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Abstract—Robot-assisted rehabilitation offers benefits such as 

repetitive, intensive and task specific training as compared to 
traditional manual manipulation performed by physiotherapists. 
In this paper, a robust iterative feedback tuning (IFT) technique 
for repetitive training control of a compliant parallel ankle 
rehabilitation robot is presented. The robot employs four parallel 
intrinsically compliant pneumatic muscle actuators that mimic 
skeletal muscles for ankle’s motion training. A multiple degrees- 
of-freedom normalised IFT technique is proposed to increase the 
controller robustness by obtaining an optimal value for the 
weighting factor and offering a method with learning capacity to 
achieve an optimum of the controller parameters. Experiments 
with human participants were conducted to investigate the 
robustness as well as to validate the performance of the proposed 
IFT technique. Results show that the normalised IFT scheme will 
achieve a better and better tracking performance during the robot 
repetitive control and provides more robustness to the system by 
adapting to various situations in robotic rehabilitation. 

 
Index Terms—Iterative feedback tuning, normalised criterion, 

ankle rehabilitation robot, repetitive training 
 

I. INTRODUCTION 
ehabilitation using robots has several distinct advantages 
as compared to traditional manual manipulation. By using 

robotic devices, it is possible to perform the required training 
tasks repeatedly and accurately without requiring heavy 
physical demands from physiotherapists [1]. Ankle joint is one 
of the most complicated structures in human skeleton and plays 
a crucial role in balancing human body during walking and 
ambulation [2]. In terms of ankle rehabilitation, as parallel 
robots are more accurate than comparable serial manipulators 
and can also generate higher force and torque, a range of 
parallel platform-based devices have been developed [3]. 
Rutgers Ankle is a typical parallel ankle rehabilitation robot 
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based on Stewart platform [4]. A parallel ankle robot ARBOT 
was also designed by Saglia et al. [5]. However, the existing 
platform-based robots are usually actuated from the bottom and 
one major shortcoming is that their end-effectors are typically 
constrained about a centre of rotation which does not coincide 
with the actual human ankle joint [6]. Thereby the shank’s 
position will not be consistent during the operation, and the 
orientation of the robotic platform is thus unlikely to be the 
same as the actual rotation of ankle joint. Meanwhile, a 
majority of existing devices utilise rigid actuators such as 
electric motors or cylinders which are not back-driveable [7]. 
As a result of this, the human interaction environment is not 
fully compliant during operation of the devices.  

To overcome the limitations, a novel ankle rehabilitation 
platform was developed by the University of Auckland to 
improve on existing ankle rehabilitation solutions. The design 
utilised a parallel kinematic structure where the power is 
actuated from the top and is capable of fixing the ankle joint 
centre of rotation by using a wearable structure [8]. Pneumatic 
muscle actuators (PMAs) possessing advantages in terms of 
soft, light weight, and high power/weight ratio were adopted to 
guarantee the intrinsic compliance of the robot. However, 
PMAs exhibit highly nonlinear and time varying features, and it 
is difficult to obtain the accurate dynamic model of such 
actuator [9]. A major limitation of model-based approach is its 
sensitivity to modelling accuracy of the controlled objective, it 
requires the system designer to have an intimate knowledge of 
the target. Considering the controlled objective in this study, 
the PMAs-driven robot expands with patient’s dynamics will 
become more complex, thus an accurate rehabilitation robot 
model is hardly available in practice. Even if an accurate model 
can be obtained, the order of resulting controller is often too 
high to be suitable for practical usage [10]. In comparison, by 
using model-free data-driven theory, where the controller is 
designed directly using online data without explicit or implicit 
information of the underlying model, the shortcomings of 
model-based method can be mitigated [11].  

For rehabilitation recovery, clinical studies have shown that 
repetitive, intensive as well as task specific rehabilitation 
programmes can contribute significantly to the effectiveness of 
treatment [12]. The repetitive nature of robot-assisted therapy 
provides a good opportunity for iterative learning control (ILC) 
techniques [13]. ILC is able to learn from data recorded from 
the previous trials and update the controller to optimise its 
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performance [14]. As mentioned above, the device utilises a 
novel type of pneumatic powered actuator, and the speed and 
range of patient’s recovery can lead to significant changes to 
the model of the rehabilitation robot, all of which indicate that a 
model-based method is not suitable, and a robust model-free 
method will be a prime candidate. Iterative feedback tuning 
(IFT) is a model-free data-driven learning method [15]. Further, 
IFT is very much suitable for repeated rehabilitation 
trajectories due to the requirement of specially designed 
experiments. On the other hand, IFT as compared to traditional 
control systems has the advantage where it can be auto-tuned 
only depending on the input and output data collected from the 
experiments, which does not contain any model information 
about the controlled plant. This allows the system to be highly 
robust to uncertainties [16, 17].  

There have been some interesting cases for the application of 
IFT in various industrial fields, such as DC-servo control, 
robotic arm and mass spring system, etc., due to its superior 
model-free automatic tuning capacity [17-21]. However, the 
use of iterative feedback learning control in rehabilitation has 
not been well-explored [22]. The most prominent case for 
application of ILC on rehabilitation devices is to control the 
value of functional electrical stimulation (FES) for upper limb 
therapy as presented in [23, 24], in which ILC was worked as a 
kind of “high-level” controller to adjust the amount of FES for 
upper limb. Few other previous researches invoke the use of 
ILC on rehabilitation platforms. In [25], a form of iterative 
learning control was implemented on the Lokomat robot to 
synchronise the leg and treadmill movements. A PID plus 
iterative learning-based feed forward controller was proposed 
on an upper extremity therapy robot for repetitive task training 
[13]. As for the iterative feedback tuning technique, there is no 
reported literature on the specific combination of IFT and 
rehabilitation devices, also no IFT instances on PMAs-driven 
equipment. By transferring the idea of IFT to rehabilitation 
robotics, we believe that the robot controller can also improve 
its performance from repetitive trials. 

In rehabilitation environment, there is often an external 
disturbance from the patient during the training and this will 
lead to significant changes to the control parameters of the 
robot used. Therefore, robust control system implementation is 
one major difficult task and it is even harder to enhance the 
robustness during long time repetitive training. Hussain et al. 
utilised a charting-free robust variable structure controller for 
the designed robotic gait orthosis [26]. Xu et al. proposed an 
evolutionary dynamic recurrent fuzzy neural network to 
provide more robustness for upper limb rehabilitation [27]. One 
shortcoming of these methods if applying them to our system is 
that the dynamic modelling of pneumatic muscles and robot 
behaviour would bring heavy computation burden to the 
control system, and it is also difficult to model the patient’s 
arbitrary activities. One advantage of IFT technique is its 
ability to learn from repeating scenarios and optimise the 
controller parameters without knowledge of the actual system, 
which guarantees the inherent robustness of such a method [15, 
17, 28]. To obtain a more robust control system, the design 
criterion or objective function of IFT must be taken into 

account. Introduce a plenty function to the input signal for 
certain restrictions is a typical approach to increase the system 
robustness, such as the studies in [17] and [28]. However, in 
rehabilitation scenarios the robot system will have various 
desired and actual output, error, as well as control input signal, 
especially when treat patients in different recovery stages and 
with different active intentions. The robustness problem of IFT 
controller should be investigated further. We will propose a 
novel robust IFT controller to make the controller system 
agnostic and meaningful across different situations.  

According to the authors’ best knowledge, IFT control of a 
rehabilitation robot has not been reported in the literature. In 
this paper, a normalised IFT (NIFT) technique is applied for the 
repetitive training control of a flexible ankle rehabilitation 
robot actuated by PMAs. A novel multiple degrees-of-freedom 
(DOFs) IFT method with normalised criterion is proposed to 
improve the robustness under varying training conditions. The 
rest of this paper is organised as follows: Section II 
demonstrates the details of the compliant ankle rehabilitation 
robot. In Section III, methodology of the proposed multiple 
DOFs normalised IFT method is presented. Experiments 
including comparison test and human participants test were 
conducted in Section IV, followed by the discussion in Section 
V. The conclusion is drawn in Section VI. 

II. COMPLIANT ANKLE REHABILITATION ROBOT 
We had developed a novel ankle rehabilitation platform, with 

the new prototype shown in Fig. 1. This robot is actuated by 
four parallel links to realise three rotational DOFs of the 
end-effector for ankle dorsiflexion/plantarflexion, inversion/ 
eversion, and adduction/abduction, respectively. Each joint is 
actuated using a pneumatic muscle actuator from FESTO™ 
(FESTO DMSP-20-400N) in order to guarantee the intrinsic 
compliance of the robot during operation. It has a stroke length 
of 100mm, a maximum force of over 5000N, and an internal 
diameter of 20mm. Each pneumatic muscle actuator is 
controlled by a proportional pressure regulator. The end- 
effector is a three-link serial manipulator with three rotational 
DOFs, in which three magnetic rotary encoders are installed to 
provide measurements of angular positions of the robot in Euler 
X, Y and Z axes. Additionally, a six-axis load cell is mounted 
between the robot end-effector and a human foot to measure the 
human robot interaction force and torque. For the control 
system hardware, a National Instruments embedded controller 
(NI Compact RIO-9022) is adopted for real-time control. The 
control system now runs on a host PC using LabVIEW™, with 
the communication between the PC and the embedded solution 
performed using the TCP/IP protocol. 

In order to control the robot end-effector to track a 
predefined trajectory for ankle movement training, the robot 
kinematic model must be studied. Inverse kinematics of a robot 
describes the translation of the end-effector orientation to the 
length of the active links, which is essential for any form of 
robot control. Fig. 2 presents the robotic kinematic geometry of 
the developed parallel ankle rehabilitation robot. The fixed 
coordinate frame is denoted by ܱ  and the moving one is 
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denoted by ܱ. Connection points on the fixed and moving 
platforms are denoted by   and	 , respectively, and their 
position vectors		 ܲand	 ܲare defined in (1) as well as the 
position vector ܱܱሬሬሬሬሬሬሬሬሬሬሬԦ, where ܪ is the centre distance between 
the fixed platform and the moving end-effector. A table of all 
variables can be found in the Nomenclature. 
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Y ĂǆŝƐ
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Fig. 1.  Prototype of the compliant parallel ankle rehabilitation robot. 
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Fig. 2.  Kinematic structure of the parallel ankle rehabilitation robot. 

As shown in Fig. 2, by defining the connection points and a 
rotating coordinate system, the vector of each active link ܮ can 
be calculated. The position vector ܮ of the link is described in 
(2), where the rotational transformation matrix of the end- 
effector with respect to the fixed platform is denoted by matrix ܴ  using a sequence of ߠǡ ǡߠ  . The link length is expressedߠ
by ݈  in (3), where ܥ  is the ܿ݁݊݅ݏ  function, ܵ  is the ݁݊݅ݏ 
function, and the subscripts represent corresponding Euler 
angles, for example, ܥ௫ ൌ ǡߠݏܿ ܵ௬ ൌ  .ߠ݊݅ݏ

൞	 ܲ ൌ ݔൣ ݕ	 Ͳ൧்	 ܲ ൌ ሾݔ ݕ	 Ͳሿ்ܱ ൌ ܱܱሬሬሬሬሬሬሬሬሬሬሬԦ ൌ ሾͲ Ͳ െܪሿ் (1)

ܮ ൌ ܱ  ܴ ܲ െ ܲ (2)݈ ൌ ටܮ்ܮ (3)

ܴ ൌ ܥ௭ܥ௬ െܵ௭ܥ௫  ௭ܵ௬ܵ௫ܥ ܵ௭ܵ௫  ௬ܥ௫ܵ௭ܥ௭ܵ௬ܥ ௫ܥ௭ܥ  ܵ௭ܵ௬ܵ௫ െܥ௭ܵ௫  ܵ௭ܵ௬ܥ௫െܵ௬ ௬ܵ௫ܥ ௫ܥ௬ܥ  (4)

III. MULTI-DOF NIFT CONTROL SYSTEM 
As the ankle rehabilitation robot has multiple actuators to be 

controlled, the implementation of multiple instances of the IFT 
technique is explored. The base control structure is presented in 
Fig. 3, where inverse kinematics is used to obtain the joint 
space trajectory ݈ ǡ ݅ ൌ ͳǡʹǡ͵ǡͶ for each actuator. The reference 
and actual position of each link are evaluated from the desired 
orientation ߠௗǡ  and the measured end-effector orientation ߠ respectively by using inverse kinematics. These actuators 
are then controlled individually using a PID controller with the 
parameter vector being tuned by the IFT technique. In the 
control structure, the same set of starting parameters of ߩ ൌ ሾܭ ூܭ  ሿ் was applied to all four controllers. Theܭ
outer control loop regulates the angular position, and each of 
the inner control loops regulates air pressure of each PMA. The 
PMA model is used to convert the control signal ݑ into air 
pressure  for each proportional regulator. 
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Fig. 3.  Control system of the ankle rehabilitation robot. (a) Structure of the 
multiple DOFs IFT. (b) Diagram of the controller for each PMA. 

A. IFT Tuning of PID parameters on PMA 

Each pneumatic muscle is controlled individually using a 
standard PID controller, and for IFT tuned PID controller, as 
suggested by [29], it must be considered as a 2-DOF controller 
with common parameters. A block diagram of the controller in 
the form ܥሺߩሻ ൌ ሻǡߩሺܥൣ  ሻ sharing the same parameters both togetherߩ௬ሺܥ ሻ andߩሺܥ ሻ൧ is shown in Fig. 3 (b), whereߩ௬ሺܥ
constitute the PID controller. The PMA is considered as an 
unknown system ܩ, and ݎ the reference input, ݑ the controller 
output, ݕ the response output, ݒ the unmeasurable disturbance. 
The parameters for ܥ and ܥ௬ are collected and optimised in a 
vector of controller parameters: ߩ ൌ ሾܭ ூܭ  .ሿ்ܭ

Considering the controller shown in Fig. 3 (b), the system 
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response can be expressed by using (5). ݕ௧ሺߩሻ ൌ ͳܩሻߩሺܥ  ܩሻߩ௬ሺܥ ௧ݎ  ͳͳ  ܩሻߩ௬ሺܥ ௧ݒ ൌ ܶݎ௧  ܵݒ௧ (5)

The objective for an iterative learning control is to generate a 
sequence of appropriate control inputs ݑ௧ሺ݅ሻ to drive the system 
output ݕ௧ሺ݅ሻ  approaches the reference trajectory ݕௗ , for 
iteration ݅. Each iteration of control input generation should 
take the output ݕ௧ሺ݅ሻ closer to the reference trajectory by the 
IFT algorithm. Details of the general IFT algorithm can be 
found in [29]. The used design criterion ܬሺߩሻ	takes into account 
both the error response as well as the controller input 
magnitude. ߣ is a predetermined weighting factor between the 
two cost function component variables, and is usually obtained 
empirically through trial and error. More discussion on the 
selection of ߣ will be presented in next section. 

ሻ	ߩ	ሺܬ ൌ ͳʹܰ ൭	 ሻଶேߩ௧ሺݕ
௧ୀଵ  ߣ  ሻଶேߩ௧ሺݑ

௧ୀଵ ൱ (6)

Here ߩ is a vector of process parameters to be optimised, ݕ௧ሺߩሻ is the error between the actual output and the desired 
output signal (ݕ௧ሺߩሻ ൌ ሻߩ௧ሺݕ െ ௗ, so డ௬ሺሻడఘݕ ൌ డ௬ሺሻడఘ ), and ܰ 
is the total number of samples collected. The optimised 
controller parameter vector כߩ is defined as shown in (7).  כߩ ൌ arg	minఘ ሻ (7)ߩሺܬ

The partial derivative of ݕ௧ሺߩሻ and ݑ௧ሺߩሻ with respect to the 
controller parameters ߩ is: ߲ݕ௧߲ߩ ሺߩሻ ൌ ͳܥሺߩሻ ߲ܥ߲ߩ ሺߩሻ ܶݎ௧ െ ߩ௬߲ܥ߲ ሺߩሻ ܶݕ௧൨ (8)߲ݑ௧߲ߩ ሺߩሻ ൌ ܵ ߲ܥ߲ߩ ሺߩሻݎ௧ െ ߩ௬߲ܥ߲ ሺߩሻݕ௧൨ (9)

The partial derivatives డ௬ሺఘሻడఘ  and డ௨ሺఘሻడఘ  can be obtained by 
performing actual experiments on the system. Normally, three 
experiments are required to complete each iteration of the 
optimisation process. First, a reference signal is applied to the 
closed-loop system as input and the output data is recorded. 
Second, the output from the first experiment is re-applied to the 
system as the reference input. A third experiment is performed 
where the first test signal is used as the reference [30]. The 
outputs from the second and the third experiment will be 
utilised to calculate the gradient of the controller parameters. 
As illustrated by Eq. (10), this is done to ensure that the data 
from the second and third experiments are independent of each 
other in order to reduce bias. 

൞ ଵݎ ൌ ݎ ௧ଵݑ ൌ ܵ൫ܥݎ െ ଵ൯ݒ௬ܥ ௧ଵݕ ൌ ܶݎ  ܵݒଵݎଶ ൌ ଵݕ ௧ଶݑ ൌ ܵ൫ܥݕଵ െ ଶ൯ݒ௬ܥ ௧ଶݕ ൌ ܶݕଵ  ܵݒଶݎଷ ൌ ݎ ௧ଷݑ ൌ ܵ൫ܥݎ െ ଷ൯ݒ௬ܥ ௧ଷݕ ൌ ܶݎ  ܵݒଷ  (10)

Here ݒ  are disturbances come from different experiments 
and thus are mutually independent. Then, the unbiased estimate 
of the partial derivatives can be achieved by: 

ݐݏ݁ ߲ݕ௧߲ߩ ሺߩሻ൨ ൌ ͳܥሺߩሻ ߲ܥ߲ߩ ሺߩሻݕ௧ଷ െ ߩ௬߲ܥ߲ ሺߩሻݕ௧ଶ൨ (11)

ݐݏ݁ ߲ݑ௧߲ߩ ሺߩሻ൨ ൌ ͳܥሺߩሻ ߲ܥ߲ߩ ሺߩሻݑ௧ଷ െ ߩ௬߲ܥ߲ ሺߩሻݑ௧ଶ൨ (12)

As ܥሺߩሻ	 and ܥ௬ሺߩሻ	 are PID controllers with the same 
parameter vector ߩ ൌ ሾܭ ூܭ  ሿ், transfer function of PIDܭ
controller is: ܭ  ூܭ Τݏ  ሻߩሺܥ :For discrete system .ݏௗܭ ൌ ሻൌߩ௬ሺܥ ሺܭܶ  ூܶଶܭ  ଶݖሻܭ െ ሺܭܶ  ݖሻܭʹ  ଶݖܶܭ െ ݖܶ  (13)

ܭ௬߲ܥ߲ ൌ ܭ߲ܥ߲ ൌ ଶݖܶ െ ଶݖܶݖܶ െ ݖܶ ǡ ூܭ௬߲ܥ߲ ൌ ூܭ߲ܥ߲ ൌ ଶݖଶܶݖܶ െ ݖܶ ǡ߲ܥ௬߲ܭ ൌ ܭ߲ܥ߲ ൌ ଶݖ െ ݖʹ  ͳܶݖଶ െ ݖܶ  
(14)

The partial derivative of ݕ௧  and ݑ௧  with respect to each 
controller parameter can be written as: 

ݐݏ݁ ߲ݕ௧߲ߩ ሺߩሻ൨ ൌ
ێێۏ
ێێێ
ۍ ۑۑےܭ௧߲ݕூ߲ܭ௧߲ݕ߲ܭ௧߲ݕ߲

ۑۑۑ
ې ൌ

ێێۏ
ێێێ
ۍ ͳܥሺߩሻ ߲ܥ௬߲ܭ ሺߩሻሺݕ௧ଷ െ ሻߩሺܥ௧ଶሻ൨ͳݕ ߲ܥ௬߲ܭூ ሺߩሻሺݕ௧ଷ െ ሻߩሺܥ௧ଶሻ൨ͳݕ ߲ܥ௬߲ܭ ሺߩሻሺെݕ௧ଶሻ൨ ۑۑے

ۑۑۑ
ې

(15)

ݐݏ݁ ߲ݑ௧߲ߩ ሺߩሻ൨ ൌ
ێێۏ
ێێێ
ۍ ۑۑےܭ௧߲ݑூ߲ܭ௧߲ݑ߲ܭ௧߲ݑ߲

ۑۑۑ
ې ൌ

ێێۏ
ێێێ
ۍ ͳܥሺߩሻ ߲ܥ௬߲ܭ ሺߩሻሺݑ௧ଷ െ ሻߩሺܥ௧ଶሻ൨ͳݑ ߲ܥ௬߲ܭூ ሺߩሻሺݑ௧ଷ െ ሻߩሺܥ௧ଶሻ൨ͳݑ ߲ܥ௬߲ܭ ሺߩሻሺെݑ௧ଶሻ൨ ۑۑے

ۑۑۑ
ې

(16)

The estimated gradient of the design criterion ܬሺߩሻ for the ݅௧  iteration based entirely on experimental data can be 
constructed from the estimated partial derivatives: ݁ݐݏ ߲ߩ߲ܬ ሺߩሻ൨ ൌ ͳܰ  ൬ݕ௧ሺߩሻ݁ݐݏ ߲ݕ௧߲ߩ ሺߩሻ൨ே

௧ୀଵ ݐݏሻ݁ߩ௧ሺݑߣ ߲ݑ௧߲ߩ ሺߩሻ൨൰ 

(17)

The next iterate ߩାଵ ൌ ሾܭାଵ ூାଵܭ  ାଵሿ் is calculatedܭ
by using the Gauss-Newton optimisation algorithm, based on 
the gradient of ܬሺߩሻ and previous ߩ ൌ ሾܭ ூܭ ܭ ሿ். ߩାଵ ൌ ߩ െ ܴିߛ ଵ݁ݐݏ ߲ߩ߲ܬ ሺߩሻ൨ (18)

where ߛ  is a positive value to indicate the step size. ܴ  is a 
matrix to imply the optimised search direction, here a positive 
Gauss-Newton approximation to the Hessian matrix is applied: ܴ ൌ ͳܰ  ቆ݁ݐݏ ߲ݕ௧߲ߩ ሺߩሻ൨ ݐݏ݁ ߲ݕ௧߲ߩ ሺߩሻ൨்ே

௧ୀଵ ݐݏ݁ߣ ߲ݑ௧߲ߩ ሺߩሻ൨ ݐݏ݁ ߲ݑ௧߲ߩ ሺߩሻ൨்ቇ 

(19)
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It is essential to select a proper step size for IFT to maintain 
the balance between convergence and stability of the IFT 
algorithm. Firstly, the step size must obey some constraints so 
that the design criterion can converge to a local minimum soon 
[29]. Secondly, the step size must be chosen to make the 
closed-loop system maintain stable [31]. Usually a step size 
with constraint Ͳ ൏ ߛ  ͳ will be applied [28]. As suggested 
by [21], if the step size is set small enough and the dataset is 
relatively large, the convergence of IFT algorithm can be 
ensured. In practice, the step size for each controller will need 
to be defined empirically, often through trial and error.  

B. Normalised design criterion for IFT 

The performance of the IFT process can be influenced by 
several factors. In order to determine an optimal value of ߣ, it is 
important to consider the relative magnitudes of each variable 
in the design criterion ܬሺߩሻ . Different systems will have 
variable desired and actual output, error, as well as control 
signal. When considering the combination of ݕ௧ሺߩሻ and ݑ௧ሺߩሻ, 
the ߣ  value obtained from trial and error will contain the 
properties specific to the system being tuned. There needs to be 
a method to remove the system properties from ߣ, as in making 
weighting factor ߣ normalised so that it can be comparable and 
agnostic across different systems [32]. Eq. (20) proposes a 
normalised design criterion, where a normalising factor ܭ is 
introduced, and ߣ replaces ߣ to be the weighting factor that 
remains meaningful. ܬሺߩሻ ൌ ͳʹܰ ሺݕ௧ሺߩሻଶ  ሻଶሻேߩ௧ሺݑܭߣ

௧ୀଵ  (20)

where the normalising coefficient ܭ is determined by: ܭ ൌ ௗǡ௫ݕ െ ௧ǡ௫ݑௗǡݕ െ  (21)	௧ǡݑ

where ݕௗǡ௫ǡ ௗǡǡݕ  ௧ǡ are the maximum andݑ ௧ǡ௫ andݑ
minimum value in the desired output and the control signal, 
respectively. As all four values are only determined at the end 
of each optimisation iteration, all data points are taken into 
account so the normalisation process is a fair representation of 
the current iteration. The normalised design criterion for IFT 
ensures that the value of ߣ stays meaningful across different 
tuning iterations [30]. With normalised design criterion, it 
becomes possible to determine sets of ߣ values that represent 
the optimal range for IFT tuning for various situations. 

The estimated gradient of the normalised design criterion ܬሺߩሻ for the ݅௧ iteration can be then constructed by using (22) 
and the Gauss-Newton Hessian matrix ܴǡ becomes (23): ݁ݐݏ ߲ܬ߲ߩ ሺߩሻ൨ ൌ ͳܰ  ൬ݕ௧ሺߩሻ݁ݐݏ ߲ݕ௧߲ߩ ሺߩሻ൨ே

௧ୀଵ ݐݏሻ݁ߩ௧ሺݑܭߣ ߲ݑ௧߲ߩ ሺߩሻ൨൰ 

(22)

ܴǡ ൌ ͳܰ  ቆ݁ݐݏ ߲ݕ௧߲ߩ ሺߩሻ൨ ݐݏ݁ ߲ݕ௧߲ߩ ሺߩሻ൨்ே
௧ୀଵ ݐݏ݁ܭߣ ߲ݑ௧߲ߩ ሺߩሻ൨ ݐݏ݁ ߲ݑ௧߲ߩ ሺߩሻ൨்ቇ 

(23)

Therefore, the key to the iterative feedback tuning method is 
the iterative computation of డడఘ ሺߩሻ and ܴǡ  from experiment 

results. As long as ݕ௧ሺߩሻ	ܽ݊݀	ݑ௧ሺߩሻ and the gradients డ௬డఘ ሺߩሻ 

and డ௨డఘ ሺߩሻ are obtained, the డడఘ ሺߩሻ and ܴǡ can be estimated 
by the introduction of ߣ  and ܭ . Then the controller 
parameters can be updated accordingly: ߩାଵ ൌ ߩ െ ݐݏܴǡିଵ݁ߛ ߲ܬ߲ߩ ሺߩሻ൨ (24)

To summarise, the procedure of normalised IFT algorithm is: 
(i) Choose the starting controller parameters ߩ and select the 
normalized design criterion ܬሺߩሻ ; (ii) Perform three 
experiments ଵݎ	 ൌ ǡݎ ଶݎ ൌ ଵǡݕ ଷݎ ൌ ݎ ; (iii) Estimate partial 
derivatives డ௬డఘ ሺߩሻ and డ௨డఘ ሺߩሻ; (iv) Evaluate the gradient of 

criterion డడఘ ሺߩሻ and Hessian matrix ܴǡ; (v) Obtain the new 
controller parameters ߩାଵ ; and (vi) Evaluate the criterion ܬሺߩሻ and check the performance, if stop criterion reached go to 
(vii) finish, otherwise go to (ii) for next iteration loop.  

C. Convergence and robustness aspects 

Convergence property of standard IFT has been analysed in 
[29] and [16], here we study the normalised IFT method. The 
convergence conditions as stated in [33] are: (1) the estimated 
gradient of the objective function is unbiased; (2) the step size 
sequence converges to zero but not too fast.  

For Condition (1), the unbiased gradient estimate is the key 
property of IFT. In this study we use three specially designed 
experiments to generate the gradient based descent direction, 
which can obtain unbiased gradient estimates without the use of 
parametric models [28]. From Eq. (8)-(10), the following 
expression of derivatives డ௬డఘ ሺߩሻ and డ௨డఘ ሺߩሻ can be derived: ߲ݕ௧߲ߩ ሺߩሻ ൌ ͳܥሺߩሻ ߲ܥ߲ߩ ሺߩሻݕ௧ଷ െ ߩ௬߲ܥ߲ ሺߩሻݕ௧ଶ൨ ܵܥሺߩሻ ߲ܥ௬߲ߩ ሺߩሻݒଶ െ ߩ߲ܥ߲ ሺߩሻݒଷ൨ 

(25)

ߩ௧߲ݑ߲ ሺߩሻ ൌ ͳܥሺߩሻ ߲ܥ߲ߩ ሺߩሻݑ௧ଷ െ ߩ௬߲ܥ߲ ሺߩሻݑ௧ଶ൨ ܵܥ௬ܥሺߩሻ ߲ܥ߲ߩ ሺߩሻݒଷ െ ߩ௬߲ܥ߲ ሺߩሻݒଶ൨ 

(26)

As ݒଶ	and ݒଷ	are mutually independent bounded stochastic 
noises of the same system, the equations (11) and (12) are the 
unbiased estimate of డ௬డఘ ሺߩሻ and డ௨డఘ ሺߩሻ. Thus, the estimated 
gradient of the normalised objective function ܬሺߩሻ  is also 
unbiased, as illustrated by Eq. (22).  

For Condition (2), the usual conditions for convergence can 
be guaranteed for the choice of ߛ:  ஶୀଵߛ ൌ λǡ  ଶஶୀଵߛ ൏ λ (27)

This condition is fulfilled e.g. by having ߛ ൌ ܽ ݅Τ , where ܽ 
is a certain positive constant. However, this requirement may 
have a slow convergence rate. Though the matrix ܴ  that 
determines the update direction does not influence the IFT’s 
convergence ability, as stated in [17], Gauss-Newton direction 
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is a desirable choice to speed up the convergence rate. So, the 
Gauss-Newton optimisation with Ͳ ൏ ߛ  ͳ  is used in this 
study to guarantee the algorithm convergence, which has also 
been suggested by [31]. By fulfilling these two conditions, the 
designed IFT is able to coverage to a stationary point soon.  

Robustness property of the designed IFT controller can also 
be guaranteed. Compared to model-based procedures, which 
can be viewed as global approaches, IFT can be viewed as an 
approach where the objective function is modelled locally by 
using gradients. Such a method can be made robust to the 
uncertain systems [16]. Hjalmarsson [17] has also verified that 
IFT is more robust compared with model-based methods.  

Furthermore, the IFT can be made more robust when the 
following two aspects of robustness are taken into account [17]: 
(1) choose the objective function (i.e. ܬሺߩሻ) judiciously; (2) 
consider iterative minimisation of the suitable function.  

For Aspect (1), regarding the design objective, in general it is 
good to include a penalty on the input signal as well. It is also 
suggested by [17] that the objective function in form ܬሺߩሻ ൌܧሾሺݕሺߩሻǡ ሻǡߩሺݕሻሻሺߩሺݑ ሻሻ்ሿߩሺݑ  would have a strong ties to 
robust loop-shaping. Thus, in this paper, the basic IFT objective 
criterion is designed as (6). To further enhance the robustness 
from design objective aspect, a normalised IFT design criterion ܬሺߩሻ	is proposed to eliminate the trial and error process for 
weighting factor selection. By normalising the input and output 
signals, the value of ߣ  is able to stay meaningful across 
different tuning iterations, which is possible to make the 
controller be system agnostic and thus increase the robustness. 
It has been verified by [32] that the normalised IFT is 
theoretically more robust than the standard method. 

For Aspect (2), as IFT method tries to estimate the gradient 
of the criterion, once steady minimisation of the criterion is 
achieved, the controller robustness can be ensured. The matrix ܴ determines the update direction and is therefore crucial. As 
suggested by [17], Gauss-Newton update can yield close to 
optimal performance, which is thus applied to the NIFT 
algorithm in this paper, as the ܴǡ  indicated by Eq. (23). 
Therefore, besides the inherent robustness of standard model- 
free data-driven IFT algorithm, the newly designed NIFT 
method is able to further enhance and guarantee the robustness 
property by taking the above two aspects into account. 

IV. EXPERIMENTS AND RESULTS 

A. NIFT optimisation for repetitive control 

In this experiment, IFT with normalised design criterion was 
used to tune the robot position control. The trajectory used was 
a sinusoidal waveform about the X Euler axis with an 
amplitude of 0.2 radians and a period of 20 seconds. The 
starting PID gains ߩ	 ൌ ሾͳͷ ͻ ൈ ͳͲିଷ ͷ ൈ ͳͲିସሿ்  was 
obtained by the commonly used Ziegler–Nichols (ZN) tuning 
rules, and then NIFT started tuning from the ZN sets. The step 
size of ܭ ூܭ , , and ܭ	was empirically set as ͲǤͳ,	ͳ ൈ ͳͲିହ, 
and  ൈ ͳͲି, respectively. Usually only a few iterations are 
required for the IFT method to achieve a good performance 
[34]. Ten iterations of online optimisation were performed in 
this trial, with results taken directly from the tuning process.  

The NIFT tuning result is shown in Fig. 4, where a positive 
angle in the X Euler axis denotes the dorsiflexion direction and 
a negative angle denotes the plantar flexion. For such a 
repetitive trajectory, the robot tracking performance became 
better and better during the ten iterations, as shown in Fig. 4 (a). 
It can be seen that there was a significant improvement in the 
performance when comparing the ZN sets (before NIFT tuning) 
and end of NIFT tuning results in Fig. 4 (b) and Fig. 4 (c) 
respectively. The errors for Euler angle axes at iteration 0 and at 
iteration 10 are shown in Fig. 4 (d) by the dotted and the solid 
line, respectively. It also provides evidence that the NIFT 
method was able to tune the controller towards a high- 
performance tracking results within several minutes. The 
profile of how the value of the design criterion decreased is 
shown in Fig. 4 (e), where there was a steady decrease in the 
value of ܬሺߩሻ from over 0.02 to around 0.005.  

 
Fig. 4.  Repetitive control result using normalised IFT tuning. (a) End-effector 
orientation during 10 iterations. (b) Tracking result before tuning (iteration 0). 
(c) After tuning (iteration 10). (d) End-effector errors. (e) Design criterions. 

We further explored how the normalised IFT performs when 
compared to the standard IFT that is commonly used. The same 
cyclical waveform for rehabilitation trajectory was used here 
for online tuning. A total of four sets were tested for the PMAs- 
actuated robot, and ten tuning iterations were performed for 
each setup. A detailed comparison of the errors between the 
normalised and the standard IFT is presented in Table I. For 
normalised IFT tests, the ߣ  selected was ͳ ൈ ͳͲିସ. For the 
standard IFT tests, the ߣ  value varied. The first ߣ  value of ͳ ൈ ͳͲିଷ  was adopted for the standard IFT. Obviously the 
result was not optimal and more control actions are needed to 
reach the desired trajectory. The ߣ value was then gradually 
adjusted to ͳ ൈ ͳͲିସ  and ͳ ൈ ͳͲିହ  which resulted in the 
system being better tuned each time. Note that for the 
normalised IFT design criterion, even without changing the 
value ߣ, the performance was even better than the standard 
IFT tuned with the optimal ߣ  value. The newly normalised 
design criterion shows improved performance as compared to 
the original standard IFT design criterion. 
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B. Robustness test with human participants 

To explore the adaptability of NIFT algorithm on different 
users and rehabilitation strategies, tests were performed on four 
healthy human participants aged between 20 and 30 of various 
gender, height and weight. The ankle movement range and 
active torque of each participant were assessed first by using 
the method presented in our previous work [35, 36], to ensure 
that all possessed a normal range and torque ability for the 
ankles tested. Each participant was first asked to adjust the 
seating to a correct height so the knee joint is at approximately 
120 degrees when the foot is on the platform. The participant’s 
foot was strapped to the end-effector tightly and comfortably, 
as indicated by Fig. 5. This trial has been approved by the 
University of Auckland Human Participants Ethics Committee 
(reference 011904). The tuning duration for each test were also 
set to 10 iterations (11 minutes) to limit the discomfort to the 
participant, with a rest period offered between each test. 
Various measures had been taken to guarantee the safety of 
human participants. The amplitude and frequency of robot 
movement were set low to emulate the rehabilitation use for 
patients. Movement ability of each recruited participant would 
be assessed first before any tests. Emergency stops had also 
been designed from both hardware and software aspects.  

SĞĂƚŝŶŐ

PŶĞƵŵĂƚŝĐ ŵƵƐĐůĞ

EŶĚͲĞĨĨĞĐƚŽƌ

RŽďŽƚ ƐƵƉƉŽƌƚ

CŽŶƚƌŽů ĐĂďŝŶĞƚ

LĞŐ ŚŽůĚĞƌ

FŽŽƚ  ďĞůƚ

FŽŽƚ ƉůĂƚĞ

EŵĞƌŐĞŶĐǇ ƐƚŽƉ

SŚĂŶŬ ďĞůƚ

 
Fig. 5.  Configuration of the robot experimental setup with human ankle. 

Three tests were performed to validate the effectiveness of 
the multiple DOFs NIFT in different situations. In test 1 (T1), 
test 2 (T2), and test 3 (T3), the robot was controlled without 
human participants, with human passive, and human passive- 
then-active training, respectively. For T3, the participant was 
asked to actively move after 5 iterations of passive training to 
emulate the scenario where patients are making progress in 
their range of motion ability through rehabilitation, in order to 
explore how NIFT could adapt to the changing capabilities of 
the patient over time. To demonstrate the changes of operating 
conditions, the robot force/torque was recorded during each test. 
We take participant 1 as an example with results shown in Fig. 
6 (a)-(d). For T3 the first 360 seconds indicate the passive 
iterations without user active forces, followed by 300 seconds 
with participant active interaction, where we can see that the 
participant exerted a distinctly higher force and torque starting 
from the 6th iteration. The end-effector orientation results under 
these three experiment conditions (T1, T2, T3) are shown in Fig. 
6 (e). It can be seen at the end of tuning performances of T1, T2 

and T3 were all satisfactory, even different ankle effects existed. 
The errors at the end of tuning (Fig. 6 (f)) were very similar in 
shape and magnitude. 

 
Fig. 6.  Experimental results of T1, T2 and T3 with participant 1. (a) Interaction 
torques about X axis and (b) about Y. (c) Interaction forces along X axis and (d) 
along Y. (e) End-effector orientation results at the end of tuning. (f) 
End-effector orientation errors at the end of tuning. 

 
Fig. 7.  Comparison of design criterion profiles and controller parameters ܭ, ܭூ, and ܭ for all actuators between T1, T2 and T3 with participant 1. 

The NIFT’s adaption to human affects can be examined by 
comparing the normalised design criterion values ܬሺߩሻ during 
the three tests, with results shown in Fig. 7. There was a 
significant decline of the design criterion. It can be seen that ܬሺߩሻ of no human participant test (T1) and human passive test 
(T2) were quite similar. For human participant passive-active 
test (T3), ܬሺߩሻ for the all actuators stopped improving when 
the user started to actively move from the 6th iteration, due to a 
sudden disturbance applied to the robot by the participant. 
However, the NIFT method was able to adjust for this 
discrepancy immediately by tuning the controller gains to 
tackle external changes. It can be seen that the design criterion ܬሺߩሻ started improving again after 2 iterations. The starting 
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error for T2 and T3 was higher than that of T1, due to the 
influence of human effects, but the control performance at the 
end of tuning were all satisfactory. The controller parameters in 
Fig. 7 can be examined to see the effect of NIFT tuning process. 
The value of ܭ  in T2 and T3 was higher than that in T1, 
because the human ankle would exert a resistance torque to the 
robot, so the controller had to increase the input value to keep 
tacking the predefined trajectory. The rate of change of ܭ, ܭூ 
and ܭ  in T3 was tuned by NIFT to adapt to the human 
activities. Online tuning of the parameters made the controller 
achieve a high performance soon after external condition 
changes. It is also found that the controller parameters reached 
by each NIFT algorithm were different from one another due to 
misalignments for each actuator. It also provides evidence that 
each IFT algorithm was able to optimise its actuator properly in 
a multiple degrees-of-freedom implementation.  

The NIFT was then experimentally compared against the 
standard IFT implementation based on T3 to demonstrate its 
improved robustness. The comparison of IFT and NIFT at 
iteration set ߩହ  and ߩଵ  in terms of parameter updating and 
control performance is shown in Fig. 8. It is evident that the rate 
of change of PID gains of IFT and NIFT were similar before ߩହ, 
while the differences became significant for all actuators after 
the user started active input. The rate of change of ܭ of NIFT 
was significantly higher than that of IFT as the former can adapt 
to the operation changes in a faster way. The end-effector error 
of NIFT at 5th and 10th iteration was also smaller than that of 
IFT. These indicate that both IFT algorithms possess the 
robustness property to adapt to external changes, while the 
NIFT shows a better performance.  

 
Fig. 8.  Robustness test by comparison with standard IFT at ߩହ and ߩଵ: solid 
lines indicate the result of NIFT while dashed lines the IFT; red, blue, green and 
magenta lines represent the results of actuator 1 to 4, respectively. 

To further verify the normalised IFT controller’s robustness 
and adaptability, another three participants were recruited to 
perform the passive-active experiment with same procedure as 
described above to emulate changing of recovery stages. 
Similar findings can be concluded, as the NIFT instances 
increased the controller gains at a faster rate to compensate for 
the increase in ankle stiffness. The normalised design criterion 
values ܬሺߩሻ of each participant are demonstrated in Fig. 9. The 

results show that the NIFT technique was able to adapt to the 
changing capabilities of different participants over time. 
Though the tracking performance for each participant was 
different especially when human effects existed, all controllers 
were able to track the reference trajectory better and better 
based on NIFT learning capacity and reached an ideal result 
within several minutes. Table II shows more statistical details 
to indicate the robustness of NIFT scheme for its adaptability to 
different participants with varying capabilities.  

 
Fig. 9.  Criterion profiles for passive-active tests across four participants. 

To demonstrate the NIFT method’s convergence property, 
an experiment with 20 iterations was conducted with results 
shown in Fig. 10. It is clear the NIFT successfully converged to 
a local optimum within 20 loops. The reason why we only 
applied 10 iterations in above tests is that it can reach a 
relatively good performance after 10 iterations and the next 10 
did not result in significantly better results. Also a long time 
training may make the subjects uncomfortable and loss of 
patience. In this 20-iteration case, it took the algorithm until the 
13th iteration to produce optimal results. The criterions and 
tuning process of PID gains of all actuators were plotted to 
indicate the convergence of NIFT method. From experiments 
throughout this research, the convergence speed of the NIFT 
technique was usually rapid, often within 10 to 20 iterations.  

 
Fig. 10.  Convergence test through a case study with 20 iterations: red, blue, 
green and magenta lines represent the design criterions and PID gains of 
actuator 1 to 4 of the ankle rehabilitation robot, respectively.  
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V. DISCUSSION 
Robotic rehabilitation devices can alleviate the manual 

therapy problems in terms of labour intensiveness, precision 
and subjectivity. Rehabilitation devices should be compliant to 
prevent discomforts and re-injuries during treatment. Different 
from most ankle rehabilitation robots that are driven by stiff 
actuators, the robot in this paper is intrinsically compliant due 
to the utilisation of PMAs. Repetitive training can contribute 
significantly to the effectiveness of treatment, it is crucial to 
design a robust robot controller to enable high performance 
repetitive ankle training for a long time. However, most of the 
current rehabilitation devices have some form of simple tuning 
control [26] that has to be manually adjusted to suit different 
capabilities of the patients. This research investigated the use of 
advanced iterative learning algorithm which has potential to 
provide advantages of high adaptability and robustness. 

IFT technique is able to learn from repeating scenarios and to 
tune the controller parameters without knowledge of the actual 
system, which makes it suitable for repetitive control of a 
compliant robot driven by PMAs whose model is difficult to 
obtain. However, in order for the IFT to be used in real-life 
rehabilitation applications their robust performance must be 
guaranteed for a long time repetitive control. To the authors’ 
knowledge no IFT control performance has been tested before 
in a rehabilitation robot. Though some papers [24, 37] applied 
IFT in rehabilitation, only the system output is adjusted based 
on previous data without considering the robust performance. 
In this paper, the performance of IFT is measured on a variety 
of operation conditions and different human participants to 
show that indeed the IFT technique can provide more control 
robustness to the rehabilitation robot, and is able to optimise the 
controller parameters for different situations encountered. 

Previously, the weighting factor ߣ is determined by trial and 
error, which requires the designer to be experienced or to have 
an intimate knowledge of the system being tuned. In this paper, 
a normalised version of IFT controller was proposed to improve 
the robustness of the overall tuning technique and a multi-DOF 
NIFT implementation was conducted and tested on a compliant 
rehabilitation robot. To facilitate the comparison between 
above different tests, the RMS of the error value in each Euler 
direction and the maximum absolute error as well as the peak 
amplitude error in X direction are calculated. The resultant 
error values achieved from the standard IFT and normalised 
IFT tests are shown in Table I. The end-effector orientation 

errors are compared between the baseline (initial ZN tuned 
controller) and the IFT optimised controller (end of tuning) 
within a period of control (20s). It can be seen that the 
end-effector tracking performances at end of tuning for all IFT 
instances were significantly improved from the initial ZN 
performance. The maximum tracking errors in Euler X 
direction were kept to below 0.05 radians after IFT tuning. For 
standard IFT tests, the ߣ value of ͳ ൈ ͳͲିଷ was not optimal and 
with the gradual adjustment of ߣ to ͳ ൈ ͳͲିସ  and ͳ ൈ ͳͲିହ , 
the error became smaller. The robustness for normalised IFT is 
better as it presented a better tracking performance than 
standard IFT tuned without changing ߣ. 

Regarding the comparison between IFT and classical 
auto-tuning algorithms, there have been quite a few studies. 
Lequin et al. compared the performance of IFT-tuned PID 
controllers with the performance achieved by three other 
classical PID tuning schemes [34]. Tests in [21] showed the IFT 
can achieve up to 92% better performance compared to a 
conventional tuned controller. Hjalmarsson et al. also stated 
that the IFT method can obtain a faster response than other 
model-free methods [29]. The IFT algorithm has been verified 
to achieve a performance that is dramatically better than that of 
the classical PID tuning schemes. However, none of the 
research is conducted on the rehabilitation robots. This paper 
presents the comparison between NIFT method and the simple 
tuning algorithm on the compliant rehabilitation robot for the 
first time. Inspired by [21], the initial PID gains here were also 
obtained by using ZN rules and then the NIFT method started 
tuning from the ZN-tuned parameters to allow a direct 
comparison between them. From the tests it is shown that the 
IFT method always outperformed the initial ZN tuned approach, 
and the peak amplitude performance can reach up to 95.6% 
better performance than the ZN tuned sets. The NIFT showed 
improved robustness to different tests as compared to the 
standard IFT and the ZN rules that are commonly used. 

The quantitative results with human participant experiments 
are demonstrated in Table II. The active joint torque applied to 
the system had a significant effect on the controller as well as 
the amplitude reached, especially in the X direction. For 
participant 1 the maximum amplitude that robot can reach 
decreased by 0.0077 and 0.0046 radians in dorsiflexion and 
plantarflexion direction, as the participant’s ankle stiffness had 
resisted the robot movement. For the active input tests with four 
participants, the proposed normalised IFT algorithm instances 

TABLE I 
QUANTITATIVE COMPARISON OF STANDARD AND NORMALISED IFT RESULTS 

Test instances 
Euler angle RMS error (rad) Peak amplitude error (rad) Max error (rad) 

X Y Z Upper (X) Lower (X) X 
Baseline (ZN tuning) 0.0626 0.0062 0.0255 0.0111 0.0114 0.1025 

Standard IFT 1 
ࣅ  ൌ  ൈ ି 0.0510 0.0020 0.0075 0.0086 0.0063 0.0798 

Standard IFT 2 
ࣅ  ൌ  ൈ ି 0.0316 0.0010 0.0011 0.0060 0.0029 0.0526 

Standard IFT 3 
ࣅ  ൌ  ൈ ି 0.0242 0.0015 0.0010 0.0026 0.0012 0.0465 

Normalised IFT 
ࣅ  ൌ  ൈ ି 0.0239 0.0012 0.0010 0.0009 0.0005 0.0447 
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were able to successfully adapt to the changing users and 
capabilities. Considering the participant’s active interaction as 
external noise to the robot, this finding is in accordance with 
[34]. We verified that the IFT method was able to take the noise 
disturbances into account and adjust the PID parameters to 
different values under noise or noise-free conditions. Similar 
findings can be concluded from Table II, as the NIFT algorithm 
increased the controller ܭ		  gains to compensate for the 
increase in human ankle torque, the final tracking results were 
guaranteed in high-performance. Overall, it is concluded that 
the NIFT technique is robust, maintains system agnostic, and 
can be used to automatically adjust the robot controller to 
various operating conditions.  

VI. CONCLUSION 
This paper developed a robust control technique for 

repetitive control of robotic rehabilitation devices. A multiple 
degrees-of-freedom implementation of the normalised IFT 
technique was proposed and tested on a PMAs-actuated parallel 
ankle rehabilitation robot. The performance of this newly 
introduced normalised design criterion was put to the test 
against the commonly used standard IFT design criterion. 
Finally, four healthy human participants were recruited to 
validate the usage of NIFT on the ankle rehabilitation robot, as 
well as to validate the robustness and convergence efficacy of 
the proposed normalised IFT scheme. It can be concluded that 
the normalised IFT scheme provides robustness to the control 
system by adapting to different situations, which can in turn 
improves the effectiveness of robotic rehabilitation.  

Future work can be done on the parallel ankle rehabilitation 
robot to further enhance the performance of iterative learning 
control. The performance of IFT technique depends on several 
factors, one of which being the optimisation algorithm. Apart 
from the Gauss-Newton algorithm presented in this paper, other 
optimisation algorithms can also be used, such as the 
Levenberg-Marquardt (LM) algorithm. No comparative study 
on these algorithms has been reported. On the other hand, 
advanced control schemes on the rehabilitation robot such as 
interaction control should also be examined to provide a more 
intuitive approach for robotic rehabilitation. Active control of 
the compliant robots can be approached by proper impedance 
control or adjustment of nominal pressure inside PMAs. Based 

on the measurement of patient’s active contribution during 
training, the ILC method can be used to update the assistance 
accordingly by altering its weighting factor, which provides a 
promising way for assist-as-needed implementation.  

NOMENCLATURE ܪ Distance between the fixed and moving platforms ܮ Vector representation of the ݅௧ PMA link ܱ Centre of fixed coordinate frame of the robot ܱ Centre of moving coordinate frame of the robot  ݅௧  connection point on the fixed platform  ݅௧  connection point on the moving platform ܴ Rotational matrix of the end-effector  ߠ ǡ ߠ ǡ ߠ Angular displacement of the end-effector ܥሺߩሻ Controller in 2-DOF form ܥሺߩሻ ൌ ሻǡߩሺܥൣ ሻߩሺܬ ሻ൧ߩ௬ሺܥ Design criterion for IFT method ܬሺߩሻ Normalised design criterion for NIFT method ܭ ǡ ூǡܭ ܭ Parameters of basic PID controller to be tuned ܭ Normalising coefficient ܴ Gauss-Newton Hessian matrix ܴǡ Normalised Gauss-Newton Hessian matrix 

ܶǡ ܵ Temporary variables: ܶ ൌ ೝሺఘሻீଵାሺఘሻீ, 	ܵ ൌ ଵଵାሺఘሻீ ݎ௧ Reference input of the controlled system ݑ௧ሺߩሻ IFT controller input when parameter vector is ȡ ݒ௧ Unmeasurable disturbance of the controlled system ݕ௧ሺߩሻ IFT controller output when parameter vector is ȡ ݕ௧ሺߩሻ Error between the actual and the desired output ߣ Weighting factor of the design criterion ߣ Normalised weighting factor of the design criterion ߩ Vector of PID parameters, ߩ ൌ ሾܭ ூܭ ߛ ሿ்ܭ Step size for parameters updating 
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TABLE II 
QUANTITATIVE COMPARISON OF IFT RESULTS WITH FOUR HUMAN PARTICIPANTS 

Test instances Participant details 
Euler angle RMS error (rad) Peak amplitude error (rad) 

X Y Z Upper (X) Lower (X) 
Normalised IFT test without 

human participant Not applicable 0.0236 0.0015 0.0010 0.0008 0.0010 

Passive test with human 
participant 1 Male, 1.70m, 61kg 0.0244 0.0017 0.0013 0.0009 0.0012 

Passive-active test with human 
participant 1 Male, 1.70m, 61kg 0.0246 0.0018 0.0013 0.0077 0.0046 

Passive-active test with human 
participant 2  Female, 1.65m, 52kg 0.0215 0.0016 0.0011 0.0065 0.0041 

Passive-active test with human 
participant 3 Male, 1.78m, 75kg 0.0290 0.0019 0.0016 0.0086 0.0052 

Passive-active test with human 
participant 4  Male, 1.73m, 67kg 0.0252 0.0011 0.0022 0.0077 0.0067 
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