Introduction 
According to the official statistical data from the United Nations, the proportion of the world’s 
population over 60 years old will be doubled from 11% to 22% between year 2000 and 2050. 
Meanwhile, there are about 650 million disabled people worldwide, accounting for around 10% of 
the total world population. Currently, there is a considerable increase in the needs of health care 
and rehabilitation, especially among elderly or disabled people (Zhou et al., 2013). Rehabilitation 
and medical robotics can not only liberate the therapists from heavy training missions, but also 
help the patients perform scientific and repetitive training to provide a better motor function 
recovery. Since electromyography (EMG) signals contain much information of the muscle activity 
and can imply people’s movement action 30~100ms in advance (Fan and Yin, 2013), they are 
widely used in clinical diagnosis, rehabilitation, prosthetic control, and human-robot interaction. 
Benitez et al. (2013) gave an overview of different forms of therapy, and explained the benefits of 



 

 

robotic aided rehabilitation by monitoring and analyzing the bio-signals from patient. Krebs et al. 
(2003) described a concept of performance-based progressive robot therapy that utilized EMG 
thresholds to initiate the robot assistance. In the research, the EMG signals in fourteen muscles of 
the upper limb were collected, and the assistance was triggered when the muscles’ activity 
increased above a threshold. This EMG-triggered assistance encourages self initiated movement 
by patients, and this means the patient has to apply some voluntary efforts to obtain a movement 
supported by the robot. However, this approach usually breaks the movement into two separate 
phases, an active phase driven by the patient, and a passive phase driven by the robot 
(Marchal-Crespo and Reinkensmeyer, 2009). Furthermore, when the robot is driven to provide 
assistance in the second phase, typically passive controllers will be used to achieve the necessary 
movement, so the patient is not in a fully compliant environment when assistance is provided 
(Wolbrecht et al., 2008). In such EMG-triggered mode, the robot would operate with a predefined 
trajectory after being activated, which had no interaction with the human limbs during this period 
until the time allowed for the next trigger event (Song et al., 2008). 

To increase patient’s interactivity during the rehabilitation, the patient-cooperative strategy 
should be combined with approaches that adapt the robot assistance according to the intention of 
subjects. DiCicco et al. (2004) presented an orthotic exoskeleton controlled by EMG signals with 
threshold approach, which means the robot can be only activated when the normalized EMG 
signals are above a certain threshold. However, as explained above, this method may divide the 
robot assistance into two independent sub-tasks. Therefore, the self-initiated movement support 
and patient-cooperative control strategies must be integrated into a robot-assisted rehabilitation 
system. Benitez et al. (2013) proposed a set of dynamic models to compute the robot triggering 
function and the assistance level people needed by using the muscular EMG signals and the sensor 
information from robot. The models can be integrated into an active 1-DOF-elbow orthosis system, 
which provides a promising solution to such active rehabilitation problems. On the other hand, 
Song et al. (2013) proposed a continuous robot assistance method to provide robot assistive torque 
proportional to the amplitude of EMG signals. However, the relationship between EMG and joint 
torque was only simplified as a linear model. Many researchers utilized EMG signals to estimate 
the joint torque, and applied the estimated torque to the robot-assisted movement. Lenzi et al. 
(2012) studied a torque estimation-based EMG control method for powered exoskeletons, and the 
assistance was provided through a proportional EMG controller. These methods could provide 
effective support to the user. However, their usability was strongly limited by the application 
environment and the estimation of user muscular torque was quite rough. The development of 
pattern classification can help patients perform rehabilitation with EMG controlled robotic system. 
A human-assisting manipulator operated by EMG signals and arm motions was proposed by 
Fukuda et al. (2003), where an active joint in the manipulator’s end-effector was controlled based 
on EMG pattern discrimination. So, the robot can adapt itself to the changes of EMG patterns 
according to the differences among individuals. Similarly, Kiguchi and Hayashi (2012) proposed 
an EMG-based method to control an upper-limb robot according to user’s intention, in which, 
however, sixteen channels of EMG signals were captured to estimate the upper-limb joint torque 
vector. To have a better recognition accuracy, Ju et al. (2013) investigated nonlinear EMG features 
and classifiers, which made the robot system more reliable (Ouyang et al., 2014).  

The potential problem with EMG-triggered passive robot training is that it does not consider 
patient’s voluntary participation or muscular efforts, thus reducing the capabilities of the system to 



 

 

exercise (Riener et al., 2006). The patient’s muscle activity level can be reflected by EMG signals, 
while the voluntary participation is closely related to the interaction force between the patient and 
the robot. Several control strategies have been developed to provide robotic assistance according 
to the patient’s disability level and the patient’s voluntary participation in the training process. In 
most literatures, the subject’s muscle activation level is evaluated by using root mean square 
(RMS) of EMG signals collected from related muscles. However, the level of EMG readings is 
dependent on the skin impedance at the electrodes location, which may vary between different 
sessions (Mobasser et al., 2007). So in order to compensate this variability, the EMG data have to 
be normalized. Song et al. (2008) used the maximum voluntary contraction (MVC) method to 
normalize EMG signals. In fact, using this method to calculate the muscle activity level is 
problematic as there will be very different contributions of each muscle when conducting different 
motion patterns (Ji and Liu, 2010). Thus, the weights of constriction muscles of the limb have to 
be reconsidered when evaluating patient’s muscular strength. On the other hand, the human robot 
interaction control is mostly achieved by the use of impedance control. It is widely accepted that 
the behavior of robot should be adjusted according to patient’s recovery conditions, which can be 
reflected from muscle activities (Ai et al., 2014). The basis of adaptive impedance assistance is to 
modify the robot motion in a way that is desired by the patient, which is believed to be most 
appropriate for rehabilitation. However, the issue of reference trajectory adaptation has some 
drawbacks, for example, the extent of trajectory adaptation can not be well determined and the 
changes may result in an un-physiological motion pattern. In order to tackle this problem, the 
robot assistance speed can be adaptable (Duchaine et al., 2007). In this situation, the physiological 
trajectory can be followed, while the change in the motion velocity influenced by the patient can 
also be obtained in the meantime. Therefore, it may provide a better opportunity for the patient to 
actively contribute muscular efforts during the exercise compared to trajectory control. 

Interactive rehabilitation and training encourages patient’s active participation and may aid in 
rapid motor function recovery (Liu, 2011). In this paper, an active interaction controller is built by 
the fusion of EMG signals (reflecting human movement intention) and the force sensor (providing 
human-robot interaction information). In order to obtain the surface EMG signals from lower limb 
muscles more conveniently and effectively, a wireless EMG acquisition device based on Wi-Fi 
protocol is developed. An effective motion recognition controller based on autoregressive (AR) 
features and support vector machine (SVM) classifier is established to predict lower limb motion 
intention in advance and trigger the robot assistance. In order to allow the user to interact with the 
robot and take more efforts during the rehabilitation, an impedance controller is designed to make 
the robot movement speed adaptable to people’s participation efforts. Furthermore, the impedance 
controller takes into account the user’s muscle activity levels, which are evaluated from EMG 
signals by considering the contributions of each muscle in different motion patterns, to adapt the 
robot compliance accordingly. The proposed active interaction controller allows the patients to 
determine the trajectory pattern by recognizing EMG signals and influence the speed of their leg 
movements along a physiological trajectory during the whole practice.  
 
2. A Lower Limb Rehabilitation Robot 
The mechanical design of the robot is the basis of robot-assisted rehabilitation system. In general, 
there are two types of rehabilitation robots: end-effector robots, and exoskeleton-type robots. The 
exoskeleton robots usually have to be worn by the patient, and such robots have drawbacks of 



 

 

inferior adaptability to different patients. On the contrary, the end-effector robots usually contact 
with the patient body at a certain point, making this type of robot easy to design and control. 
Although a number of robots show great prospect in the rehabilitation of the lower limbs, they 
have not yet been widely applied to the clinical rehabilitation (Yin et al., 2012). In order to avoid 
complex dynamics problems such as coupling effects caused by multi-DOFs, the human-machine 
interface in (Yin et al., 2012) was applied to the knee controlling with only one DOF joint 
extension. However, this structure can not meet the requirement of lower limb movement in 
multi-DOFs. Recently, parallel robots have drawn a lot of interests in the robotic community due 
to their superiority over the classical serial structures in terms of stiffness, accuracy, and high 
payload. It has been found that parallel robots are better candidates for lower limb rehabilitation 
(Jamwal et al., 2014). Hussain et al. (2011) had also proposed a 4-axis redundant parallel robot 
based on the modeling and kinematics of ankle anatomy. 
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(a) the parallel robot and its control system   (b) the geometric diagram 

Figure 1 A 6-DOF parallel robot for lower limb rehabilitation. 
The lower limb rehabilitation robot designed here is also basically a parallel mechanism with 

six transitional and rotational DOFs. The mechanical structure is composed of a fixed base, a 
moving platform, and six actuated limbs with kinematic chains. The Stewart platform shown in 
Figure 1 was designed by the authors’ research group for the purpose of investigating lower limb 
rehabilitation. The designed robot can be adaptable to subjects of varying lower-limb abilities. 
Specifically, the system mainly includes an industrial PC, six motion controllers based on DSPs 
(model: TMS320LF2407A), Panasonic Minas servo drivers, as well as the Stewart platform. 
Linear position and velocity of each actuator are measured by incremental photoelectric encoders. 
The controller is coded in C++ language and runs under a Windows environment. The device is 
interfaced to a standard PC through a CAN BUS interface. Geometric diagram of the Stewart 
platform can be seen in Figure 1(b), where the radius of the upper platform is defined as rb, and 
the angle is ș2, likewise, the parameters of the fixed platform are defined as ra and ș1, respectively. 
The radius of the upper moving plate is 180mm, while the radius of the fixed base plate is 270mm, 
and the angles of the platforms are 28°and 22°, respectively. The robot’s range of motion is able to 
fully meet the requirements of lower limb rehabilitation and training. 
 
3. Wireless EMG Acquisition Device Based on Wi-Fi Protocol 
It is important for the assistive rehabilitation robot to be controlled in accordance with the user’s 
motion intention, which can be directly reflected by the biological signals. However, it is difficult 
to combine the biofeedback with the mechanical robot control (Riener et al., 2005), since the 



 

 

traditional EMG acquisition devices are always wired, inconvenient, and non-portable. The 
current wireless techniques for EMG equipment usually focus on Bluetooth, Zigbee, or FSK 
(Hussain et al., 2013). The disadvantage is that the collected EMG data can only be used for local 
processing. As the Wi-Fi protocol has advantages of network access ability, high transmission 
bandwidth and low error rate over other wireless techniques, it can be used to complete the 
wireless transmission of EMG signals from the acquisition devices to the processing platforms. 
There are several commercial Wi-Fi based EMG acquisition devices, such as the BTS FREEEMG 
from BTS Bioengineering Corp. and the devices from Shanghai NCC Medical Co., Ltd. However, 
these commercial equipments are not selected by the authors because they are very expensive and 
this will increase the cost dramatically. The real-time performance is indeed an important issue 
when applying EMG devices to robot control. The self-developed device can also satisfy the 
real-time requirement by using Wi-Fi protocol. Considering the system compatibility when 
integrating it with the robot platform in our experiment, we choose to develop such a device by 
ourselves. The wireless EMG acquisition device designed by the researcher’s group is presented in 
Figure 2, in which (a) is the system architecture, and (b) is the picture of the hardware device. The 
central unit is a high-performance monolithic processor STM32F103RC6, and the communication 
unit employs a WM-MR-08 module as the 802.11b/g baseband controller. In addition, the device 
is also integrated within a lithium battery and a power management system. Specifically, the 
sampling resolution is 12bit, with a bandwidth of 20~500Hz. The system amplification gain is set 
to 60db, wherein the preamplifier gain is 20db and the final gain is 40db. 

  
(a) systematic architecture                      (b) hardware picture 

Figure 2 The self-developed wireless EMG acquisition device. 
 
4. Motion Recognition and Muscle Activity Evaluation 
4.1 EMG features extraction and motion recognition 
EMG signals are often utilized to control the power-assist robot since they can directly reflect the 
user’s movement intention and the muscle activity levels (Kiguchi et al., 2004). In recent years, a 
number of methods have been proposed to extract useful information from EMG signals (Ai et al., 
2013). However, it is difficult to estimate the intended motions accurately from multichannel 
EMGs by using a fixed classifier. The existing methods tend to be complicated or require huge 
amount of signal samples, most of them for lower limb EMG signal are less than ideal and can not 
meet the real-time requirement. Since the coefficients of AR model contain sufficient features of 
EMG signals, they are selected as the features to model the motion patterns in this paper. The 
transfer function of AR model is defined as: 
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where p is the order of the used AR model, ia is the AR coefficients ( 1, 2, ,i p  ), ( )x n is the 
EMG sample, and ( )w n is the residual value of white noise. 

In this paper, four-channel EMG signals are collected and utilized for lower limb’s motion 
recognition, so a four-order AR model is established in this context. That is:  

11 12 13 14 21 44{ , , , , , , }a a a a a a a       (2) 

The canonical equation of AR model is the Yule-Walker style, which builds the relationship 
between the AR coefficients ia  and the self-correlation matrix of ( )x n . 










































































0

0
0

1

)0()2()1()(

)2()0()1()2(
)1()1()0()1(

)()2()1()0( 2

2

1







 

pa

a

a

RpRpRpR

pRRRR

pRRRR

pRRRR

ǂǂǂǂǂǂǂǂǂ

ǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂǂ

ǂǂǂǂǂǂǂǂǂǂǂǂ

ǂǂǂǂǂǂǂǂǂǂǂǂ

ǂǂǂǂǂǂǂǂǂǂǂǂ

  (3) 

The equations above can be solved by the Levinson-Durbin based iterative algorithm as follows: 
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With above equations (4)-(7), the AR coefficients ia  can be obtained, and they are used as 

the inputs to a classifier for motion recognition. 
Support vector machine has gained wide acceptance in pattern recognition fields. It is shown 

that SVM is superior to other machine learning methods such as back propagation neural network 
(BPN), since SVM is able to gain better generalization ability for unseen data (Liu et al., 2007). In 
this study, a method based on the AR features of EMG in combination with a SVM classifier is 
proposed, which is quite effective for solving nonlinear classification problems and reducing 
computation time. Supposing the samples are { , }i ix d , where ix  is the sample to be classified, 
and id  is the category of sample ix . So the optimal hyper-plane 0T

iw x b  should meet the 
formula and we need to find the minimum 

2 2w , which can be rewritten as: 
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The objective function above is to find the optimal solution under inequality constraints, and 
this can be resolved by Lagrange functions: 
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where  is the Lagrange multiplier, and finally we can obtain the classification function as: 
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where ix is the support vector, and *
i  is the Lagrange multiplier with respect to the support 

vector, and *b is a constant. For nonlinear classification system, the slack variable 0  should 
be introduced, and the objective function becomes:  
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where 0C  is the penalty factor which is used to find the optimal hyper-plane under nonlinear 
conditions by transforming them to the samples suitable for linear classification.  

Considering the nonlinear samples, the kernel function is utilized in nonlinear transformation 
to map the nonlinear variables to the high-dimensional linear space. Based on the features of EMG 
signals, a radial basis function (RBF) is selected as the kernel function here.  
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4.2 Evaluation of muscle activity level 
In order to provide the robot assistance based on patient’s recovery conditions, the progressive 
rehabilitation should be considered by monitoring the patient’s muscle condition and updating the 
robot controller in real time. As muscle activity levels are closely related to the coordination of 
multiple muscles, a number of researchers have used EMG signals to evaluate patient performance 
during the training or exercise sessions (Akdogan et al., 2012). However, the level of EMG 
readings may vary between different sessions. So in order to compensate this variability, the EMG 
signals have to be normalized. Moreover, there are different contributions of each muscle when 
conducting different motion patterns. Therefore, the weight coefficients of involved muscles of the 
limb have to be considered when evaluating the patient’s muscle activity level.  

The SVM classifier is utilized to predict movement intention in this paper, so the process can 
be divided into two stages: the training stage and the active testing stage. In the first stage, the 
subject is asked to keep a certain motion for a period of time, so that EMG signals can be sampled 
and used to train the SVM classifier. And in the second stage, the subject is asked to move the 
limb freely and the motion can be identified by the trained classifier. The EMG signals in the first 
stage can be regarded as the reference criterion to identify the movement intention, and thus it is 
also reasonable for that to be used for normalizing the muscle activity levels. The scheme of 
motion recognition and muscle activity evaluation based on EMG signals is illustrated in Figure 3. 
Specifically, in the training stage, for each motion pattern, the weight coefficients of four selected 
muscles are calculated based on the total RMS values of four-channel EMG signals.  
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In the second stage, subjects are asked to perform an active movement task, and the EMG 
signals are used to identify the motion pattern and evaluate the muscular activity level for the 
immediate pattern. Because different motions activate different limb muscles, the patient’s muscle 
activity level is calculated by integrating the normalized RMS values and the weight coefficients 
(Yin et al., 2012). In other words, when subjects intend to move, the limb’s motion will be 
recognized by EMG signals, and as the weight coefficients of muscles contributing iw  have 



 

 

been obtained in the training stage, so it is clear how much a muscle is involved in such a certain 
motion. And therefore it is more reasonable to evaluate the muscle activity level by integrating the 
normalized RMS values and the weight coefficients of activated muscles: 
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where iw  is the weight coefficient of channel i for the current motion pattern, and ( )iRMS n  
presents the RMS value of the nth sampled signals of channel i, ( )iinit RMS  is the initial RMS 
value of channel i, which is equal to the average RMS of channel i ( ( )iRMS n ) computed above. 
The average of RMS values of EMG signals and muscle activity levels are computed for each 
movement session, according to the total EMG values during this session and the period of time. 
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Figure 3 Motion classification and muscle activity evaluation scheme based on EMG signals. 

 
5. Adaptive Impedance Control for Interactive Rehabilitation 
The motion recognition system determines the rehabilitation trajectory and parameters based on 
real-time evaluation and motion decoding. In order to provide a compliment environment after the 
robot being triggered, flexible assistance should be provided by monitoring the interaction force 
between the user and the robot. Therefore, a position-based impedance model is established in this 
context. The robot can be controlled in admittance with the reference trajectory of the robot when 
the patient attempts to move. By measuring the interaction force applied by users, it is possible to 
compute the reference position/velocity required to render certain mass, stiffness, and damping 
parameters (Saglia et al., 2013). The control objective of this impedance controller is to modify 
the robot assistance movement in each direction of the task space with user’s active interaction, so 
the dynamic relationship between the robot end-effector position and the interaction force needs to 
be established (Lopes and Almeida, 2008). In order to fulfill such task space requirements, a 
second-order, end-effector impedance model is chosen and expressed by Eq. (15). 

( ) ( ) ( )d d d d d d e     M x x B x x K x x F        (15) 

where dM , dB  and dK  are the diagonal matrices representing the desired inertia, damping, and 
stiffness parameters, x  and dx  are the actual and the desired end-effector positions vectors in 
task space (Lopes and Almeida, 2008). eF  is the interaction force the user exerts upon the robot. 



 

 

In this parallel robot-aided rehabilitation program, the end-effector’s acceleration changes 
very slowly, so the impact of the acceleration change dx x   may be ignored (Xu et al., 2011). 
Considering the actions of desired stiffness and damping, Eq. (15) can be simplified as: 

( ) ( )d d d d e    B x x K x x F        (16) 

The traditional impedance controller imposes fixed parameters on the patient and can not 
adapt the impedance to different users. While it is widely accepted that the rehabilitation should 
consider the patient’s recovery condition and update the impedance parameters in real time. Since 
impedance parameters of the human limb will be changed for different muscle activity levels, 
therefore, the robot impedance should be changed depending on the activity levels (Kiguchi and 
Hayashi, 2012). In the proposed controller, impedance parameters of the robot are adaptable in 
accordance with the active ratio of lower-limb muscles to realize the natural and adaptive assist 
compliance. As mentioned above, in order to guarantee the assistive trajectory to be physiological, 
this impedance controller works with a constant reference trajectory and only adapts the robot 
velocities. The desired damping is the most important factor when an impedance model following 
force and velocity control is applied, and it is also one of the impedance parameters acts as a 
velocity feedback gain (Nagata et al., 2009). On the other hand, in the force-controlled work space, 
if only a simple force feedback is applied, the response can be under-damped for an environment 
with high stiffness under rigid conditions (Patel and Shadpey, 2005). So we introduce a method for 
tuning the desired damping parameters here, and similar strategies applied in robot compliance 
control can also be found in related works from Cho and Park (2005), Hu et al. (2012), or Saglia et 

al. (2013). Note that the inertia has been set to zero, and in the case of pure damping simulation, a 
proper stiffness is selected necessary to ensure the system stability. This guarantees that the user 
interacts with the external environment with a velocity that can be properly adjusted by the impact 
forces. Therefore, the viscous damping of impedance controller is the parameter to be adjusted, 
while the stiffness is selected properly, depending on the muscle activity levels of lower-limb. The 
trajectories will not be modified and the damping parameter dB  is adjusted as follows: 

0 , sat( ( ))d EMG mal n   B B C      (17) 

where 0B  is initial viscous damping matrix for the initial position, 
EMGC  is the proportional 

coefficient matrix of EMG effects, and ( )mal n  is the muscle active level evaluated by Eq. (14). 
sat( )  is a saturation function. Thus, the amount of damping parameter dB  is increased when 
the activity level of related lower-limb muscles simultaneously increased. And velocities of the 
robot are set to be proportional to active interaction force based on damping parameter.  

The controller architecture for damping-active training is shown in Figure 4. The outer loop 
is an impedance control loop with damping parameter, and the inner loop is a position/velocity 
controller. The damping coefficient is changed for different training resistances according to the 
muscle activity level, which is identified by EMG signals considering the weight coefficients of 
involved muscles in different motion patterns. Furthermore, the adaptive controller is proposed to 
adjust the impedance parameters and influence the robot speed in accordance with the patient’s 
interactive efforts. Specifically, a fuzzy PID adaptive controller was implemented in joint space as 
a basic position/velocity controller of the 6-DOF parallel robot, and the detailed implementation of 
such controller can be found in our previous work (Zhou et al., 2013).  
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Figure 4 Adaptive impedance control based on muscle activity level evaluation. 
 
6. Experiments and Results 
6.1 Experimental Setup 
In order to evaluate the ability of the integrated parallel rehabilitation robot to provide interactive 
rehabilitation for lower limbs, the previously described robot and controller were implemented in 
a preliminary experiment. Information including EMG signals, robot position, velocity and the 
interaction force are collected and analyzed. The surface EMG signals are acquired by the self- 
developed wireless EMG acquisition device based on Wi-Fi, with a 60db amplifier, a 20~500Hz 
band pass filter, a 50Hz notch filter, and an A/D convertor. A Futek force sensor (MTA400 tri-axial 
load cell, Advanced Sensor Technology, INC. USA) is mounted between the moving platform and 
the footplate to sense the interaction force acting between human and robot. The force signals are 
amplified before being sent to the PC by the Futek amplifier modules and a low pass filter is used 
to tune the system in order to minimize the effect of noises.  

The experiments were carried out with nine subjects aged range from 20 to 42, including both 
male and female subjects. Six motions of lower limb that are frequently used, namely, dorsiflexion, 
plantarflexion, inversion, aversion, adduction, and abduction (Jamwal et al., 2014) were adopted. 
Four-channel EMG signals from the subject’s gastrocnemius medialis (GM), tibialis anterior (TA), 
flexor digitorum longus (FDL) and soleus (SL) muscles were captured. The location of electrodes 
is shown in Figure 5(b). The surface EMG signals of these muscles were acquired in real time, and 
the force sensor was located to understand the human robot interaction. The subjects sat on a chair 
with his/her right foot constrained to the robotic device, as illustrated in Figure 5(c). Considering 
the safety issue, this preliminary test was performed with healthy subjects. This experiment was 
designed to evaluate if the proposed control scheme could trigger the robot assistance and modify 
the robot movement based on subject’s EMG signals and active efforts. Since the participation of 
healthy subjects and patients are both indicated by the data from force sensors and EMG, it is 
reasonable to verify the effectiveness of the proposed method by experiments on healthy subjects, 
and this is also accepted by many works such as Hussain et al. (2013) and Kiguchi et al. (2012). 



 

 

 

Figure 5 (a) Wi-Fi EMG acquisition device (b) location of EMG electrodes (c) experimental setup 
The experiment process of the proposed method contains four main steps (see Figure 6):  
(1) EMG signals acquisition and processing, with filtering and amplification. The four- 

channel surface EMG signals from lower limb were acquired by using the self-developed wireless 
EMG acquisition device, and the raw signals were transmitted to the PC for further processing via 
Wi-Fi protocol. Specifically, we used Ag/AgCl bipolar electrodes with a conductive diameter of 
16 mm, and the inter-electrode distance was set to 20 mm. The EMG signals were digitized by an 
A/D converter (sampling frequency, 1 kHz; quantization, 12 bit) after being amplified (60 dB) and 
filtered through a band-pass filter (20~500Hz) and a notch filter (50 Hz).  

(2) Motion prediction and muscle activity level evaluation by using EMG signals. The 
experiment consists of two parts. In the first part, the subject was asked to perform the six motions 
one by one and maintain it for fifteen seconds so that the EMG dataset can be acquired to train the 
SVM. The SVM classifier was implemented by C++ language. The SVM training time was less 
than 100 ms and can be ignored compared to the subject’s movement duration. In the second part, 
the trained SVM was used to on-line recognize the movement intention and control the robot. In 
this part, the subject was asked to perform continuous movements. The robot assistance will be 
triggered once the subject’s movement intention is identified, and the muscle activity level was 
calculated simultaneously based on the normalized EMG signals and weight coefficients. 

(3) Updating of impedance parameters and velocity commands. An adaptive impedance 
control law was proposed to relate the muscle activity level to the damping parameter, so that the 
robot assistance speed can be adjusted in accordance with the human interaction force and the 
recovery conditions. The concept behind this adaptive law is to set the robotic damping low if low 
muscle activity level is detected from the subject. This low impedance will increase the robot 
speed under the same interaction force to make the subject change the training speed more easily. 
Similarly, the damping of the robot is adapted to be high if the subject shows a higher muscle 
activity level. This high impedance allows the subject to participate more voluntary efforts to 
deviate the robot from the reference speed during exercise.  

(4) Following the predefined trajectory and generating the adaptive robot velocity based on 
inverse kinematics and fuzzy PID controller, which was implemented in joint space as a basic 
position/velocity controller of the 6-DOF parallel robot to guide the subject’s limb on reference 



 

 

trajectories. We refer the reader to (Zhou et al., 2013) for the detailed implementation of such 
controller for parallel robotic manipulator. In this experiment, the position and velocity tracking 
results of the robot have showed satisfactory control performance for rehabilitation purpose. The 
average joint position tracking errors and velocity tracking errors were controlled to less than 
1mm and 0.1 mm/s, respectively, and the plots can be found in (Zhou et al., 2013). 

 
Figure 6 Four main steps of rehabilitation robot control process in this study 

Experiments were carried out to demonstrate the comparison of conventional EMG-triggered 
control method and the proposed method. In the first trial, the subjects were asked not to exert any 
force and remain passive after the robot being triggered by EMG signals. In the second trial, 
experiments on the proposed method were executed, where the impedance parameters are 
adjustable to allow the subjects to change the robot compliance by themselves. The subjects were 
instructed to perform voluntary movements and contribute their muscular forces in the training. 
The primary goal of the first trial was to determine if the EMG-based controller can identify the 
user’s movement intention and trigger the robot assistance, and the primary goal of the second 
trial was to determine whether the proposed active interaction controller can improve the user’s 
voluntary participation and increase the muscle activity levels. Although the motions can be 
classified continuously in any order, the subject in this test was asked to perform the motions from 
dorsiflexion to abduction one by one. Each motion took about 10 seconds. Each subject was asked 
to undergo six movement sessions and each session had 6 continuous motions (dorsiflexion, etc.). 
Meanwhile, all experiments were conducted with the first trial and the second trial for comparison. 
In addition, the subject was asked to have a 3 minutes rest between two movement sessions. 
 
6.2 Results and Discussion 

Firstly, we examined the EMG motion recognition ability. After training the SVM in the first 
part of the trial, the EMG signals of four channels were acquired and transmitted to the processing 



 

 

part, where we identified the user’s movement intention based on AR features extraction and SVM 
classification. The experiment program was written by C++ language and run on a PC with dual 
2.8 GHz CPU. The motion recognition results can be output 20 ms in advance before the subject is 
starting to move his/her leg. In other words, the subject’s movement intention can be identified 
20ms earlier to the people’s actual movement. Once the movement intention was determined, the 
robot assistance will be triggered immediately. The communication between the EMG recognition 
part and the robot part was realized by TCP protocol. So, there was a time delay of about 50 ms 
before the robot was reacting. Actually, there will be around 30ms delay when people attempt to 
drive the robot by their own efforts, this, however, may not be noticed by the subjects in actual 
experiment. In fact, the subjects found they can drive the robot immediately when they intended to 
move and they can adapt the robot control during the whole movement.  

In this experiment, the subject was suggested to perform the six continuous motions from 
dorsiflexion to abduction in order to facilitate the comparison between different trials, which also 
made it easier to verify the classifier’s ability to identify the movement types continuously. Figure 
7 shows an example of the partial results for Subject2 (S2), Subject5 (S5), and Subject8 (S8). The 
captured four-channel EMG signals and classification results are demonstrated. In order to further 
evaluate the effectiveness of the classifier, more experiments were performed with a group of nine 
healthy subjects. In this part, each subject was instructed to undergo total 50 movement 
recognition trials. The recognition details of all subjects are illustrated in Table I. A statistical 
overview of motion recognition results, described by means of the average accuracy and standard 
deviation (SD), was reported for each subject in Table I. In the case of S1 and S6, the average 
recognition accuracy is higher than others because these two subjects had been participated in our 
experiment for a long time and they were very familiar with experimental protocol. In contrast, the 
results of S2, S7 and S9 are relatively unsatisfactory, partially due to the muscle activity variations 
with gender and age and partially because they didn’t perform the motions accurately. Regarding 
to other four subjects (S3, S4, S5, S8), although their EMG signals of lower limb are very 
different with each other, the motion recognition results of them are all satisfied, which prove the 
reliability and adaptability of the proposed prediction methods. The results of almost all subjects 
suggest that the EMG feed forward items and SVM method makes it possible to precisely predict 
human motion intention in advance and the satisfactory motion recognition accuracy (the subjects’ 
average rate of success is 94.71±2.83%) can be obtained, especially for several motions such as 
dorsiflexion, plantarflexion, and abduction, in which the success rate can reach above 95%.  
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Figure 7 The EMG signals and motion recognition results of S2, S5, and S8 in active control mode. 

Each figure show the EMG signals (mV) of SL, TA, FDL and GM muscles during the movement 

and the classification results, in which the numbers from 1 to 6 present the six motions including 

dorsiflexion, plantarflexion, inversion, aversion, adduction, and abduction, respectively. 
 

Table I Statistical analysis of motion recognition results with nine healthy subjects 

Subjects Gender Age 
Recognition results of six motions (correct times / total times) Average 

Accuracy dorsiflexion plantarflexion inversion aversion adduction abduction 
S1 Male 20 48/50 48/50 49/50 47/50 49/50 49/50 96.67±1.63%
S2 Male 22 47/50 46/50 44/50 47/50 48/50 49/50 93.67±3.44%
S3 Female 25 49/50 47/50 48/50 48/50 47/50 48/50 95.67±1.51%
S4 Female 27 47/50 48/50 49/50 49/50 46/50 47/50 95.33±2.42%
S5 Male 30 47/50 49/50 46/50 48/50 45/50 48/50 94.33±2.94%
S6 Male 33 50/50 50/50 48/50 46/50 48/50 49/50 97.00±3.03%
S7 Female 37 48/50 47/50 44/50 45/50 46/50 44/50 91.33±3.27%
S8 Female 39 46/50 48/50 48/50 47/50 49/50 47/50 95.00±2.10%
S9 Male 42 47/50 45/50 46/50 49/50 44/50 49/50 93.33±4.13%

Average Accuracy 95.33% 95.11% 93.78% 94.67% 93.78% 95.56% 94.71±2.83%

 
Secondly, the robot impedance tuning and robot control process in proposed active mode 

were presented and analyzed. The objective is to demonstrate how the robot compliance can be 
tuned according to people’s muscle activity level and how the robot movement velocity can be 
influenced by the subject’s active interaction force. In this part, we just try to verify the robot 
impedance tuning and active control process by using the proposed method, while the comparison 
between the two modes will be discussed in next section. Although the muscle activity levels and 
interaction forces vary a lot to different subjects, the parameter tuning and robot control process 
are similar for all subjects. Without loss of generality and for simplicity's sake, experimental 



 

 

results of three subjects are selected from nine. The experimental results of S2, S5 and S8 during 
the exercise with assist of robot controlled by the proposed mode are illustrated in Figure 8, where 
the muscle activity level, the shaped impedance parameter, the active interaction force, as well as 
the robot velocity tracking results are demonstrated. From the results, one can see that the robot 
impedance (damping here) can be adjusted by the user’s muscle activity levels, and the robot 
movement velocity was determined by both the human-robot interaction force and the damping 
parameter. Specifically, the robot can be compliant (a lower damping) when the muscle activity 
level is low, while the robot’s damping will increase when the subject shows a higher muscle 
activity level. Meanwhile, the robot movement speed was greatly influenced by subject’s active 
interaction force (a larger interaction force yielded a higher robot velocity), which encourages the 
users to contribute their own efforts during the exercise. In addition, the desired and the actual 
velocity tracking results are also shown in Figure 8, where the solid line is the desired velocity and 
the dotted green line is the actual one. It can be seen that the tracking accuracy of the controller is 
satisfied for such a parallel robot, and more details can be found in (Zhou et al., 2013).  
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Figure 8 The impedance tuning and robot control process considering the interaction force and 

muscle activity levels of S2, S5, and S8 in active mode. For each subject, the impedance parameter 

(damping here) was shaped by the user�s muscle activity level (as the arrow indicates). The robot 

velocity was determined by the human-robot interaction force and the damping parameter tuned 

above (as the two arrows indicate). In the plots of robot velocity, the solid line is the desired 

velocity and the dotted green line is the actual velocity. 

 
Thirdly, we analyzed the experimental results to determine whether the proposed active 

interaction controller could improve the user’s voluntary participation, i.e. whether the proposed 
approach increases muscle activity levels. To this ends, we compared the differences in muscle 
activity levels between the proposed and traditional methods. The experimental results of subjects 



 

 

(1-9) are shown in Figure 9. This figure shows that the both types of values of the active mode 
were higher than the traditional mode. Additionally, Table II shows the average of 6 sessions in the 
RMS values and muscle activity levels for each training mode and for each subject. Both Figure 9 
and Table II show a distinct increase of both types of muscle activity values (muscle activity level 
and RMS value) for the active mode compared to the traditional mode. Taking S1 for example, the 
overall average muscle activity level and RMS value in EMG-triggered mode are 3.982±0.509, 
1.445±0.245, respectively, while the average values in active mode are 5.857±0.594, 3.076±
0.549, respectively, in which the rates of increase are 47.08% and 112.8% when compared to the 
previous one. These results show that the proposed active control methods can be realized with a 
higher level of the people’s active participation rate. The similar results were also obtained with 
other subjects. Although different subjects yielded different rates of increase in muscle activity 
levels and RMS values, the improvements of their active participation and muscle activities are all 
obvious, indicating that the proposed method is applicable to any users. The experimental results 
show that the active interaction controller can increase the amount of the muscle activity levels for 
each movement session compared to the traditional mode. This would allow patients to contribute 
more efforts during the exercise and may increase the training effects. 
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Figure 9 The muscle activity level for each training mode (active/traditional), each type of muscle 

activity value (RMS/muscle activity level), and each subject within one of six movement sessions. 

Every subject was instructed to undergo six movement sessions (each session had 6 motions) for 

both modes. For each session, the average muscle activity levels and the RMS values as well as 

the standard deviations are presented. The red lines are the two types of muscle activity value in 

active mode, while the blue lines are the muscle activity values in EMG-triggered mode. 

 
Table II shows the average of 6 movement sessions for each training mode, each type of muscle 

activity value, and each subject. Additionally the rate of increase of the active mode compared to 

the traditional mode is shown for each muscle activity value (RMS/muscle activity level). 



 

 

 
Traditional EMG-triggered mode The proposed active mode 

Muscle activity level RMS value Muscle activity level RMS value 
Subjects Mean SD Mean SD Mean SD Increase Mean SD Increase

S1 3.982 0.509 1.445 0.245 5.857 0.594 47.08% 3.076 0.549 112.8%
S2 4.593 0.799 1.041 0.246 6.528 0.768 42.12% 2.314 0.236 122.3%
S3 4.041 0.348 0.896 0.087 6.057 0.512 49.88% 2.205 0.281 146.1%
S4 4.284 0.644 1.124 0.100 5.724 0.408 33.61% 2.088 0.185 85.76%
S5 4.054 0.571 1.266 0.272 5.452 0.413 34.48% 2.578 0.386 103.6%
S6 4.551 0.894 1.726 0.347 6.397 0.447 40.56% 3.587 0.255 107.8%
S7 3.907 0.674 1.396 0.335 5.089 0.665 30.25% 2.298 0.366 64.61%
S8 4.417 0.658 1.887 0.329 5.802 0.500 31.35% 2.684 0.286 42.24%
S9 3.913 0.751 1.635 0.346 4.874 0.470 24.56% 2.129 0.356 30.21%
 

During the EMG-triggered assistance trial, the subject kept passive after activating the robot 
by EMG action recognition, so the muscle activity is at lower level during this movement except 
for when people trying to trigger the robot. Differently, in the active interaction assistance trial, the 
subject had to provide a certain effort to keep the robot move in agreement with his/her intention, 
so the selected muscles will be activated for a long period of time. In the proposed method, the 
robot compliance can be adjusted according to his/her muscle activity level while the traditional 
method does not take the subject’s status into account. It is clear that there was a distinct increase 
in the muscle activity levels for all subjects with the active interaction mode, compared to the 
EMG-triggered mode. The increase in RMS values indicated that the active mode had a positive 
effect in encouraging muscle activation. On the other hand, the muscle activity level evaluation 
calculated here takes into account the muscles’ weight coefficients in a certain motion. The weight 
coefficients were determined in the SVM training stage and were calculated by using Eq. (14). 
The obtained muscles’ weight coefficients of several subjects are illustrated in Table III. In order 
to simplify the table, three subjects are selected from nine. The objective of this table is to present 
the differences of muscles’ weight coefficients in different motion patterns. Other subjects’ data 
were not listed for simplicity's sake, but all data were obtained by using Eq. (13). Consequently, 
the muscle activity level here not only depends on the normalized EMG signals, but also considers 
the weight coefficients of each muscle in a certain motion pattern, so a more scientific model can 
be achieved and this can be adaptable to different people. 

Table III Muscles� weight coefficients of the subjects in different motion patterns.  

Motion patterns 
Subject 2 Subject 5 Subject 8 

SL TA FDL GM SL TA FDL GM SL TA FDL GM 

dorsiflexion 0.176 0.701 0.082 0.041 0.252 0.638 0.043 0.067 0.159 0.751 0.057 0.033 

plantarflexion 0.173 0.083 0.441 0.303 0.271 0.133 0.107 0.489 0.123 0.153 0.350 0.374 

inversion 0.526 0.192 0.253 0.029 0.493 0.326 0.132 0.049 0.516 0.101 0.352 0.031 

aversion 0.178 0.640 0.106 0.076 0.369 0.104 0.106 0.421 0.115 0.615 0.161 0.109 

adduction 0.106 0.067 0.316 0.511 0.095 0.193 0.488 0.224 0.065 0.063 0.147 0.725 

abduction 0.293 0.234 0.255 0.218 0.172 0.122 0.408 0.298 0.236 0.268 0.212 0.284 

 
EMG-triggered robot assistance and real-time adjustment of impedance during the training 

have been demonstrated previously in (Emken et al., 2008) and (Xu et al., 2011). However, the 
method proposed here differs in three main ways. Firstly, it provides a seamless interaction control 
scheme for robot-assisted rehabilitation after activating the robot by motion recognition. Both 



 

 

subject’s movement intention and voluntary participation are considered, not only triggering the 
robot when the user intends to move, but also changing the motion pattern in accordance with the 
user’s participation efforts during the movement. In contrast, the existing EMG-triggered approach 
is to provide assistance when the subject starts the movement but remain passive after the robot is 
triggered. Secondly, the impedance controller developed here is different in that it responds to 
velocity changes rather than variations in trajectory, and thus only allows freedoms in the training 
speed and keeps the movement along a physiological trajectory. Moreover, the algorithm proposed 
here adapts the robot impedance as a function of the user’s muscle activity level. On the contrary, 
the existing algorithms always limited the robot speeds but changed the path severely, which may 
guide the impaired limb move along an un-physiological pattern. Thirdly, as muscles have 
different contributions in conducting different motion patterns, the muscle activity evaluation here 
takes into account the muscles’ weight coefficients in a certain motion pattern (as described in 
Table III) and thus a more scientific model can be achieved. By using the proposed method, the 
robot can be compliant if the patient has severe impairment with low muscle activity so that the 
patient can influence the robot movement more easily. On the other hand, the robot behavior can 
be made stiff if the patient shows high muscle activity level so that the patient can contribute more 
efforts to the training process. Consequently, the proposed active interaction control strategy can 
adapt the robot compliance by adjusting an impedance model from movement to movement based 
on the patient’s muscle activity levels and the recovery conditions. 
 

7. Conclusion 
In summary, this paper presents a seamless active interaction control method between the EMG- 
triggered assistance and the adaptive impedance control scheme for parallel robot-assisted lower 
limb motor exercise and training. Both people’s movement intention and voluntary efforts are 
considered, not only triggering the robot assistance when user attempts to move, but also changing 
the motion pattern in accordance with people’s efforts during the movement. Firstly, a wireless 
EMG acquisition device based on Wi-Fi protocol was developed and a motion recognition method 
integrating AR coefficients and SVM classifier is proposed to identify the user’s movement 
intention. Secondly, an impedance control method in accordance with the people’s interactive 
efforts is implemented to make the robot compliant. Thirdly, the proposed method adapts the robot 
impedance as a function of people’s muscle activity level, which considers the weight coefficients 
of each muscle in a certain motion pattern. Experimental results with several healthy subjects 
demonstrated that the robot was able to move coordinately with the user’s intention while the 
impedance can be updated with the muscle conditions. It is clear that there was a distinct increase 
in the muscle activity levels for all subjects with the active interaction control mode, compared to 
the EMG-trigged mode. Such strategies will potentially increase the patient’s motivation because 
the muscle activity level can change the robot compliance while the active efforts can be reflected 
in the training speed and thus can cause a consistent feeling of success. 
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