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Abstract: Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as
heart and respiration rates of a human subject is getting more and more attention. However,
the related detection-method research meets lots of challenges due to electromagnetic interferences,
clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC)
detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed
to investigate the heart and respiration rate based on continuous wave Doppler radars. The k-th
order cyclostationary properties of the radar signal with hidden periodicities and random motions
are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate
is studied. Experimental results show that the third-order cyclostationary approach has better
estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong
clutter noise and random motion interferences.

Keywords: vital signs; signal processing; heart and respiration rate; higher order cyclostationary;
Doppler radar

1. Introduction

Due to the non-contact nature, vital signs monitoring systems using radar sensors have been
introduced in a wide range of applications, such as search and rescue operations, security and health
care [1–3]. This technology is able to remotely monitor vital signs of a human subject by analyzing
received radar signals. The concepts and advantages of non-contact vital signs detection have been
demonstrated by pioneers [4,5]. The use of radar systems for the detection vital signs can be dated
back to the 1970s [4]. Subsequent work in this area main focuses on improving the performance
of detection method. In order to estimate the heart rate, a novel detection method, based on the
continuous wavelet transform (CWT), was proposed to process the Doppler radar signal [6]. However,
the method has limited resolution in both time and frequency and depends on fixed basis functions.
While a time-window variation technique [7] guarantees a sufficient frequency spectrum resolution
for the heart rate measurement, it is difficult to estimate the respiration rate simultaneously due to
the respiration harmonic interference. The software for automated detection was demonstrated by
adaptive cancellation of respiration harmonics [8]. But this method requires a priori knowledge of
the basis frequency of the respiration signal. Empirical mode decomposition (EMD) decomposes
adaptively a signal into a set of AM/FM components termed as intrinsic mode functions (IMFs)
without the prior knowledge [9]. Accordingly, EMD-based Doppler radar data analysis has been
successfully applied in heart and respiration rates detection of human subject [10,11]. However,
the use of cubic splines and Hilbert transform in EMD process results in negative frequencies and
a loss of amplitude and frequency information [12], and the decomposed results are affected by the
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harmonics of the respiration and heart. By using multiple higher order cumulants to reduce the
affection of harmonics, the heart and respiration rates were estimated for the ultrawideband (UWB)
radar signal [13]. However, the estimation accuracy is significantly degrade due to strong clutters and
random body movements.

Recent years, the phase compensation method was also been explored to suppress random
body movements [14]. In order to solve the null point and nonlinear issues in small-angle
approximation-based Doppler radar sensors and eliminate the codomain restriction in the arctangent
demodulation approach, an extended differentiate and crossmultiply (DACM) algorithm was
proposed [15]. Based on stepped-frequency continuous wave radar, a spectrum analysis method [16]
and a state space method [17] were applied to detect cardiac and respiratory rates, and much interest
has been paid to using a single-continuous wave Doppler radar to detect heartbeat and respiration
rates [18,19]. In order to enhance the accuracy of the heart rate estimation in strong clutter noise,
a phase-based methods was proposed by using UWB impulse Doppler radar [20]. While the accuracy
of the heart and respiration rates have been improved for relatively stationary and isolated subjects by
applying the above methods, it is still a main challenge to obtain reliable data in the presence of human
random body motion and other moving objects around. Based on the periodic chest displacement due
to the periodic heartbeat and breathing, and the nonperiodic random subject motion,a second-order
cyclostationary model [21,22] was successfully applied in the heart and respiration rates detection
field. However, the second-order cyclostationary method is invalid for output signal that is usually
proportional to the periodic chest displacement summed [23]. As with most of the proposed detection
methods [14,15,17–20], this method is only available for complex signal demodulation (CSD). While
CSD solves the null point problem, it generates harmonics [7].

Over the past few decades, lots of successful non-contact detection methods for the heart
and respiration rates based on different conditions have been proposed. From the point of view
of the radars, these methods can be roughly divided into three categories: UWB radar detection
method [6,13,14,20], continuous-wave (CW) Doppler radar detection method [8,10,11,15,19,21,22],
and frequency-modulated continuous-wave (FMCW) radar detection method [16,17]. Compare to
UWB radar and FMCW radar, CW Doppler radar has drawn more research interests due to the
advantages of low power consumption, large detection range and simple radio architecture [18].
Because of different hardware architectures, the detection performances of different radars are
different. Meanwhile, the proposed signal processing method often focuses on a particular issue
under a particular condition. Therefore, these proposed detection methods have their own advantages
and shortcomings. Although non-contact vital sign measurement has been studied for many years and
lots of successful methods have been reported, the impacts of random subject movement, harmonic
interferences and clutter noise are still challenging issues in non-contact vital signs detection field.

In this paper, we propose a higher order cyclostationary (HOCS) approach to detect the heart
and respiration rate based on CW Doppler radar. The received radar signals includes harmonic
interferences, random subject movements and clutter noise. The heart and respiration signals can be
modeled as a cyclostationary process or almost cyclostationary process [21,22]. The received radar
signal usually has a cyclic pattern with statistical properties. Cyclostationary theory can also be
used to analyze the signals with hidden periodicities by its cyclic statistics properties. Therefore,
the cyclostationary theory is one of the most suitable methods. According to the cyclostationary theory,
HOCS of any Gaussian signal are zero theoretically, as a result in the new method is insensitive to
Gaussian interferes (Gaussian noise and Gaussian clutter) [24,25]. For non-cyclic signal, HOCS has
still the insensitive property when the cyclic frequency value is non-zero.

We mainly focus on the theoretical and experimental vital sign detection analysis based on the
third-order cyclostationary method. We proved the third-order cyclic cummulant (TOCC) is applicable
to detect the heart and respiration rates in the Doppler radar vital sign monitoring system. In order to
verify the detecting performances of the proposed method, a series experiments in different situations
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(Gaussian noise, subject movement interferences, holding breath, changing the distance between the
surface of antenna and the human chest) are carried out.

2. Materials and Methods

2.1. Doppler Radar Vital Sign Model

In signal processing of Doppler radar vital signs monitoring system, the received signal contains
a frequency shift proportional to the target speed (Doppler Effect). Suppose the detected target is
human thorax, Doppler echo signal includes possible the respiration and heartbeat information due to
the chest motion caused by respiration and heartbeat. The respiration frequency is usually in the range
0.1–0.8 Hz and the heartbeat frequency in the range 0.8–2 Hz [3].

Given CW Doppler radar system that transmits a single tone signal at frequency f. Neglecting
amplitude variations, the transmitted signal can be expressed as [3]

s(t) = cos(2π f t + φ(t)) (1)

where φ(t) is phase noise of the oscillator. This signal is reflected from the human subject at a distance
d, with a time-varying displacement given by x(t).The reflected signal is amplitude and frequency
modulated by motion of object, and x(t) << d . Neglecting amplitude variations, initial phase offset
and noise, the received signal R(t) can be obtained as [23]

R(t) = cos[2π f t− 4πd
λ
− 4πx(t)

λ
+ φ(t− 2d

c
)] (2)

where λ is wavelength, c denotes the velocity of light. According to Doppler Effect, the received
signal is modulated by the periodic motion of the target. The periodic target motion information
can be demodulated if this signal is multiplied by a local oscillator signal that is derived from the
same source as the transmitted signal [23]. Therefore, when Doppler radar use the same oscillator for
the transmitter and local oscillator, and the received R(t) and local oscillator signals are mixed, the
baseband output signal of the monitoring system can be expressed as [23]

B(t) = cos(θ +
4πx(t)

λ
+ ∆φ(t)) (3)

where
θ =

4πd
λ

+ θ0

is the constant phase shift and ∆φ(t) is the residual phase noise, and it can be computed as

∆φ(t) = φ(t)− φ(t− 2d
c
).

Based on the Doppler Effect, the radio frequency wave reflected from the surface of the subjects
chest undergoes two main phase shifts proportional to the surface displacement due to heartbeat and
respiration affect chest periodic motions. The quasi-periodic motions can be modeled as [13,18,22]

x(t) = ar cos(2π frt) + ah cos(2π fht) (4)

where ar and ah are related to the vibration amplitude of respiration and heartbeat, respectively, and fr

and fh correspond to frequencies of respiration and heartbeat, respectively.
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The motion-modulated signal reflected from the random subject movement can be modeled as
a one-dimensional random process with uniform distribution in the specified interval [21]. Consider
the receiver noise, by introducing (4) into (3), the baseband output can be expressed as

B(t) = A cos
{

θ + Ar cos(2π frt) + Ah cos(2π fht) +
4πxI(t)

λ
+ ∆φ(t)

}
+ N(t) (5)

where
Ar =

4π

λ
ar, Ah =

4π

λ
ah,

xI(t) and N(t) denote the random subject movement and the receiver noise, respectively, and these
signals are assumed real and mutually independent. In complex number space, we rewritten (5) as

B(t) = Aexp
{

j[θ + Ar cos(2π frt) + Ah cos(2π fht) +
4πxI(t)

λ
+ ∆φ(t)]

}
+ NZ(t). (6)

Equation (6) can be re-expressed in (7) based on Bessel series properties:

B(t) = A
∞

∑
n=−∞

∞

∑
m=−∞

Jn(Ar)Jm(Ah)exp
{

j[2nπ frt + 2mπ fht +
4πxI(t)

λ
+ C + ∆φ(t)]

}
+ NZ(t) (7)

where C and NZ(t) indicate the dc value and complex noise, respectively.
We re-rewrite (7) as

B(t) = DI(t)
∞

∑
n=−∞

∞

∑
m=−∞

Jn(Ar)Jm(Ah)exp[j(2nπ frt + 2mπ fht)] + NZ(t) (8)

where
D = Aexp(jC)

and
I(t) = exp[j

4π

λ
xI(t)]exp[j∆φ(t)].

By referring to literature [21], the Fourier spectrum of (8) can be obtained as

SB( f ) = DI( f )
∞

∑
n=−∞

∞

∑
m=−∞

Jn(Ar)Jm(Ah)delta[ f − (n fr + m fh)] + NZ( f ). (9)

From (9), the discrete spectrum of baseband output signal consists of respiration frequency fr, heartbeat
frequency fh and all sums and differences of their harmonics.

2.2. Cyclostationary Detection Theory

One of the goals, for detecting vital signs by using Doppler radar, is to estimate heart and
respiration rates from the received radar signal. According to the above analysis, the received radar
signal exhibits cyclostationarity. Therefore,in this Section, we propose a novel vital sign detection
method based on third-order cyclostationary analysis for the Doppler radar vital sign signal model.

The time varying k-th order moment of a cyclostationary sign s(t) can be defined as [25,26]

mks(t; τ) = E{s(t)s∗(t + τ1) · · · s∗(t + τk−1)}

where ∗ denotes an optional conjugation.The time-varying k-th order moments can be further expressed
in terms of its lag-dependent Fourier coefficients as

mks(t; τ) = ∑
α

Mks(α; τ)e−jαt
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where α is a cycle frequency and the Fourier coefficients Mks(α; τ) is the k-th order cyclic moments and
it satisfy [26]

Mks(α; τ) = lim
T→∞

T−1

∑
t=0

mks(t; τ)e−jαt (10)

where T is the average length of time. Similarly, the k-th order cyclic cumulant Cks(β; τ) is also the
Fourier coefficients of the time-varying k-th order cumulant cks(t; τ) can be represented as

Cks(β; τ) = lim
T→∞

1
T

T−1

∑
t=0

cks(t; τ)e−jβt (11)

where
cks(t; τ) = ∑

β

Cks(β; τ)e−jβt.

The conversion relations between the cyclic moments and the cyclic cumulants found in the
higher order statistics theory can be expressed as follow in [24,26]

Cs(β; τ)k = ∑
Dk

[(−1)p−1(p− 1)! ∑
αT1=β

p

∏
j=1

Ms(αj; τuj)kj
] (12)

where Dk denotes the distinct partitions of the index set{1, 2, ..., k}, p is the number of elements
in a partition, and the set of indices belonging to a partition is indicated by uj j ∈ 1, 2, ..., p,
and α = [α1...αp]T whose entries sum to β and satisfy Ms(αj; τuj)kj

6= 0 for j = 1, 2, ..., p. Then
given the cyclic moments of a signal, one can use (12) to compute its corresponding cyclic cumulants.

From (10)–(12), for a zero mean value signal s(t), the second cyclic cumulant and the third-order
cyclic cumulant (TOCC) are both equivalent to their respective moments. Therefore, we have

C2s(α; τ) = M2s(α; τ) (13a)

C3s(α; τ) = M3s(α; τ). (13b)

The Fourier transform of (13) can be expressed as

S2s(α; f ) = ∑
τ

C2s(α; τ)e−j2π f τ (14a)

S3s(α; f ) = ∑
τ

C3s(α; τ)e−j2π f τ . (14b)

According to (8), the discrete Spectral Correlation Function (SCF) of the second-order
cyclostationary of the received radar signal can be expressed as follow in [21].

S2B(α; f ) = A2<I( f )
∞

∑
n=−∞

∞

∑
m=−∞

∞

∑
k=−∞

∞

∑
l=−∞

∑
τ

Jn(Ar)Jm(Ah)Jk(Ar)Jl(Ah)e−j2π(k fr+l fh+ f )τ

× δ{α− [(n− k) fr + (m− l) fh]}+ C2NZ( f )

(15)

where <I( f ) function indicates the Fourier transform of the subject random motion and phase noise,
the terms of C2NZ( f ) which is SCF of NZ(τ). Accordingly, the heart and respiration rate were estimated
by the received Doppler radar signal in [21]. However, when τ = τ0, n = k and m = l in (15),
S2B(α; f ) = 0 at α 6= 0. This suggested that heart and respiration rate may not be obtained by using the
second order cyclostationary approach when the received radar signal includes only the first harmonic.
In Figure 1, we depict one realization of the second-order cyclostationary signal B(t) in (8) for a carrier
frequency of 2.4 GHz,where the ah, ar, fh and fr values in this example are assumed as 0.06 cm, 0.15 cm,



Sensors 2018, 18, 47 6 of 20

1.4 Hz and 0.3 Hz, respectively. As shown in Figure 1, there is no visible peak along the cyclic frequency
axis when α 6= 0.

−2

0

2

−100

0

100
0

0.5

1

Cyclic frequency(alpha)

Cyclic spectrum 3D

Frequency(f)

Figure 1. Spectral correlation function (SCF) of the second-order cyclostationary signal B(t) in (8),
where noise and subject movement interferences are ignored.

Using (8), (11) and (13), the third-order cyclic cumulant of B(t) can be computed as

C3s(α; τ) = M3s(α; τ)

= lim
T→∞

1
T

T−1

∑
t=0

B(t)B(t + τ1)B∗(t + τ2)e−j2παt

= lim
T→∞

1
T

T−1

∑
t=0

D3C3I(τ)

×
∞

∑
n=−∞

∞

∑
m=−∞

∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
o=−∞

∞

∑
p=−∞

Jn(Ar)Jm(Ah)Jk(Ar)Jl(Ah)Jo(Ar)Jp(Ah)

× ej2π(k fr+l fh)τ1−j2π(o fr+p fh)τ2 × e−j2π{α−[(n+k−o) fr+(m+l−p) fh ]}t + C3NZ (α; τ)

(16)

where C3I(τ) function, which is the third-order cumulant of the motion and phase noise, acts as
multiplicative noise for the delta functions, and the term of C3NZ (α; τ) is the third-order cyclic cumulant
of Gaussian noise, and its value is zeros due to the higher order cyclic cumulant property.

Let τ2 = τ1, τ1 = τ , the spectral function of the slice of the third-order cyclostationary signal B(t)
is the Fourier transform of (16), and is obtained as

S3B(α; f ) = D3C3I( f )
∞

∑
n=−∞

∞

∑
m=−∞

∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
o=−∞

∞

∑
p=−∞

∑
τ

Jn(Ar)Jm(Ah)Jk(Ar)Jl(Ah)Jo(Ar)Jp(Ah)

× ej2π[(k−o) fr+(l−p) fh− f ]τ × δ{α− [(n + k− o) fr + (m + l − p) fh]}
(17)

where S3B(α; f ) is a 2-D function that involves all of the frequencies along the cyclic axis. From (17),
S3B(α; f ) 6= 0 when τ = τ0 and α 6= 0. Therefore, the signal in (8) is a third-order cyclostationary signal.

For Doppler radar signals, the baseband output (3) can be approximately expressed by (18) when
θ in (3) is an odd multiple of π

2 and x(t)� λ[23].

B(t) ≈ 4πx(t)
λ

+ ∆φ(t). (18)

Considering the subject random movement I(t) and Gaussian noise N(t), we re-express (18) as

B(t) = S(t) + I(t) + N(t) (19)
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where

I(t) =
4πxI(t)

λ
+ ∆φ(t),

S(t), and N(t) are the pair wise independence signals. From the aforementioned analysis, the vital sign
signal is composed primarily of respiration, heartbeat and all sums and differences of their harmonics.
Accordingly, S(t) can be expressed as

S(t) =
∞

∑
n=−∞

∞

∑
m=−∞

Anm cos[2π(n fr + m fh)t] (20)

where Anm is the amplitude corresponding to the signal with the frequency (n fr + m fh). For simplicity,
we only analyse the first harmonic (i.e. n = 1 and m = 0; n = 0 and m = 1). Accordingly, S(t) can be
rewritten as

S(t) = sr(t) + sh(t)

= Ar cos(2π frt) + Ah cos(2π fht).
(21)

According to the property of the k-th order cyclic cumulant [24,25], the k-th order cyclic cumulant
of (19) can be given by

CkB(α; τ) = CkS(α; τ) + CkI(α; τ) + CkN(α; τ). (22)

The CkI(α; τ) function, which is the k-th order cyclic cumulant of the motion and phase noise, acts
as the dc component like the delta functions. The term CkN(α; τ) is the k-th order cyclic cumulant
of Gaussian noise. CkN(α; τ) is autocorrelation functions of noise when k = 2. If k > 2, the value of
CkN(α; τ) is zero due to the property of higher order cyclic cumulant.

In (16) and (17), the third-order cyclostationary of the received signal retains the fundamental
frequency along the cyclic axis. We calculate the third-order cyclic cumulant (TOCC) of (19) by
using (23).

C3B(α; τ) = C3S(α; τ) + C3I(α; τ) + C3N(α; τ). (23)

The cyclic spectral function of the slice (τ2 = τ1, τ1 = τ) of the third-order cumulant of B(t) can
be written as

C3S(α; τ)

= lim
T→∞

1
T

T−1

∑
t=0

S(t)S(t + τ)S∗(t + τ)e−j2παt + C3I(α; τ) + 0

= lim
T→∞

1
T

T−1

∑
t=0

{
[Ar cos(2π frt) + Ah cos(2π fht)]× [Ar cos(2π fr(t + τ)) + Ah cos(2π fh(t + τ))]2

}
× e−j2παt + C3I(α; τ).

(24a)

In fact, time-delay τ is only closely related to the magnitude of estimated periodicity frequencies.
Therefore, based on Euler’s formula, when τ = 0, (24a) can be calculated as

C3S(α; τ)

= 〈K1[e−j2π(α− fr)t + e−j2π(α+ fr)t] + K2[e−j2π(α− fh)t + e−j2π(α+ fh)t]

+
Ar A2

h
8

[3e−j2π(α−( fr+2 fh))t + 3e−j2π(α+( fr+2 fh))t + 3e−j2π(α−( fr−2 fh))t + 3e−j2π(α+( fr−2 fh))t]

+
A2

r Ah
8

[3e−j2π(α−(2 fr+ fh))t + 3e−j2π(α+(2 fr+ fh))t + 3e−j2π(α−(2 fr− fh))t + 3e−j2π(α+(2 fr− fh))t]

+
A3

r
8
[e−j2π(α−3 fr)t + e−j2π(α+3 fr)t] +

A3
h

8
[e−j2π(α−3 fh)t + e−j2π(α+3 fh)t]〉t + C3I(α; 0)

(24b)
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where K1 =
Ar A2

h
2 +

A2
r Ah+A3

h
4 + A3

r
8 and K2 = Ah A2

r
2 +

A2
h Ar+A3

r
4 +

A3
h

8 . The spectral function of the slice
of the third-order cyclostationary of B(t) is expressed as

C3B(α; f ) = ∑
τ

C3S(α; τ)e−j2π f τ + C3I(α; f ). (25)

Apparently, the term C3B(α; τ) 6= 0 when α 6= 0 in (24), i.e., B(t) has the third-order
cyclostationarty property. As is obvious from (24b), there are corresponding spectral lines to
cyclic frequencies fr,− fr, 3 fr,−3 fr, fh,− fh, 3 fh,−3 fh, fr + 2 fh,−( fr + 2 fh), fr − 2 fh,−( fr − 2 fh), 2 fr −
fh,−(2 fr − fh), 2 fr + fh, and −(2 fr + fh). These spectral lines are symmetric about the zero point.
Therefore, for the radar signal in (5), we can detect heart and respiration frequencies with the third-order
cyclic cyclostationary method. However new frequencies, such as 3 fr,−3 fr, 3 fh,−3 fh, fr + 2 fh,−( fr +

2 fh), fr − 2 fh,−( fr − 2 fh), 2 fr − fh,−(2 fr − fh), 2 fr + fh and −(2 fr + fh), are introduced in (24b).
Although the energy of the single harmonic is little and the most of harmonic frequencies (excepting
for 3 fr, fh − 2 fr and 2 fh − fr) are over the ranges of the respiration and heartbeat frequencies, the
detection of heartbeat and respiration rate may be interfered by the higher energy 3 fr signal when the
introduced 3 fr signal has the same phase with the original third harmonic in the received signal.

In Figure 2, it depicts one realization of the third-order cyclostationary of B(t) in (5), Here, carrier
frequency of Doppler radar is 10.587 GHz (λ ≈ 2.8 cm), and the ah, ar, fh and fr values in this example
are assumed as 0.06 cm, 0.2 cm, 1.3 Hz and 0.5 Hz, respectively.
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(1.5Hz)Har2

(0.3Hz)

(a)

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

Cyclic frequency(Hz)

M
ag

ni
tu

de

Respiration(0.5Hz)

Heart
(1.3Hz)

Har1
(1.5Hz)
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(b)

Figure 2. TOCC of B(t) in (5). (a) TOCC of the received signal; (b) TOCC of the received signal
(here ah = 0.02 cm).

As is obvious from Figure 2a, the respiration and heartbeat frequencies estimated are equal to
0.4995 Hz and 1.301 Hz, respectively. Although the third harmonic (1.5 Hz) of the respiration and
fh − 2 fr = 0.3 Hz are cumulated, the magnitudes of harmonics are far below than the magnitudes of
estimated frequencies. In this example, we replace only the value of ah with 0.02 cm. TOCC of B(t)
in (5) is shown in Figure 2b. As is obvious from Figure 2b, the cumulated amplitude of 3 fr (1.5 Hz)
is higher than the cumulated amplitude of fh (1.3 Hz). The mainly reason is that the introduced
3 fr signal is superimposed on the original third harmonic due to the same phase for two signals.
After performing the third-order cyclostationary algorithm, the amplitude accumulated of the third
harmonics is just more than the amplitude accumulated of heartbeat signal.

In order to reduce the third harmonic introduced in (24b), the received radar signal B(t) in (5) is
projected into the Hilbert space, and the analytic signal of B(t) is formulated as

y(t) = B(t) + jBH(t) (26)
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where BH(t) is Hilbert transform of B(t). According to the property of Hilbert transform, yI(t)
and yN(t) are complexity Gaussian signals. Values of C3yI(t) and C3yN(t) are zero in the theory.
The analytic signal of s(t) is given as

yS(t) = Ar[cos(2π frt) + j sin(2π frt)] + Ah[cos(2π fht) + j sin(2π fht)]

= Arej2π frt + Ahej2π fht
(27)

where sin(2π frt) and sin(2π fht) is the Hilbert transform function of cos(2π frt) and cos(2π fht).
The third-order cyclic cumulant of (26) can be calculated as

C3y(α; τ) = C3yS(α; τ) + C3yI (α; τ) + C3yN (α; τ)

≈ C3yS(α; τ)

= lim
T→∞

1
T

T−1

∑
t=0

yS(t)yS(t + τ) + y∗S(t + τ)e−j2παt

= 〈[A3
r + Ar A2

h + Ar A2
hej2π( fr− fh)τ ]e−j2π(α− fr)t

+ [A3
h + Ah A2

r + Ah A2
r ej2π( fh− fr)τ ]e−j2π(α− fh)t

+ [Ah A2
r ej2π( fr− fh)τ ]e−j2π[α−(2 fr− fh)]t

+ [Ar A2
hej2π( fh− fr)τ ]e−j2π[α−(2 fh− fr)]t〉t.

(28)

Performing the Fourier transform for (28), we have

C3y(α; f ) = ∑
τ

C3yS(α; τ)e−j2π f τ . (29)

Clearly, from (28), the heart and respiration frequencies can be estimated when a = fr and a = fh,
and there is no new 3 fr introduced. Although cross terms 2 fr − fh and 2 fh − fr are introduced, the
amplitude of the cross term is far below than fr or fh in (28).

In Figure 3, it shows the TOCC of Hilbert transform of B(t) with the same parameters with
Figure 2b. In Figure 3, the amplitude of the signal with the frequency 1.3 Hz is higher than the 3 fr

(1.5 Hz). Comparing with Figure 2b, the new introduced frequency 3 fr in third-order cyclic cumulant
is suppressed by using Hilbert transform method for the received signal B(t). The frequency 1.5 Hz in
Figure 3 is the frequency of the original third harmonic 3 fr in the received radar signal B(t).

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cyclic frequency(Hz)

M
ag

ni
tu

de

Respiration(0.5Hz)

Heart(1.3Hz)

Har1
(1.5Hz)

Har2
(0.3Hz)

Figure 3. TOCC of Hilbert transform of B(t) with the same parameters with the ones in Figure 2b.
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If the second-order cyclostationary method is used to analyse y(t) in (26) in Hilbert space, we have

C2y(α; τ) = C2yS(α; τ) + C2yI (α; τ) + C2yN (α; τ)

= C2yS(α; τ) + RyI (α; τ) + RyN (α; τ)

= lim
T→∞

1
T

T−1

∑
t=0

yS(t)y∗S(t + τ)e−j2παt

= 〈[A2
r e−j2π frτ + A2

he−j2π fhτ ] + [Ah Are−j2π fhτ ]e−j2π[α−( fr− fh)]t

+ [Ar Ahe−j2π frτ ]e−j2π[α+( fr− fh)]t〉t + RyI (α; τ) + RyN (α; τ)

(30)

where RyI (α; τ) and RyN (α; τ) are respectively cyclic autocorrelation functions of the subject random
movement and Gaussian noise. From (30), fr and fh are not still obtained by using the second-order
cyclostationary method in Hilbert space.

For others harmonic signals (corresponding to frequencies n fr + m fh in (20), the corresponding
harmonic periodicity frequencies can be obtained by the aforementioned analysis in this Section.

3. Statistical Property Analysis of Higher Order Cyclostationary Detection

From the analysis in Section 2, the third-order cyclostationary property of the Doppler radar
signal was proven in a time-series analysis. Next, we will analyse the statistical properties of the
third-order cyclostationary detection method.

3.1. The Almost Sure Convergence of the Time Varying Cyclic-Moments and the Sample Cyclic-Moments

Let {xm(t)}k
m=0 be k+ 1 deterministic or random signals. An Assumption 1 [27] is given as follows.

Assumption 1: ∀m ∈ Z

∞

∑
τ1···τm=−∞ t

sup|cum{xn0(t), xn1(t + τ1), · · · , xnm(t + τm)}| < ∞

where xn(t) ∈ {x0(t), x∗0(t), · · · , xk(t), x∗k (t)}. If x(t) is a k-th order cyclostationary process, and
which satisfies Assumption 1, with xn(t) ∈ {x(t), x∗(t)} . Then for γ > 3

4 , the third-order sample
cyclic-moment of x(t) can be expressed as follow in [27]

M(T)
3x (α; τ) ∆=

1
T

T−1

∑
t=0

x(t)x(t + τ1)x(t + τ2)e−jαt (31)

satisfies
E|M(T)

3x (α; τ)− EM(T)
3x (α; τ)|2 ≤ C

T

E|M(T)
3x (α; τ)− EM(T)

3x (α; τ)| a.s.= O(
1

T1−γ
) (32)

where C is a constant, and a.s. represents almost sure convergence. The convergence rate is given
in (32). According to the analysis in Section 2 , the M3x(α; τ) exist, therefore we have follow in [27]

lim
T→∞

M(T)
3x (α; τ) a.s.= M3x(α; τ). (33)
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Equation (33) implies the almost sure convergence of the estimator of the third-order time varying
cyclic moments and the third-order sample cyclic-moment. Therefore, the third-order cyclic moments
M3x(α; τ) can be estimated by the third-order sample cyclic-moment MT

3x(α; τ), then we have

M3x(α; τ) ≈ M(T)
3x (α; τ)

=
1
T

T−1

∑
t=0

x(t)x(t + τ1)x(t + τ2)e−jαt.
(34)

From (10), (11), (12) and (34), the estimated third-order cyclic cummulant C(T)
3x (α; τ) can be

obtained as
C(T)

3x (α; τ) = M(T)
3x (α; τ). (35)

However, in (35), T is the finite number of sample elements. Therefore, we have

C(T)
3x (α; τ) = C3x(α; τ) + ε

(T)
3x (α; τ) (36)

where ε
(T)
3x (α; τ) is the estimation error. Due to this error, the estimator C(T)

3x (α; τ) is seldom exactly
zero in practice when α is not a cycle frequency. Therefore, to determine whether a given value of

C(T)
3x (α; τ) is zero, the hypotheses statistical testing approach in [28] is adopted in this work.

3.2. The Relation Analysis Between the Finite-Time Average and the Ensemble Average

For a time-series ~x, according to [25], the third-order faction-of-time (FOT) probability distribution
function is defined by

F~x(~y)
∆= E(α){

3

∏
i=1

U[yi − x(t + ti)]} (37)

where
~y ∆= [y1, y2, y3]

T ,~x ∆= [x(t + τ1), · · · , x(t + τ3)]
T ,

and E(α){·} is the multiple sine-wave extraction operation. U[·] is simply the event-indicator function.
Therefore, by the n-fold derivative of the distribution function, the FOT probability density function
for x(t) is written as

f~x(~y)
∆=

∂3

∂y1∂y2∂y3
F~x(~y). (38)

Assumed g[~x] is a function of the vector of time-samples, and redefine E(α){·} to be the expected
value with respect to the FOT f~x(~y). Accordingly, we can obtain as follow in [25]

E(α){g[~x]} ∆=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g[~y] f~x(~y)d~y

∆= ∑
α

〈g[~x]e−j2παt〉ej2παt
(39)

where 〈·〉 is the time-averaging operation. The ensemble average can be defined through the finite-time
average of a single time series in higher order cyclostationary analysis in (39).

Based on the above statistical properties of the third-order cyclostationary detection method, the
statistical significance of estimated frequencies of the heartbeat and respiration can be analysed when
the Probability of False Alarms (PFA) is a constant value.
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4. Experiment and Analysis

In order to demonstrate the effectiveness and robustness of the proposed method (third-order
cyclic cumulant (TOCC)) to detect the heartbeat and respiration rates, four experimental examples
are given.

4.1. The Detection of the Heartbeat and Respiration Rate under Different SNR for Simulation Signals

In the first example, the respiration frequency and the heartbeat frequency are detected with
signal to interference ratio (SIR) and different signal to noise ratio (SNR) for the simulation model
in (5). We define SNR as the ratio of the signal power to the sum of the power of receiver noise and
phase noise ∆φ(t) , and the SIR as the ratio of the signal power to the power of the motion interference
xI(t), which is assumed a uniform random process. Here, carrier frequency of Doppler radar is 10.587
GHz (λ ≈ 2.8 cm), and the ah, ar, fh and fr values in this example are assumed as 0.06 cm, 0.2 cm,
1.3 Hz and 0.5 Hz, respectively. The receiver noise and phase noise are assumed Gaussian noise which
is obtained by filtering a white Gaussian noise through a y(z) = sqrt(1− a2)/(1− a× z−1) first order
filter, where a is a coefficient. SNR and SIR are −22 dB and −2 dB, respectively.

The TOCC of the signal B(t) in (5) are shown in Figure 4. The respiration and heart frequencies
extracted are equal to 0.5 Hz and 1.3 Hz, respectively. This suggested that this received signal has
a third-order cyclostationary nature, which is insensitive to all of the noncyclic components and
Gaussian noise. From Figure 4b, only two peaks P1 and P2 corresponding to frequencies 0.5 Hz and
1.3 Hz are statistically significant when the Probability of False Alarms (PFA) in [28] is 0.001.
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Figure 4. TOCC of the received signal. (a) TOCC of the received signal; (b) Test statistic (purple line
denotes the threshold); (c) TOCC of the received signal in Hilbert space.
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In Figure 4c, it shows TOCC of the received signal in Hilbert space. It is obviously to single
sideband for the first harmonic after performing Hilbert transform for the received radar signal.
Comparing with Figure 4a, the estimation precisions of respiration and heart frequencies have not
improved apparently in Figure 4c. In fact, in almost all cases, the original third harmonic and the
introduced signal 3 fr are usually different in phase due to noise, and these harmonics may suppress
each other. In addition, the energy of the third harmonic is very little and the improved harmonic is
usually hidden in the strong background noise.

As the subject movement xI(t) cancellation have been discussed in detail in [21], here we mainly
concern on the robustness of the third-order cyclostationary method to vital-sign detection in the
heart and respiration at various Gaussian SNR levels. In Figure 5, it shows the estimated means and
variances of the heart and respiration for 20 realizations of the proposed approach in each SNR levels
when the value of SIR is 0 dB. Simulation results indicate that the third-order cyclostationary approach
is insensitive to Gaussian noise and can accurately detect the heart and respiration information even
with low SNR. It is also noted that the estimation error of the heart beat is much bigger than the
respiration due to the small chest movement.
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Figure 5. Estimated means and variances of the heart and respiration for 20 realizations of TOCC in
each SNR levels (SIR = 0 dB).

4.2. The Detection of the Heartbeat and Respiration Rate Using the Doppler Radar Signal for a Single Subject

In the second example, an Doppler Radar Motion Detector Unit (Figure 6) is used to get the vital
sign data of a human subject.The detail parameters of the Detector Unit (Model number: MDU1100T,
Manufacturers: Microwave Solutions Ltd.) are shown in Table 1. The radar to the human chest
distance is 30 cm, and the data sampling rate is 44.1 KHz. The received radar signal plus the slight
random subject movement and Fourier spectrum of the received signal in 30 seconds are shown in
Figure 7a. The electrocardiogram (ECG) and respiratory waveform (RW) obtained by g.USBamp and
g.TRIGbox are used as reference system to validate the measurement errors is shown in Figure 7b.
We can obtain the respiration frequency 0.43 Hz and the heart beat frequency 1.4 Hz with the ratio
of peak numbers to time (30 s). According to the aforementioned theory analysis, the received radar
signal includes the frequency information of the respiration and heart beat. We apply the proposed
third-order cyclostationary method to detect heart and respiration frequencies from the received signal.
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L……· Jl 
Figure 6. Doppler radar Motion Detector Unit (MDU1100T).

Table 1. Main parameters for MDU1100T.

Components Frequency Power Output Operating Voltage Sensitivity Gain Noise

Specifications 10.587 GHz 10 dBm +5 V ± 0.25 V −86 dBm 8 dBi <10 µV
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Figure 7. Doppler radar signal and reference signals ECG and RW. (a) Received radar signal (top) and
power spectrum density (PSD) of the radar signal (bottom); (b) RW (top) and ECG (bottom).

Figure 8 shows TOCC graph of the received radar signal. It is obvious seen that heart
and respiration peaks corresponding to heart and respiration frequencies are shown in Figure 8a.
According to (28), there are only frequencies of the respiration and heartbeat in the single sideband in
Hilbert space. Respiration and heart frequencies obtained are equal to 0.46 Hz and 1.42 Hz in Figure 8a
and are statistically significant at PFA = 0.001 in Figure 8b. Comparing with the reference frequencies
in Figure 7b, the estimated results have only a little errors. However, from the Fourier spectrum of the
received radar signal in the bottom of Figure 8a, it is difficult to obtain the two peaks corresponding to
respiration and heartbeat frequencies.
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Figure 8. TOCC of the received radar signal. (a) TOCC 2-D graph; (b) Test statistic (purple line denotes
the threshold, here PFA = 0.001); (c) The detected results of the heart and respiration rates with the
record time increased in the 3 s steps (bottom: heart, top: respiration, Ref indicates the reference).

In Figure 8c, it shows the detected results of the heart and respiration frequencies by using
TOCC and FFT. An initial size of the 3 s time window which starts from zero is used to obtain the
first measurement point by using the proposed TOCC method, and then 10 measurement points are
obtained in 30 s (here FFT method: after performing FFT for the received radar signals, frequencies
corresponding to maximum peaks in the range 0.1–0.8 Hz and 0.8–2 Hz are also considered as estimated
frequencies of respiration and heartbeat signals, respectively). From Figure 8c, TOCC approach has
better detection accuracy than conventional FFT method. Especially, for detecting heartbeat with FFT,
when the frequency of the interference component belongs to the frequency range of the vital signs,
estimated results gravely deviate from the reference in the 27th second and the 30th second. As the
respiration has a bigger energy, the respiration frequency is detected accurately with both the Fourier
and TOCC when the recording time reaches to the 6th second. The estimation performance of TOCC is
improved with the recording time increased, (especially, when time is less than 9 s, the trend is more
distinct) which it is consistent with the theory analysis. In addition, in order to test the estimation
performance of the proposed approach for a short data sequence, the experiment results obtained
by using the data corresponding to 1.5 s and 2 s are also shown in Figure 8c. Here, there is only
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a small estimation error for estimating the heart rate. However, the obtained respiration rates gravely
deviate from the Ref (where Ref are consider as zero when the time is less than 3 s), because the time
of duration of data is less than one period of the respiration signal, which can lead to the performance
degradation for cyclostationary detection. From Figure 8c, based on the proposed method, the results
estimated by dividing the time interval into much smaller intervals can be used to close to the real
value of respiration rate and heart rate when respiration and heart rates keep changing.

4.3. The Detection of the Heartbeat Rate Using the Doppler Radar Signal for Different Subjects

In the third example, the detection of heartbeat frequencies is studied when three persons are
in the state of holding their breath. The chest subject faces the radar antenna at a distance of 30 cm.
When the vital sign of Subject3 is recorded, the random subject movement is added by hand moving at
an approximate constant speed in front of the radar system, and the subject movement magnitude is
about 5 cm. The recording time of the valid data set is more 15 s in this case. The detected results of
heartbeat and respiration rate are shown in Figure 9.
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Figure 9. Estimated results of the heartbeat in the state of holding breath. (a) TOCC estimators of
Subject1, Subject2, Subject3 and Subject3 plus motion; (b) Test statistic; (c) FFT spectrum corresponding
to the Subject1, Subject2, Subject3 and Subject3 plus motion.

Here, heartbeat frequency references from ECG of Subject1, Subject2 and Subject3 are 1.13 Hz,
1.3 Hz and 1.4 Hz, respectively. From Figure 9a, there is no apparent peak in the frequency range
(0.1–0.8 Hz) of the respiration due to persons holding their breath. Estimated heart frequencies of
Subject1, Subject2, Subject3 and Subject3 plus the random movement are equal to 1.08 Hz, 1.28 Hz,
1.41 Hz and 1.52 Hz. Comparing with the ECG reference, estimation errors of heartbeat frequencies
of three persons are very small. For the subject3 plus the random movement, the estimation error is
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less than 10%. Figure 9b shows test statistics St1, St2, St3 and St4 corresponding to Subject1, Subject2,
Subject3 and Subject3 plus the random movement. It is clearly that heartbeat frequencies 1.08 Hz,
1.28 Hz, 1.41 Hz and 1.52 Hz are statistically significant at PFA = 0.001, and these frequencies are as
expected in Figure 9a. It is also observed that the proposed TOCC method has detected the heart
frequency with more clearly peaks compared to the Fourier transform shown in Figure 9c.

4.4. The Detection of the Respiration Rate Using the Doppler Radar Signal for Multiple Subjects

In the fourth example, the estimation of the respiration rate is analyzed with different respiration
rates determined by a metronome. Four different tempos 40 bpm, 54 bpm, 56 bpm and 80 bpm are
used, and four vital sign radar signals R1, R2, R3 and R4 corresponding to four tempos are recorded,
and that the recording time of the valid data set continues 15 second for each tempo. Therefore,
respiration reference frequencies of R1, R2, R3 and R4 are 0.33 Hz (40/(2×60) = 0.33), 0.45 Hz, 0.47 Hz
and 0.67 Hz, respectively. The subject movement added in R2 is the same with the ones in the third
example. In this case, the abdomen of the subject faces the antenna.

TOCC estimators corresponding to R1, R2, R3 and R4 at a 30 cm distance between the antenna
and the abdomen of the subject are plotted in Figure 10a. It is can be seen that estimated respiration
frequencies of R1, R2, R3 and R4 are respectively 0.34 Hz, 0.43 Hz, 0.47 Hz and 0.66 Hz. A little
estimation error is obtained by compared to the reference frequencies, and that comparing with Fourier
transformation in Figure 10b, TOCC method has a more accuracy detection performance.
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Figure 10. Estimated respiration frequencies and statistic of the received recorded respiration signal
under the four different tempos. (a) TOCCs of R1, R2, R3, R4 (distance = 30 cm); (b) Fourier spectrum
(distance = 30 cm); (c) Test statistic of (a); (d) TOCCs of R1, R2, R3, R4 (distance = 50 cm); (e) Fourier
spectrums (distance = 50 cm); (f) Test statistic of (d).

In Figure 10b, the respiration frequency should be obtained by the peak P, but the estimated result
is the frequency 0.73 corresponding to P1. In Figure 10c, cyclic frequencies 0.34 Hz, 0.43 Hz, 0.47 Hz
and 0.66 Hz corresponding to maximum peaks P1, P2, P3 and P4 are just statistically significant when
the value of PFA is 0.001, which indicates the presence of cyclic frequencies which corresponding to
maximum peaks in Figure 10a. From St1, the P1 in Figure 10b is not statistically significant. Therefore,
the component corresponding to P1 in Figure 10b has no cyclostationary property at PFA = 0.001.
Figure 10d shows the various plots analogous to the ones in Figure 10a. The distance between the
antenna and the abdomen of the subject is 50 cm. As shown in Figure 10d, TOCC sidelobes of four radar
signals are more than the ones in Figure 10a due to the increased distance between the antenna and the
subject. However, due to bigger abdomen displacements caused by the respiration, estimated results
of respiration frequencies are hardly affected by the increased distance. Although two respiration
frequencies (0.45 Hz and 0.47 Hz) of R2 and R3 are closer each other, they are accuracy estimated by
TOCC method. However, for using the FFT method, detected frequencies of R2 and R3 in Figure 10e are
both 0.46 Hz. In Figure 10f, it shows the various plots analogous to the ones in Figure 10c. According
to the Figure 10f, it is proved that estimated frequencies in Figure 10d are statistically significant when
PFA = 0.001. From Figure 10, it can be seen that there is accurately estimation for the respiration
frequency of R2 plus the subject movement. The effect of the subject movement can be reduced due to
TOCC’s insensitive to the non-cyclic components.

5. Conclusions

In this paper, we have proposed a novel vital sign detection approach based on higher order
cyclostationary. The respiration and heart frequencies can be accurately detected. Advantages of the
new detection method, such as suppression of the noncylic components, high output SNR, cancellation
of the subject movement, insensitivity of Gaussian signal, detection of weak signals, were analyzed
in detail. These properties enhance the estimation accuracy of the heart and respiration rate when
the detected subject lies in the complex environment with high noise and strong clutter. The theory
and experiment results proved the second harmonic frequency and the interharmonic frequency can
only be obtained by using the second-order cyclostationary method when the output signal of vital
sign radar system is just proportional to the periodic subject displacement summed. By using the
conventional FFT, the estimated result of the heart and respiration rate may be inaccurate due to the
influences of the noncyclic component, clutter and noise. The third-order cyclostationary approach
proposed has better detection accuracy under complex circumstance with strong clutter, noncyclic
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signal interference and Gaussian signals, which makes it a promising method to be used with Doppler
radar to analyze the vital signs with the periodic motion information.
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