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Abstract 

A study was conducted to evaluate a waste rock powder collected from the Seaham quarry in 

New South Wales, Australia, as a source of potassium (K) in soil. The K supplying capacity 

of different size fractions of the mineral powder was evaluated by employing five chemical 

extractants as well as growing maize and holy basil in sand culture experiments. The K 

release by chemical extractants increased with decreasing particle size of the mineral powder. 

The amount of K released by different extractants followed the order :water <0.01 M calcium 

chloride <0.01 M citric acid<1 N ammonium acetate <1 N boiling nitric acid. The cumulative 

K release from the mineral powder in successive extraction procedure was recorded higher 

with organic and mineral acids, which suggested that the material was a slow release K 

source. A significant positive correlation was observed between K release by different 

chemical extractants and the biomass yield (r = 0.93; p<0.05) and K uptake(r = 0.96; p<0.05)  

by plants. Among the different chemical extractants, 1 N ammonium acetate and 1 N boiling 

HNO3 showed higher correlations (r = 0.91 and 0.96, respectively) with plant K uptake 

values. Both the chemical and biological methods were able to extract only a portion (12-

20%) of total K present in the mineral powder. The results indicated that the mineral powder 

could be used as a slow release K fertilizer in soils. Further studies in long term applications 

with exhaustive crops under field conditions are needed to assess its feasibility as a source of 

K in agriculture.  

 

Key words: Mineral powder, chemical extraction, potassium release, sand culture experiment, 

plant potassium uptake 
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1. Introduction 

Potassium (K) ranks third among the essential plant nutrients after nitrogen and phosphorus, 

and seventh among all the elements in the earth’s crust (Manning, 2010). Potassium makes 

2.6% of the earth’s crust, and it is the third most mineral element used as nutrients by plants 

after iron and calcium (Spark, 1987). Mineral K in rocks is found mainly in the silicates, 

which release into the soil through the process of continuous weathering (van Wilpert and 

Lukes, 2003). The reserves of K bearing minerals present in many countries are mostly of  

low-grade which are not suitable for production of commercial K fertilizers (Manning, 2010). 

In many parts of the world particularly South-East Asia, Africa and Latin America where 

agriculture contributes significantly to the overall economy of individual countires, the use of 

commercial K fertilizers is fully dependent on an import business which involves a huge 

foreign exchange (Basak et al., 2017).   

Worldwide potassium chloride (KCl) is the key source K fertilizer accounting the present 

annual demand of 31.04 million tones potash as K2O (FAO, 2015). The entire amount of 

commercial K fertilizer (KCl) is imported from overseas in the South-East Asian, African and 

Latin American countries. However, in certain cultivation systems, such as organic 

agriculture, the use of chemical fertilizers including KCl is not permitted (Codex 

Alimentarius Commission, 2007). Therefore, the supply of nutrients needs to come from 

alternative sources such as organic materials and rock mineral powders. Although the crushed 

rock materials which are mainly produced from mining industries still do not have definite 

uses, these products are becoming an alternative method of fertilization in various systems of 

agricultural production (Leonardos et al., 1987; Bolland and Baker, 2000; van Strateen, 2006; 

Theodoro and Leonardos, 2006; Basak and Biswas, 2009, 2010; Silva et al., 2013; Madaras et 

al., 2013; Mohammed et al., 2014). Scientists have taken initiative of investigating silicate 

rock materials as a source of plant nutrients. Pot trials have been conducted with maize (Zea 
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mays L.), Italian ryegrass (LoliummultiflorumL.), perennial ryegrass (LoliumperenneL.) and 

two alfalfa varities (Medicago sativa L.) using gneiss as the source of K (Wang et al., 2000). 

A consistent set of trials were also carried out in Western Australia, where granite was used 

in field trials on wheat, and pot trials on wheat, clover and ryegrass (Coroneos et al., 1996; 

Hinsinger et al., 1996; Bolland and Baker, 2000). Feldspars have been used in field trials with 

okra (Abdel-Mouty and El-Greadly, 2008), legumes (Sanz-Scovino and Rowell, 1988) and 

tomatoes (Badr, 2006). The okra and tomato yields increased with feldspars application. 

Sanz-Scovino and Rowell (1988) opined that the application of K feldspar might be 

beneficial as an alternative to KCl in Colombia. Therefore, application of rock mineral 

powders in agriculture might be a promising alternative to the conventional source of K for 

plant nutrition.  

The key mechanism through which plants are expected to solubilise K from rock powders is 

by producing various organic acids (Basak et al., 2017). The plant rhizosphere itself is a sink 

of a complex mixture of various organic acids (Jones, 1998). Rock solubilizing organic 

molecules can also be produced by microorganisms including bacteria, fungi and mycorrhiza 

that are present in soils (Sheng et al., 2008 ;Yousefi et al., 2011; Song et al., 2014). The 

microorganisms can give rise to a biofilm which can create congenial micro-environment for 

rock dissolution (Balogh-Brunstad et al., 2008). Organic molecules either secreted by plants 

or microorganisms can form metal-organic complexes that promote dissolution of the rock 

powder. Organic acids also supply protons that decreasethe pH of the system, which is 

needed for rock dissolutionin soils (Basak, et al., 2017).The dissolution reaction is expected 

to happen at a higher rate in the tropical climate (high temperature and rainfall) than the 

temperate region. 

In Australia, particularly in mining areas, a lot of waste rock powders are generated as a by-

product of mining activities. Recently these by-products in the major part of these regions are 
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considered as an environmental liability if left uncleared or unused. These rock mineral 

powders varied considerably in their composition and could be used as the sources of plant 

nutrients (Uren, 1976; Jenkins and Nethery, 1992). It would not only help the farmers in 

supplying plant nutrients at a very low investment, but also would be a valuable input in the 

organic farming sector (Codex Alimentarius Commission, 2007). However, only a limited 

information is available on K-supplying capacity  of these indigenous minerals from 

agricultural point of view. The role of different size fractions on the K release pattern for 

meeting plant demands is not also fully known. Overall, there is a lack of systematic studies 

to evaluate these materials as the source of K for plant nutrition. So, the aim of this study is to 

evaluate a waste rock mineral powder collected from a quarry located in New South Wales 

(NSW), Australia, for predicting its agronomic potential as a source of K through various 

laboratory and pot culture methods. 

 

2. Materials and methods 

2.1. Rock mineral powder  

A rock powder or mining by-product originates through  different processes in different 

regions. The alkaline volcanic rock (with high Na2O + K2O contents) is formed by fractional 

crystallization of a mafic parent magma (Jenkins and Nethery, 1992). Such a rock material 

was collected from the crushed waste of a mining quarry located at Seaham, New South 

Wales, Australia. The geographical location of the sampling site is 32
o
79′S,151o

63′E. The 

exact mineralogical composition of the rock was not known, but a preliminary powder X-ray 

diffraction analysis indicated  that the host rock was mainly composed of quartz, anorthite, 

albite, some K-feldspar, mica and chlorite (Supplementary Information; SI Fig. 1). The waste 

mineral sample from the Seaham quarry was selected for this study because it contained a 
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significantly higher K than other near by quarry samples (Hunter: 32
o66′S, 151

o
71′E) (Table 

1). 

 

2.2. Sample preparation  

The waste mineral powder was separated into four different size fractions: 10 ASTM (passed 

through 10 ASTM sieve but retained on 35 ASTM sieve), 35 ASTM (passed through 35 

ASTM sieve but retained on 60 ASTM sieve), 60 ASTM (passed through 60 ASTM sieve but 

retained on 100 ASTM sieve) and 100 ASTM (passed through 100 ASTM sieve) by using  a 

mechanical sieve shaker. The corresponding grain sizes of the four fractions were 2000, 500, 

250 and 150 µm, respectively. 

 

2.3. Total elemental analysis 

Total elemental contents of the rock mineral powder (150 µm) was determined by microwave 

assisted digestion of the material in aqua-regia (EPA, 1996, Method 3050B). Mineral sample 

(0.1 g) was digested in a teflon tube with 10 mL mixture of concentrated nitric acid and 

hydrochloric acid (3:1). The mixture was digested in a microwave digester (750 Watts at 500 

kPa for 30 min) (CEM5000, CEM Corporation USA). Elements of interest were analysed in 

the aliquot following flitration through 0.45 µm nylon filter and appropriate dilution. An 

inductively coupled plasma-mass spectrometer (ICP-MS) (Agilent 7700x ICP-MS, Agilent 

Technologies Inc., USA) was used for the analysis. 

 

2.4. Chemical extraction 

Potassium released from the four size fractions of the mineral powder was determined by 

using different extractants, namely water, 0.01 M calcium chloride (CaCl2), 0.01 M citric 

acid, neutral 1 N ammonium acetate (NH4OAc) and boiling 1N nitric acid (HNO3) as per the 
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standard procedure (Table 2). While mineral acids are well-known extractant of K from rock 

samples, several organic acids can also extract K efficiently (Song and Huang 1988). The 

plant rhizosphere itself is a sink of a complex mixture of various organic acids. The K 

extraction with multiple extractants in this study also enabled to examine which extractant 

would provide a good correlation with plant K uptake. K was extracted from 5.0 g mineral 

powder sample by shaking in an incubated shaker (30 ± 0.5 
o
C) by maintaining different 

mineral and extractant ratio and shaking time (Table 2). The successive K extraction was 

continued until K release from the mineral powder reached a certain minimum level, at which 

no further significant K release occurred. This level, was taken as the constant K release 

point. The K content in the solution was measured by a flame photometer (FP 6420, 

MesuLab, China). The summation of K release above the constant point in each extraction 

process was taken as the ‘step K’, whereas the summation of K release in the all the 

extraction processes was taken as the ‘cumulative K’. 

 

2.5. Potassium release kinetics 

Potassium release kinetics from the four different size fractions of mineral powder was 

studied by equilibrating 2.5 g of the material in 25 mL of 1 N NH4OAc solution shaking for 1 

h and equilibrating for 24 h at room temperature. These mineral suspensions were then 

centrifuged (Sigma 4-16; Model:10490) at a speed of 10,000 rpm for 5 min. The K content in 

the clear supernatant was determined by a flame photometer (FP 6420, MesuLab, China). The 

sediment which was left in the centrifuge tube was again extracted with a fresh lot of 25 mL 

of 1 N NH4OAc solution, and the whole process was repeated up to a total of 14 times. To 

compute the rate of release of K from the mineral powder as a function of time, the data were 

fitted into different mathematical models including zero-order, first-order, Elovich and 

parabolic diffusion equations (Supplementary Information; SI Table 1). The best-fitted 
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kinetic model was selected from the correlation coefficient (r value; p≤0.05)  and standard 

error of estimate (SE) value, which were computed for the four models in case of each of the 

materials. The release rate constant/slope and intercept values were calculated from the best 

fitted model. The constants of each model reperesented the intercept and slope of the curves 

which were calculated by ploting K release versus time. 

 

2.6. Biological method  

To examine K uptake from different size fractions of mineral powder, a sand culture 

experiment was conducted in plastic pots by growing maize (Zea maize) and holy basil 

(Ocimum sanctum) as the test crops under natural condition in a greenhouse of the University 

of Newcastle, Newcastle (32
o53′39″S latitude and 151

o42′59″E longitude) in Australia, at an 

altitude of 21 m above sea level. The experiment was conducted in late spring season 

(October –November 2015) with a monthly maximum and minimum temperature 30
o
C and 

18
o
C, respectively, average relative humidity 74% and average rainfall of 90 mm. Five 

treatments (four size fractions of rock mineral powder (RMP) + control) were taken in acid 

washed sand by keeping the sand and mineral powder in the ratio of 2:1 (80 g sand + 40 g 

RMP) in 10 cm × 4 cm plastic pots. Maize and holy basil seeds from Bunnings Warehouse, 

garden store, Newcastle, Australia were sown in the pots, placed in completely randomized 

design and ultimately 5 plants were maintained in each pot. The K contents in maize and 

basil seeds were 0.51 and 0.44%, respectively. The plants were irrigated with K free 

Hoagland solution on each alternative day to maintain an optimum moisture level throughout 

the growth period. The whole plants were uprooted at the optimum vegetative growth stage 

(45 days after sowing) and the biomass yield (root + shoot) was recorded after drying the 

samples at 65±1
o
C in a hot air oven for 24h. The plant samples were ground to powder using 

a Wiley mill (5-mm size), and digested using a di-acid mixture containing HNO3 and 
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HClO4[9:4 (v/v)] (Piper, 1967). The concentration of K in the acid digest was determined by 

flame photometry (FP 6420, MesuLab, China), and micronutrients in the acid digest were 

determined by an atomic absorption spectophotometer (AA 7000, Labindia Instruments Pvt. 

Ltd., India) against standard elemental solution provided by the National Institute of 

Standards and Technology (NIST) (purchased from Merck Millipore, Mumbai, India). The 

total K uptake was computed on plant dry matter yield basis. 

 

2.7. Data analysis 

The laboratory and pot experiments were carried out with three replications for each 

treatment. The data were subjected to analysis of variance (ANOVA) appropriate to the 

experimental design (Completely Randomized Design). The least square difference (LSD at 

P=0.05) was computed and Duncan’s multiple range test (Duncan, 1955) was used to 

compare the treatment means in the pot experiment. For  data calculation, tabulation and 

graphical representations, the SPSS 20.0 and Microsoft Excel software packages were used.  

 

3. Results and discussion 

3.1. Potassium release by different extractants 

The studied rock mineral powder contained about 15 g kg
-1

 of total K as obtained in the 

microwave assisted aqua-regia digestion method (Table 1). The K content in the mineral 

sample was also confirmed by the mineralogical composition (e.g., mica, K-feldspar) of the 

sample (Supplementary Information; SI Fig. 1). The amount of K released by the different 

extractants from four different size fractions of the mineral powder is presented in Table 3. 

The data revealed that K release increased with the increase in the fineness of the material 

while the magnitude of such increase differed among the extractants. The lowest K release 

(5.03 to 7.06 mg kg
-1

) was recorded by distilled water, while the highest K release (118.2 to 
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310.7 mg kg
-1

) was recorded by boiling 1 N HNO3 solution irrespective of particle sizes. The 

amount of K release by different extractants followed the order: water <0.01 M calcium 

chloride < 0.01 M citric acid <1 N ammonium acetate (NH4OAc) < 1 N boiling nitric acid. A 

portion of the readily available form of K, which was present on the mineral surface, was 

extracted in water. The salt solution (CaCl2 and NH4OAc) was able to release the remaining 

portion of the available K by exchanging with cations present at the surface and wedge zone 

of the mineral. Citric acid having -OH and -COOH functional groups in ortho-position was 

liable to form metal-organic complexes in the solution with the metal ions present in the 

mineral structure (Kononova et al., 1964; Manley and Evans, 1986; Banfield et al., 1999; Zhu 

et al., 2014), and thus induced dissolution of the mineral (Huang and Kiang, 1972; Wang et 

al., 2000; Li et al., 2006). The formation of inner sphere surface complexes with organic 

acids would be  responsible for weakening the metal-O bonds by the protonation of surface -

OH groups. A higher release of K by the organic acid with increasing fineness of mineral 

particles might be due to an enhanced activity of the complexation process. A further larger 

amount of K release by a stronger mineral acid (HNO3) indicated a significant mineral 

dissolution induced by the mineral acid. A higher K solubility from the finer fraction of the 

mineral powder was due to the larger surface area of the material exposed for the dissolution 

reaction. 

 

3.2. Potassium release characteristics 

The release of K from the four size fractions of the mineral powder continued in 14 

successive extractions with water, 0.01 M CaCl2, 1 N NH4OAc, 0.01 M citric acid and 1 N 

boiling HNO3 (Fig. 1), but in last two extractions there was no significant change in K 

release. The water soluble K release decreased gradually from 7.06 to 0.09 mg kg
-1 

in the 

finest size fraction (100 ASTM) and from 5.03 to 0.05 mg kg
-1

 in the largest size fraction (10 
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ASTM). The readily available K release by 0.01 M CaCl2 was slightly higher than water and 

decreased gradually from the finer fraction to the coarser fraction. Similarly, 1 N NH4OAc 

was a stronger extractant than 0.01 M CaCl2, and the former also represented the 

exchangeable K. As a result, the K release by 1 N NH4OAc was significantly higher (49.5%) 

than that by 0.01 M CaCl2. There was a sharp decrease in the K release by water, 0.01 M 

CaCl2 and 1 N NH4OAc until the  third extraction event and there after it decreased gradually. 

The K released by 0.01 M citric acid was slightly lower than 1 N NH4OAc. However, unlike 

1 N NH4OAc, the  release by citric acid was gradually decreased over the successive 

extraction events. The K release from mineral fractions by the strong mineral acid (i.e., 1 N 

boiling HNO3) was found much greater than the other extractants. The gradual decrease in K 

release in 1 N boiling HNO3 might be due to the continuous dissolution of minerals with 

successive extraction. The mineral structure is liable to get attacked by strong mineral acids 

by the substitution of K
+
 with H

+
 in the partially opened layers, thereby releasing K from the 

interlayer position (Datta and Sastry, 1995; Moritsuka et al., 2004).  

The step K (reserve K) and cumulative K amounts were computed from the data obtained in 

consecutive K extraction events by different extractants (Table 4). The step K varied from 9.9 

to 13.15 mg kg
-1

 in water, from 13.72 to 26.95 mg kg
-1

 in 0.01 M CaCl2, from 26.35 to 55.63 

mg kg
-1 

in 1 N NH4OAc, from 42.77 to 67.01 mg kg
-1

 in 0.01 M citric acid and from 497.9 to 

935.6 mg kg
-1

 in 1 N boiling HNO3. In all the cases, the step K level increased with an 

increase in the fineness of the particles. The highest cumulative K release by the mineral acid 

was recorded as 654.2 to 1185.4 mg kg
-1

 which was many fold higher than other extractants. 

The considerably higher extraction of K by the mineral acid might be due to the reaction of 

the acid with the alumino-silicate network and possible dissolution of K into the solution 

(Badraoui, 1992; Srinivasarao et al., 2006). 
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3.3. Potassium release kinetics  

The cumulative K release from the rock mineral powder in 1 N NH4OAc solution was fitted 

into different mathematical expressions including zero-order, first-order, Elovich and 

parabolic diffusion models (Supplementary Information; SI Table 1). The highest value of 

correlation coeffcient (r) and lowest value of standard error of estimate (SE) considered as the 

best fitted model. The first order kinetic equation was found to be the best for explaining K 

release data as evidenced by higher correration coeffients (r = 0.97; p≤0.05) and lower 

standard error of estimate (SE = 0.07) (Supplementary Information; SI Table 2). The fitting 

of the first order kinetic equation indicated that the release of K from the mineral powder was 

dependent on the concentration gradient of K. The K release rate constants and intercept 

values, which were calculated for the first order kinetic model, are presented in Table 5. Both 

the intercept and slope values showed an increasing trend with the increase in the fineness of 

the mineral particles possibly due to the higher exchange sites present in the finer fraction 

material. The rate of K release from mineral fractions decreased with continueous release of 

interlayer K due to increasing distance for subsequent K diffusion (Rahmatullah and Mengel, 

2000). This result is in good agreement with the finding of Song and Huang (1988) and 

Basak and Biswas (2009) in case of K bearing minerals. However, diffusion of inos can be 

influenced by many factors such as distance, tortuosity, water content and changes in reactive 

mineral sufaces with time. In contrast to laboratory experiments, continuous stirring or 

flashing might not be present in the natural environment, but all other conditions are expected 

to exist in the plant rhizosphere both in laboratory and field experiments (Zhu et al., 2014).    

 

3.4. Potassium release by plant intervention 

Application of different size fractions of the mineral powder was found effective in 

increasing the biomass yield and K uptake by both the maize and holy basil plants under sand 
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culture experiments (Table 6). The response of mineral powder application on the biomass 

yield was significantly higher with the finer fraction of the material than the coarser one. The 

K content in the plants increased from 0.89 to 1.63% and 0.91 to 1.84% in holy basil and 

maize, respectively, due to the application of the mineral powder. The total K uptake by 

maize increased from 46.42 to 85.09 mg kg
-1

 in case of the coarser fraction material (10 

ASTM) and to 146.85 mg kg
-1 

in case of the finer fraction material (100 ASTM). Similar 

results were observed in holy basil plants also, but K recovery from the mineral powder was 

more with maize (20%) than holy basil (6.5%). The content of other elements including trace 

elements increased significantly in both the plants when grown in finer fraction of the mineral 

powder (Table 7). However, the micronutrient contents were within the permissible limits of 

these elements in agricultural crops (Gough et al., 1979; Nagajyoti et al., 2010), and thus did 

not pose any risk of heavy metal toxicity. The improvement in biomass yields, plant K 

contents and uptake indicated that the rock mineral powder acted as a source of K. The K 

utilization from different size fractions of the mineral powder could be attributed to the 

prevalence of the acidic environment in the rhizosphere (pH = 6.1 and 6.3 in case of maize 

and holy basil, respectively, in 1:2.5 soil:water ratio at plant harvest), which was created by 

the release of organic acids during the plant growth. Root exudation of sugar, amino acids 

and organic acids by maize and holy basil plants grown under nutrient defficient conditions 

(Carvalhais et al., 2011; Shukla et al., 2013) might have played an important role in nutrient 

release from the rock mineral powder. Experiments conducted with other plants and silicate 

minerals (Hinsinger et al. 1996; Bolland and Baker, 2000; Harley and Gilkes, 2000) also 

support the outcome of the present study. The remarkable difference in K uptake between the 

smallest and largest particle size fractions may be due to the complex intractions of mineral 

surfaces occurring within the biogeochemical zone of plant rhizosphere (Wang et al., 2011). 
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Plants might have more access of K from the smaller mineral particles due to a higher surface 

area exposed to the biogeochemical zone of the rhizosphere (Harley and Gilkes, 2000).  

 

Data on Pearson’s correlation matrix, indicated that K release by different extractants was 

significantly and positively correlated (r = 0.73-0.96; p ≤ 0.05) with plant biomass yield and 

K uptake (average of maize and holy basil) in the sand culture experiment (Table 8). 

Potassium released by 1 N NH4OAc and 1 N boiling HNO3 showed higher correlation 

coefficients (r value) as compared to other extractants. Initially the K demand of plants would 

meet up with the readily available K and then the non-exchangeable K in later stage, which 

could be the reason of the higher r value with these two K forms (Hinsinger and Jaillard, 

1993; Hinsinger et al., 1993; Wang et al., 2011 ). Highly significant r values were also 

obtained between the K uptake in plants and the extractable K in various extractants. The 

magnitude of r values between K uptake and different forms of K was higher as compared to 

that of the dry matter yield, which indicated that the forms of K present in the mineral 

fractions determined the K uptake by plants. The present results corroborate the findings of 

other workers (Hinsinger et al., 1996; Harley and Gilkes, 2000) where mineral materials 

contained a higher amount of available K (water soluble and exchangeable) and resulted in a 

greater plant uptake. 

  

4. Conclusions 

This study indicates that only a fraction of the total K in the rock mineral powder was 

released by chemical extraction processes which are commonly used for soil K estimation. 

However, the amount of K release was significantly higher with organic and mineral acid 

extractants suggesting that the mineral powder could act as a slow release K source. The K 

uptake values in sand culture experiments also indicated a partial mobilisation of K from the 
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mineral powder by maize and holy basil plants. A significant positive correlation between K 

uptake by plants and K release by different chemical extractants indicated that the 

rhizosphere might accelarate the K release from mineral powder for an increased plant 

uptake. Both the chemical and biological methods were able to extract about 12-20% of total 

K present in the mineral powder. A further understanding of the underlying biogeochemical 

processes is needed so that mineral materials and conditions can be modified to achieve 

desired agronomic effectiveness. Further greenhouse trials with K exhaustive crops as well as 

long-term cropping studies under field conditions are needed to assess the quantitative K 

supply behaviors of the rock mineral powder in order to support sustainable agricultural 

production.  
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Tables  

Table 1: Total elemental contents of rock mineral powder extracted by microwave assisted 

digestion in aqua-regia and analyzed by ICP-MS (mean ± standard deviation, n = 3) 

 

  

 

 

 

 

 

 

 

 

 

 

 

Element  Content (g kg
-1

) 

Al 7.32 (± 0.201) 

Ca 8.92 (± 0.233) 

Cu 0.01 (±0.003) 

Fe 11.53 (±0.457) 

K 15.39 (±0.080) 

Mg 3.54 (±0.096) 

Mn 0.42 (±0.016) 

Na 1.29 (±0.111) 

P 0.18 (±0.059) 

Si 0.59(±0.102) 

Zn 0.05(±0.007) 
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Table 2: Different extraction procedures for evaluating the release of potassium from rock 

mineral powder 

Extractants Mineral-extractant 

ratio (w/v) 

Equilibration time 

(min) 

Reference  

Distilled water  1:2.5 30 Jackson, 1979 

0.01 M Calcium 

Chloride (CaCl2) 

1:5 30 Woodruff and 

McIntosh, 1960 

1 N Ammonium acetate 

(NH4OAc) 

1:5 5 Hanway and Heidel, 

1952 

0.01 M Citric acid  1:5 30 Zhu and Luo, 1993 

Boiling 1 N Nitric acid 

(HNO3)  

1:10 15 Wood and DeTurk, 

1940 
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Table 3: Amount of potassium released (mg kg
-1

) by different extractants from the rock 

mineral powder (n = 3) 

Extractable K Particle size (ASTM) 

 10 35 60 100 

Water soluble K 5.03 (0.32)
*
 5.97 (0.36) 6.30 (0.35) 7.06 (0.32) 

0.01 M Calcium chloride K 7.94 (1.18) 8.41 (1.17) 12.79 (2.10) 16.84 (1.88) 

1 N Ammonium acetate K 18.70 (2.44) 22.67 (3.93) 28.43 (2.94) 40.39 (3.04) 

0.01 M Citric acid K 15.66 (2.20) 16.97 (2.56) 23.68 (2.48) 29.93 (3.04) 

Boiling 1 N Nitric acid K 118.20 (5.27) 150.8 (6.64) 214.7 (5.98) 310.7 (6.89) 

 

*
Values in the parentheses indicate standard deviation (SD). 
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Table 4: Step K and cumulative K from four size fractions of rock mineral powder under 

different chemical extractions (n = 3)  

Size fraction(ASTM) Step K (mg kg
-1

) Cumulative K (mg kg
-1

) 

 Water 

10 9.90 (0.91)
*
 10.38 (0.96) 

35 11.15 (1.15) 12.35 (1.12) 

60 11.88 (1.43) 12.42 (1.66) 

100 13.15 (2.15) 13.81 (2.23) 

 0.01 M CaCl2 

10 13.72 (1.23) 14.10 (1.33) 

35 15.69 (1.81) 16.23 (2.11) 

60 21.70 (2.55) 22.29 (2.41) 

100 26.95 (2.89) 27.60 (2.93) 

 1 N NH4OAc 

10 26.35 (2.85) 27.76 (2.72) 

35 31.43 (3.27) 32.99 (3.25) 

60 39.06 (3.61) 40.83 (3.81) 

100 55.63 (4.18) 57.56 (4.33) 

 0.01 M Citric acid 

10 42.77 (3.54) 44.76 (3.52) 

35 46.66 (4.12) 49.31 (4.42) 

60 55.77 (4.87) 58.74 (5.77) 

100 67.01 (5.32) 70.46 (6.31) 

 1 N boiling HNO3 

10 497.9 (26.3) 654.20 (36.3) 

35 639.80 (42.6) 830.70 (45.70) 

60 859.90 (43.9) 1070.70 (57.30) 
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100 935.60 (52.7) 1185.40 (62.40) 

 

*
Values in the parentheses indicate standard deviation (SD). 
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Table 5: Potassium release rate constants (slope) and intercept values for different size 

fractions of rock mineral powder fitted in to first-order equation (1 N NH4OAc medium) 

Size of the mineral fraction First–order equation parameters 

 Slope × 10
-2

 (h
-1

) Intercept (mg kg
-1

) 

10 ASTM 8.91 2.83 

35 ASTM 8.93 2.92 

60 ASTM 8.97 3.12 

100 ASTM 9.11 3.43 
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Table 6: Biomass yield, K content and uptake by maize and holy basil plants as influenced by different size fractions of rock mineral powder in 

sand culture experiments 

Size fraction Maize  Holy basil 

Biomass yield 

(g pot
-1

) 

K content (%) K uptake 

(mg pot
-1

) 

% K release  Biomass yield 

(g pot
-1

) 

K content (%) K uptake 

(mg pot
-1

) 

% K release 

Control 5.12 0.91 46.4 -  1.53 0.89 13.6 - 

10 ASTM 5.97 1.42 85.1 11.62  1.77 1.12 20.1 2.74 

35 ASTM 6.77 1.66 112.3 15.34  1.79 1.23 21.8 2.97 

60 ASTM 7.15 1.73 123.6 16.89  2.66 1.42 37.8 5.16 

100 ASTM 7.89 1.84 146.9 20.02  2.93 1.63 47.7 6.52 

CD
*
 0.25 0.17 11.4 -  0.17 0.09 4.4 - 

 

*
CD: critical difference. 
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Table 7: Silicon (Si), aluminium (Al) and micronutrient (Zn, Cu, Fe and Mn) contents in 

maize and holy basil plants as influenced by different size fraction of the rock mineral 

powder in sand culture experiments 

Elements Treatments (size fractions) LSD (= 0.01) 

 Control 10 ASTM 35 ASTM 60 ASTM 100 ASTM  

Maize       

Si (%) 0.44 0.45 0.47 0.48 0.53 0.011 

Al (mg kg
-1

) 49.1 57.6 63.5 66.2 68.3 1.41 

Zn (mg kg
-1

) 22.8 24.5 25.1 26.3 28.1 1.21 

Cu (mg kg
-1

) 3.1 4.1 4.4 4.6 5.0 0.33 

Fe (mg kg
-1

) 162.0 187.3 193.1 212.7 228.1 5.52 

Mn (mg kg
-1

) 30.4 31.0 31.4 32.1 32.9 3.14 

Holy basil       

Si (%) 0.14 0.13 0.17 0.18 0.21 0.007 

Al (mg kg
-1

) 28.7 31.2 36.4 37.5 39.6 1.59 

Zn (mg kg
-1

) 25.9 28.6 36.8 42.2 44.3 2.28 

Cu (mg kg
-1

) 13.1 13.7 15.6 16.9 18.9 1.71 

Fe (mg kg
-1

) 202.9 205.1 213.7 227.5 233.1 7.67 

Mn (mg kg
-1

) 71.7 73.2 74.4 77.5 78.5 4.63 
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Table 8: Correlation coefficients(r value; p≤0.05) between different forms of K and biomass 

yield and K uptake by plants (average of maize and holy basil) (n = 12) 

K extractant Biomass yield K uptake 

Water soluble  0.87 0.89 

0.01 M Calcium chloride  0.84 0.87 

1 N Ammonium acetate  0.90 0.91 

0.01 M Citric acid 0.66 0.73 

1 N boiling nitric acid 0.93 0.96 
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Figure 

 

 

 

Fig. 1: Potassium released (mg kg
-1

) from waste mineral powder in 12 consecutive 

extractions in water, 0.01 M CaCl2, 1 N NH4OAc, 0.01 M  citric acid and 1 N HNO3. 
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Graphical abstract 
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Highlights  

 Potassium (K) supplying potential of waste mineral powder was assessed  

 Both chemical and biological methods were used for studying the K release  

 K-release increased with decreasing particle size of the mineral powder 

 Positive correlation was observed between chemical and biological K-release 

 Only a portion (12-20%) of total K was released from the mineral powder  
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