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Introduction 1 

The mid-pregnancy screening examination using ultrasonography (USS) is offered to all women in 2 

the UK and is taken up by more than 95%.1  If a structural abnormality of the fetus is recognized, 3 

the woman is offered a more detailed ‘anomaly scan’ performed by a senior doctor with specialist 4 

training in ante-natal USS. Structural abnormalities may be picked up for the first time later in 5 

pregnancy if a woman has another USS examination because of, for example, reduced fetal move-6 

ments or poor growth. The fetal brain is a common location for such problems and there is a wide 7 

range of potential abnormalities which vary massively in terms of post-natal clinical significance. A 8 

woman may consider termination of pregnancy if the fetus has severe abnormalities and in such 9 

cases the woman needs to be provided with the best quality information possible in order to make 10 

an informed decision. The diagnostic accuracy of USS is approximately70% as reported in several 11 

publications2-8 and confirmed by a recent large prospective study.9 That study (MERIDIAN) was 12 

designed to assess the improvement in diagnostic accuracy brought about by adding in utero MR 13 

(iuMR) to the diagnostic pathway and it demonstrated a statistically significant improvement from 14 

under 70% to over 92%. Similar levels of improvement has also be shown in systematic reviews 15 

and meta-analyses10-13 providing compelling evidence to support the use of iuMR imaging if a fetal 16 

brain abnormality is shown or suspected on USS. 17 

 18 

Radiologists performing iuMR imaging in the UK are beginning to recognise use of iuMR imaging 19 

of the brain in situations not covered by the scope of the MERIDIAN study suggesting a ‘technolo-20 

gy creep’ and this is also our experience. Specifically, iuMR is being increasingly offered to preg-21 

nant women when the fetal brain is normal on USS but the pregnancy is judged to be at ‘increased 22 

risk’ of a brain abnormality. There are several clinical scenarios that may lead to that position, 23 

which we outline in this paper and discuss the existing literature that either supports or contradicts 24 
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the use of iuMR imaging in that situation. We will also outline the future research required to guide 25 

clinical management in these pregnancies. 26 

 27 

Why a fetus may be classified as at increased risk of a brain abnormality  28 

a) Problems concerning a sibling from an earlier pregnancy.  29 

Increased risk may be based on a brain abnormality in an earlier pregnancy and may have been rec-30 

ognised either on imaging during the pregnancy or on post-natal imaging. If  the brain abnormality 31 

is thought to be developmental in origin a clinical geneticist may be asked to quantify the recur-32 

rence risk in future pregnancies. This can be done with some accuracy if a specific genetic abnor-33 

mality is known or strongly suspected (e.g. in many cases of lissencephaly), alternatively if a spe-34 

cific genetic abnormality is not found (e.g. most cases of agenesis of the corpus callosum) the risk 35 

will be based on empirical observation from the published literature. We are aware of only one pub-36 

lication (from our group) that specifically looked at the discrepancy between USS and iuMR results 37 

in this caseload.14 100 non-selected cases were described and brain or spine abnormalities were 38 

shown in 22% of fetuses of which 9% were shown only on iuMR imaging. In addition to develop-39 

mental brain abnormalities, there are an increasing number of acquired brain lesions found in chil-40 

dren on post-natal studies that are due to inheritable/genetic disorders (e.g. many metabolic disor-41 

ders) which have an increased risk of recurrence in future pregnancies.  42 

 43 

Agenesis of the corpus callosum  44 

It is difficult to be certain about the prevalence of agenesis of the corpus callosum in the general 45 

population but most estimates are in the range of 0.3% to 0.7%, although it is seen in 2% to 3% of 46 

people with a developmental disability.15 As more MR imaging examinations are performed on 47 

normal people as part of research studies it will be possible to refine the prevalence estimates of 48 

agenesis of the corpus callosum. We have performed many MR studies on adult volunteers from the 49 
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staff of our local hospital and university, including 900 brain examinations. Those adults did not 50 

know which part of their body they would have scanned before volunteering (which reduces self-51 

selection bias) and we have not seen any cases of agenesis of the corpus callosum in the 900 studies 52 

(unpublished but see reference16). Using the 3/n rule,17 the estimated prevalence of agenesis of the 53 

corpus callosum in the general population has an upper 95% confidence interval of 0.33%. Most 54 

cases of agenesis (and dysgenesis) of the corpus callosum are sporadic but it can be part of condi-55 

tions that inherit with autosomal dominant (e.g. Rubenstein-Taybi syndrome), autosomal recessive 56 

(e.g. Andermann syndrome) or X-linked (e.g. Aicardi syndrome) patterns.15 If other definable ge-57 

netic abnormalities can be excluded the recurrence rate in siblings is thought to be approximately 58 

5% .18 Our empirical experience shows that although the recurrence rate of isolated agenesis of the 59 

corpus callosum is low, pregnant women with this family history usually ask for iuMR imaging in a 60 

subsequent pregnancy. This is often supported by the fetal maternal consultant because of the 61 

emerging problems of detection with USS and the high association with other brain abnormali-62 

ties.9,19 63 

 64 

Cortical formation abnormalities 65 

The term ‘cortical formation abnormality’ covers a wide range of pathologies that result from fail-66 

ure of neuronal/glial proliferation, migration and/or organisation of the cerebral cortex .20 Classic 67 

(type 1) lissencephaly is characterised by under-migration of neurons and mutations of LIS1 or 68 

DCX genes account for 77% of such cases (65% and 12% respectively).21,22 The inheritance pattern 69 

is autosomal dominant  for LIS1 (chromosome 17) and X-linked  for (DCX) but the majority of 70 

cases are de novo mutations. In a small number of cases there may be an identifiable parental genet-71 

ic defect, for example, if  a woman with a mild phenotype carries a defective copy of the DCX gene 72 

the recurrence risk may be as high as 50%. Alternatively, when one parent has a balanced transloca-73 

tion involving the LIS1 gene the recurrence risk for isolated lissencephaly sequence is thought to be 74 
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10 to 15%.  “Cobblestone” or type 2 lissencephaly results from over-migration of neurons past the 75 

basement membrane and is common in Walker-Warburg syndrome, Muscle Eye Brain disease and 76 

Fukuyama muscular dystrophy.20 The recurrence risk for cobblestone lissencephaly is 25% (auto-77 

somal recessive inheritance), as is the cases of lissencephaly with cerebellar hypoplasia.  78 

 79 

A recent report from our group studied the use of iuMR in pregnancies at increased risk of lissen-80 

cephaly based on a previously affected sibling23 and highlights a number of difficulties of studying 81 

such abnormalities in the fetus, the first relating to the scarcity of the disorder. The 23 fetuses re-82 

ported in that study took 8 years to recruit despite a wide geographical coverage and in only three 83 

cases did the lissencephaly recur. Secondly, when can lissencephaly be diagnosed reliably? All 84 

three of the fetuses with lissencephaly were successfully recognised on iuMR with varying degrees 85 

of certainty but four other fetuses were considered to be ‘possible lissencephaly’ on the 22-24 week 86 

iuMR studies based on mild sulcation delay. The follow up studies performed at 28 weeks in those 87 

four cases were normal and were considered to be normal after birth, which indicates a tendency to 88 

report false positives in the late second trimester. We should expect similar pre-natal diagnostic 89 

problems on iuMR for other cortical formation abnormalities such as polymicrogyria, which is be-90 

ing increasingly recognised as inheritable, particularly if it is bilateral and symmetrical.,21-24 It may 91 

be difficult to diagnose polymicrogyria even if  anatomically extensive and focal polymicrogyria or 92 

focal cortical dysplasia is likely to be exceptionally challenging or impossible. The ability to con-93 

firm (figure 1) or exclude (figure 2) cortical formation abnormalities confidently is equally im-94 

portant to the families. 95 

 96 

Metabolic disorders 97 

We have discussed the problems of diagnosing some developmental brain abnormalities ante-98 

natally with iuMR because of lack of conspicuity at some stages of pregnancy and the purpose of 99 
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this section is to add further caution if attempting to diagnose brain abnormalities in a fetus at risk 100 

of an inherited metabolic disorder. Di Mauro and Garone25 describe the wide range of inheritable 101 

metabolic disorders concentrating on glycogenosis and mitochondrial defects in the fetus and their 102 

general observations are highly pertinent to ante-natal detection. Mendelian and maternally inherit-103 

ed disease must be present in the fetus but it does not mean that the fetus is ‘clinically’ affected. 104 

Many of these metabolic disorders do not produce brain injury until infancy, childhood or even 105 

adulthood and there are a number of reasons why the individual may not be affected in utero. For 106 

example, a genetic defect may produce a mutated mature enzyme which has a fetal counterpart that 107 

is not involved. In some situations, the mother is able to metabolise an abnormal gene product, or 108 

the build-up of a toxic intermediate compound made by the fetus. Defects of the mitochondrial res-109 

piratory chain are amongst the most important inheritable metabolic disorders in terms of brain in-110 

volvement and impaired oxidative metabolism in the child or adult metabolically active areas. In 111 

contrast, fetal tissues rely more on anaerobic glycolysis for ATP production rather than oxidative 112 

mechanisms, hence providing a measure of protection.26 A normal iuMR study in these situations 113 

should not be used to exclude a metabolic disorder in a fetus although there are sometimes non-114 

specific finding on iuMR that may be useful (figure 3).  115 

 116 

b) Abnormalities of the current fetus that increase the risk of a brain abnormality.  117 

Other findings in the current pregnancy may indicate increased risk of brain abnormality in the fetus 118 

such as the association between spine and brain malformations. Alternatively, there may be serolog-119 

ical findings that indicate a maternal infection has passed to the fetus (e.g. the ‘TORCH’ infections) 120 

or chromosomal/genetic abnormalities have been recognised that may raise concern for brain in-121 

volvement.  The intra-uterine environment can also adversely affect the fetal brain, particularly in 122 

multi-fetal pregnancies. 123 

 124 
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Structural abnormalities outside the brain associated with increased risk of brain abnormalities  125 

The association between ‘open’ spinal dysraphism (myelomeningocoele or myelocoele) and brain 126 

malformations and if that type of spinal problem is shown on ante-natal USS there is an approxi-127 

mately 90% chance that a Chiari 2 malformation will be present as well. Conversely, finding a 128 

Chiari 2 malformation on USS instigates close scrutiny of the fetal spine because the vast majority 129 

of Chiari 2 malformations are found in conjunction with open spinal dysraphism. There is no con-130 

sistent association between closed spinal dysraphism (skin covered abnormalities) and brain mal-131 

formations but careful assessment of the brain in such cases is still warranted on USS. There is a 132 

paucity of research data about the value of iuMR imaging in the assessment of fetuses with spinal 133 

abnormalities demonstrated on USS. Our group reported the results of 50 such fetuses and showed 134 

disagreements between USS and iuMR imaging in 10/50 (20%) but all of those were in the descrip-135 

tion of the spinal abnormalities, not in intra-cranial findings.27 Similarly, there were 21 fetuses with 136 

Chiari 2 malformations in the MERIDIAN study and again extra brain abnormalities were not seen 137 

on iuMR imaging in any fetus.28 In spite of this low diagnostic return iuMR imaging is frequently 138 

requested in a fetus with a spinal abnormality on USS and in such cases we always image the fetal 139 

brain as well as the spine.  140 

 141 

One area of interest in the recent obstetric literature is the association between congenital heart dis-142 

ease (CHD) and fetal brain abnormalities. CHD occurs in 6-8/1000 live births29 and is a common 143 

cause of childhood morbidity. A recent systematic review found pre-natal detection of structural 144 

brain abnormalities in fetuses with CHD gave a prevalence of 28% (95% CI, 18-40%) but those 145 

figures are based on three publications from only 221 cases.30 Some of the reported brain abnormal-146 

ities were obvious focal abnormalities, both developmental and acquired, but the most frequently 147 

reported ‘brain’ abnormality in the systematic review was ventriculomegaly (found in 8.6% of fe-148 

tuses with CHD in total). It is open to debate if ventriculomegaly should be considered as a ‘devel-149 
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opmental’ or ‘acquired’ abnormality or indeed as an anatomical variant in some cases. Other in-150 

cluded brain abnormalities were more non-specific such as reduced brain growth and maturation, 151 

MR spectroscopic changes consistent with metabolic ‘stress’ or reduced blood flow to the brain on 152 

Doppler USS. Much more detailed, prospective research is required in order to define the associa-153 

tion rate of CHD with developmental brain malformations (figure 4) and acquired brain pathology 154 

and to explore the possible significance of those findings vis-à-vis the known CDH.  155 

 156 

Cytomegalovirus as an example of a trans-placental infection that may affect the fetal brain 157 

The acronym ‘TORCH’ is often used to describe the commonest infective agents that cause trans-158 

placental infection (TOxoplasmosis, Rubella, Cytomegalovirus (CMV) and Herpes), although an 159 

increasing number of other viruses have been implicated. CMV infection is numerically the most 160 

important in the UK but fetal infection although HIV and, more recently, Zika virus present major 161 

challenges on the global scale. Leruez-Ville and Ville31 state that the birth prevalence of congenital 162 

CMV infection in European countries with low maternal seroprevalence is around 0.4% and there is 163 

a roughly equal ratio of primary CMV infections during pregnancy and reactivation of a previous 164 

maternal CMV infection.32,33 CMV specific symptoms are found in 12.7% of new-borns with con-165 

genital CMV and approximately half of those will have permanent sequelae, many of which are 166 

brain-related. Unfortunately 13.5% of infected but asymptomatic new born babies will develop 167 

permanent problems relating to CMV infection.34 Transplacental infection of the fetus with CMV 168 

can lead to spontaneous abortion/stillbirth or result in termination of pregnancy if recognised. If the 169 

infection is acquired in the early second trimester CMV seems to have a predilection for the cells in 170 

the germinal matrix (ventricular zone), which interferes with normal neuro-glial proliferation, mi-171 

gration and/or organisation of the cerebral cortex. A recent article35 has tried to explain the range of 172 

imaging findings in relation to the timing of the infection e.g. second trimester infections at the time 173 

of neuronal/glia proliferation and may produce microcephaly and/or micrencephaly, whereas agyr-174 
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ia/lissencephaly is more likely to result from a failure of migration and polymicrogyria results from 175 

abnormal cortical organisation (figure 5). Fetuses infected in the third trimester tend to have white 176 

matter injury with calcifications.  177 

 178 

The diagnosis of maternal CMV infection during pregnancy can be difficult.  The most convincing 179 

data comes from documented seroconversion in pregnancy by showing increased specific IgG but 180 

this is rarely feasible because screening and prospective monitoring is not performed.31 In most cas-181 

es in which a fetal infection with CMV is confirmed ante-natally there was a reason to look for it 182 

and this often comes from USS imaging. Leruez-Ville and Ville describe USS findings that may 183 

provide clues to CMV infection under the headings of ‘severe USS brain abnormalities’ ‘mild USS 184 

brain abnormalities’ and ‘extra-cerebral USS abnormalities’.31 Most of those are non-specific and in 185 

our experience the referral information for USS usually involves some combination of ‘microceph-186 

aly’, ‘ventriculomegaly’, ‘enlarged extra-axial spaces’ or ‘germinal cysts’ (figure 6). The literature 187 

comparing USS and iuMR findings in congenital CMV infection is sparse. Picone et al.36 studied 38 188 

fetuses (24-37 weeks gestational age) with proven congenital CMV infection and retrospectively 189 

assessed the value of iuMR imaging over USS. They concluded that iuMR should be performed in 190 

any situation that the USS examination is not completely normal and the major value was in cases 191 

in which USS had recognised extra-cerebral manifestations of the infection but reported a normal 192 

brain. Doneda and colleagues37 also studied 38 fetuses with confirmed CMV infection, iuMR being 193 

performed at 24-30 weeks gestational age. They reported added diagnostic value for iuMR in 18/38 194 

(47%) cases and an increase in sensitivity for pathology from 38% for USS to 92% for iuMR imag-195 

ing. The sensitivity of general USS in ante-natal care should be considered as low as 35%38 whilst 196 

the addition of iuMR is thought to produce negative predictive values close to 90%.36,39  197 

 198 

Brain injury in the co-twin survivor after fetal demise in monochorionic pregnancies 199 
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Multiple pregnancies are generally a high risk group for both mother and fetus. This has increasing 200 

importance as the rate of multiple pregnancies increase with the widespread use of assisted concep-201 

tion methods. Twins occur in about 1 in 60 pregnancies and one factor for increased risk is chorion-202 

icity.40 Monochorionic twins make up approximately 30% of all twin pregnancies and have a single 203 

placenta with shared vascular anastomotic channels between the two fetuses. In the event of demise 204 

of one twin, the surviving co-twin is at increased risk of injury because of adverse effects on perfu-205 

sion or thromboembolism arising in the dead fetus or placenta. There is a 15% risk of death of the 206 

co-twin in a monochorionic pregnancy and the risk of abnormal neurological development in survi-207 

vors is 26%.41 Death of one twin in a monochorionic twin pregnancy can occur spontaneously or 208 

after an intervention such as laser ablation of placental vessels for twin-twin transfusion syndrome 209 

(TTTS). TTTS complicates 8 to10% of twin pregnancies and is responsible for approximately half 210 

of all perinatal deaths in monochorionic twins.42 Again, the relative rarity of this clinical situation 211 

makes properly powered, prospective studies about possible benefits of iuMR imaging over USS 212 

exceptionally difficult, if not impossible without multi-centred, international trials. Our previous 213 

work in the field showed brain abnormalities in 9/68 (13.2%) of co-twin survivors after demise of 214 

one twin in monochorionic pregnancies and three of those abnormalities were shown correctly on 215 

USS.43 Examples are shown in figures 7 and 8. The small number of other publications in this area 216 

support the use of iuMR imaging after single fetus demise in monochorionic twin pregnancies or 217 

suggest the value of larger studies to confirm the perceived benefits of iuMR.44,45 218 

 219 

Microcephaly 220 

Microcephaly (small skull size) is frequently found in fetuses with developmental and acquired 221 

brain pathology including many of the conditions described in previous sections. Here we will dis-222 

cuss some of the issues that arise if microcephaly is the only abnormal finding on USS or if there 223 

are only non-specific abnormalities such as enlarged CSF spaces or germinolytic cysts.  Assessment 224 
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of the skull size on USS is made by measuring biparietal diameter, occipito-frontal diameter and/or 225 

head circumference and compared with normative charts. This is done routinely because a small 226 

head size in a fetus is considered to be an independent risk for poor neurodevelopmental out-227 

come.46-48 Important issues for research that can be answered by performing iuMR imaging along-228 

side USS include: 229 

a) What is the accuracy of skull measurements on USS? The MERIDIAN study did not recruit 230 

fetuses with microcephaly only but when it was found in conjunction with another brain ab-231 

normality there was the opportunity to compare the head sizes made on USS with those on 232 

iuMR imaging. Thirty fetuses were referred with a diagnosis of microcephaly and the diag-233 

nosis was refuted on iuMR in 8/30 (false positives on USS - 27%) of cases. In addition, a 234 

further 13 fetuses had microcephaly diagnosed on iuMR that was not recognised on USS 235 

(false negative rate on USS 13/35 =37%). This data indicates a substantial problem in cor-236 

rectly identifying microcephaly on USS.  237 

b) What degree of microcephaly warrants further investigation by iuMR imaging? There is lit-238 

tle agreement in the literature about what measurement constitutes microcephaly, some au-239 

thorities using <10th centile and others <3rd centile and there is little scientific justification 240 

for either position. A prospective, formally powered study that recruits fetuses with varying 241 

degrees of small head size diagnosed on USS followed by iuMR imaging will be able to 242 

measure the proportion of cases iuMR had diagnostic and clinical impact. By this means it 243 

will be possible to set a level of microcephaly which will benefit from iuMR imaging. 244 

c) A more fundamental issue is the mismatch between head size and brain size. It is a common 245 

feature of many of our iuMR studies that microcephaly was overlooked on USS but equally 246 

important are the cases where the head size is not a cause for concern on either USS or 247 

iuMR but the brain size is disproportionately small on iuMR imaging (micrencephaly). This 248 
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is coming into sharp focus now it is possible to make accurate and reproducible measure-249 

ments of fetal brain volume (figures 1 and 5 and reference49). 250 

 251 

Conclusions  252 

USS will remain the mainstay of the national programme for fetal screening and anomaly scanning, 253 

however, we are beginning to learn more about its limitations and that iuMR improves diagnostic 254 

accuracy at a clinically significant level. Most comparative studies have concentrated on fetuses 255 

with brain abnormalities visible on USS but we believe it is appropriate to perform research studies 256 

on fetuses that are at increased risk of a brain abnormality but USS finding are either normal or 257 

non-specific. Heightened parental and clinician anxiety is to be expected in these pregnancies and 258 

we have spoken of ‘technology creep’ based on the unproven assumption that iuMR imaging will 259 

provide more information and certainty but it is important for the clinical research community to 260 

provide the evidence for or against this expensive resource.  261 

262 
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Figure 1. A case in which recurrence of a brain malformation was confirmed on iuMR imaging. The 387 

older sibling of the current fetus had a post-natal MR diagnosis of agenesis of the corpus callosum 388 

(1a) and a cortical formation abnormality (lissencephaly with a posterior hemispheric predilection - 389 

b). In utero MR imaging was performed at 33 weeks’ gestation in the next pregnancy and agenesis 390 

of the corpus callosum was confirmed (1c) along with a bilateral, symmetrical cortical formation 391 

abnormality (1c and 1d), most likely to be lissencephaly although polymicrogyria could not be ex-392 

cluded on the basis of the imaging alone. The total brain volume was reduced in comparison with 393 

the published reference range as described in the text (1e and reference49). 394 

 395 

Figure 2. A case in which recurrence of a brain malformation was excluded on iuMR imaging. The 396 

older sibling of the current fetus had a diagnosis of bilateral perisylvian polymicrogyria made on 397 

post-natal MR imaging (2a-2c). USS imaging in the next pregnancy showed mild ventriculomegaly 398 

and iuMR was performed at 24 weeks, which confirmed mild ventriculomegaly but showed no evi-399 

dence of polymicrogyria (2d-2f). A repeat iuMR study at 31 weeks’ gestational age showed resolu-400 

tion of the ventriculomegaly and cortical sulcation/gyration that was appropriate for gestational age.  401 

 402 

Figure 3. A case in which recurrence of a metabolic disease was strongly suspected on iuMR imag-403 

ing in spite of relatively non-specific findings. Mild ventriculomegaly was detected on ante-natal 404 

USS in a fetus at 20 weeks gestational age and the only history of note was an early neonatal death 405 

in the previous pregnancy. iuMR imaging was performed at 21 weeks gestation and axial ssFSE T2-406 

weighted (3a) and FLAIR (3b) images confirm mild ventriculomegaly (trigones 11 and 12mm) and 407 

show bilateral cysts in the germinal matrix close to the frontal horns. Cytomegalovirus infection 408 

was looked for and excluded and a repeat iuMR at 30 weeks (3c axial and 3d sagittal ssFSE) 409 

showed progressive ventriculomegaly (trigones 12 and 13 mm) and more extensive germinolytic 410 
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cysts. Pyruvate carboxylase deficiency was confirmed post-natally and similar appearances were 411 

shown in the next pregnancy (3e and 3f) with the same outcome. 412 

 413 

Figure 4. A case with associated cardiac and brain malformations confirmed on iuMR imaging. 414 

Double outlet right ventricle with transposition of the great vessels and VSD had been diagnosed on 415 

USS and iuMR imaging of a fetal brain was performed at 33 weeks. Hypogenesis of the cerebellar 416 

vermis was demonstrated on the sagittal (4a) and coronal (4b) iuMR images. Bilateral cleft 417 

lip/palate was demonstrated (4c) and had also been diagnosed on USS. 418 

 419 

Figure 5. Post-natal MR imaging of a child with microcephaly, severe epilepsy and global devel-420 

opmental delay (6a-6d). There is an extensive bilateral cortical formation abnormality consisting of 421 

polymicrogyria and bilateral schizencephaly. A subsequent diagnosis of congenital infection by cy-422 

tomegalovirus was made. 423 

 424 

Figure 6. A case in which congenital CMV infection was made on iuMR imaging, with subsequent 425 

serological/histological confirmation. A fetus referred for iuMR imaging at 31 weeks gestation be-426 

cause of ventriculomegaly on USS. The iuMR imaging (5a-5c) confirmed ventriculomegaly but al-427 

so showed microcephaly, ventricular stranding and extensive bilateral polymicrogyria. The cortical 428 

formation abnormality is well shown on the model of the left lateral surface created from 3D vol-429 

ume data (5d) in comparison with an aged matched normal (5e). The brain volume was substantial-430 

ly reduced (5f).49 431 

 432 

Figure 7. Three cases of demise of a fetus in monochorionic pregnancies. 7a and 7b is a case of 433 

spontaneous twin demise at 20 weeks and the iuMR study performed at 23 weeks. The demised 434 

twin is on the right in both images. The surviving co-twin is micrencephaly from generalised en-435 
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cephalomalacia. 7c and 7d show the surviving co-twin after spontaneous twin demise at 17weeks 436 

and the iuMR study performed at 26 weeks. There is micrencephaly and bilateral brain injury in-437 

volving the territory supplied by middle cerebral artery on both sides. 7e and 7f are images of the 438 

surviving co-twin in a monochorionic pregnancy complicated by twin-twin transfusion syndrome. 439 

Laser ablation of the placental vessels was performed at 18 weeks and one twin died shortly after-440 

wards. The surviving co-twin had iuMR imaging at 25 weeks which evidence of a unilateral stroke 441 

with haemosiderin staining indicating previous haemorrhage. 442 

 443 

Figure 8. Post-natal imaging (12 weeks) of a co-twin survivor of a monochorionic pregnancy com-444 

plicated by twin-twin transfusion syndrome. There is loss of volume and abnormal cortex at the 445 

posterior part of the right sylvian fissure (8a and arrowed on 8b). 8c and 8d are non-orthogonal 446 

reformations of the sylvian fissures from T1 volume data showing the normal sylvian fissure on the 447 

left (8c) and the abnormal posterior extension of the sylvian fissure on the right lined by abnormal 448 

cortex (arrowed 8d). It is likely there was a focal infarction during the second trimester that has 449 

healed by reparative polymicrogyria.43,45 450 


