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Abstract 

Abdominal aortic aneurysm (AAA) is a silent, progressive disease with high mortality and 

increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to 

gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic 

characteristics in SMC cultured from end-stage human AAA (5cm) and cells cultured from 

a porcine carotid artery (PCA) model of early and end-stage aneurysm.  

Human AAA-SMC presented a secretory phenotype and expressed elevated levels of 

differentiation marker miR-145 (2.2-fold, P<.001) and senescence marker SIRT-1 (1.3-fold, 

P<.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine 

aneurysmal cells were frequently multi-nucleated (3.9-fold, P<.001 and 1.8-fold, P<.01 

respectively, versus control cells) and displayed aberrant nuclear morphology. Human AAA -

SMC exhibited higher levels of the DNA damage marker H2AX (3.9-fold, P<.01 vs. control 

SMC). These features did not correlate with patients’ chronological age; and are therefore 

potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control 

and aneurysmal) were indistinguishable from one another across all parameters. 

The principal limitation of human studies is tissue availability only at end-stage disease. 

Refinement of a porcine bioreactor model would facilitate study of temporal modulation of 

SMC behaviour during aneurysm development and potentially identify therapeutic targets to 

limit AAA progression. 

 

Key words: Abdominal aortic aneurysm; human; porcine; smooth muscle cells; aging; DNA 

damage; senescence; in vitro. 

Introduction  
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Abdominal aortic aneurysm (AAA) is a progressive, generally asymptomatic dilatation of the 

aorta affecting ~5.5% of the population. Risk factors for AAA include male gender, 

increasing age and smoking [1]. Rupture is associated with a high mortality risk of 60-70%; 

consequently, national screening programmes have been established to detect AAA in men 

over the age of 65 [1].  Elective open or endovascular repair is then offered when the risks of 

intervention are outweighed by the annual risk of rupture, which is correlated with AAA size.  

AAA is a multi-factorial disease. The pro-inflammatory infiltration of the aorta by immune 

cells such as macrophages and lymphocytes has been recognised for many years and has 

consequently been the focus of intensive research [2]. In addition to the inflammatory 

component, AAA is characterised by progressive decline in the number of smooth muscle 

cells (SMC) within the aortic wall [3], and degradation of extracellular matrix (ECM) through 

the production of matrix metalloproteinases (MMPs) [4]. In combination, this weakens the 

structural integrity of the aorta, rendering it more susceptible to rupture. 

SMC are the principal cellular component of the vascular wall and they play essential roles in 

maintaining vessel architecture and remodelling in response to environmental stimuli. They 

do this through switching between contractile (differentiated) and synthetic (dedifferentiated) 

phenotypes [5]. Whilst this plasticity is essential to adaptive remodelling, it is also implicated 

in the development of human AAA [6-9] and animal models of abdominal and thoracic 

aneurysm [6, 10]. Undeniably the involvement of SMC in AAA progression is an area worthy 

of research, however the key challenge facing investigators is that human tissue is accessible 

only at end-stage disease. Whilst animal models are undoubtedly of great value in AAA 

research, they do not fully recapitulate the clinical scenario in man as they are most 

commonly artificially induced via treatment with angiotensin II, calcium chloride or elastase, 

or mechanically induced using balloon angioplasty [11]. As such, they benefit from being 

complemented with alternative models. 
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SMC isolated from end-stage human tissue exhibit diverse features in culture [7-9]. Recently, 

we described a distinct SMC phenotype isolated from end-stage human AAA tissue (aortic 

diameter ≥5 cm) characterised by a large rhomboid morphology, slow proliferative rate, 

increased senescence and reduced levels of secreted MMP-2 compared to SMC cultured from 

non-aneurysmal human saphenous vein (SV) [9]. Furthermore, we established a novel ex vivo 

bioreactor model whereby porcine carotid arteries (PCA) were briefly treated with a 

combination of collagenase and elastase (CCE) or control vehicle gel (VEH), then maintained 

under flow for 12 days in a bioreactor. During this time, dilatation of the vessel was apparent 

and importantly, CCE-SMC derived from the vessels retrieved at the end of the culture period 

were compatible with those of end-stage human AAA-SMC with respect to morphology and 

behaviour in culture [9]. There is clearly a demand for models that may help identify factors 

that precede aneurysm development in order to find targets for new therapeutics.  

The risk of AAA increases with age [1], however the effects of aging on SMC are 

controversial with multiple conflicting reports regarding its influence on SMC proliferation, 

migration and inflammation (recently reviewed in [12]). Some of the phenotypic features of 

AAA -SMC that we have described, namely aberrant morphology, increased senescence and 

poor proliferative capacity [9] correspond to features apparent in aged SMC [13], however 

our observation of reduced MMP-2 secretion is at variance with animal models of aging [14]. 

Aging is associated with increased production of proinflammatory cytokines [15] and the 

development of cellular senescence, which has a multitude of effects on cell phenotype and 

behaviour [16]. We hypothesised that human AAA-SMC and porcine CCE-SMC would 

display features consistent with a premature aging phenotype. Consequently, the purpose of 

this study was to perform a detailed side-by-side comparison of human AAA-SMC and 

porcine CCE-SMC. Cells were explored in terms of morphology, expression of markers 

associated with aging and senescence (sirtuin-1, -3 and -6, miR-145), and evaluation of DNA 
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damage (H2AX). In a further series of experiments, we also examined these features in 

porcine cells cultured from vessels maintained in the bioreactor for a shorter interval (3 days) 

to explore the temporal nature of aneurysm pathology. 

 

Methods 

Human cell isolation  

Human SMC were isolated using an explant technique as previously described [17]. 

Aneurysmal (AAA) SMC were isolated from tissue fragments from patients undergoing open 

surgical repair, and non-aneurysmal SMC were isolated from SV or internal mammary artery 

(IMA) of patients undergoing coronary artery bypass grafting. Mean aneurysm diameter was 

6.48 ± 0.22 (range 4.9 - 9.5) cm. All procedures were performed at the Leeds General 

Infirmary. Approval of the experimental protocol was given by Leeds West Research Ethics 

Committee (ref CA/01/040) and all patients gave informed, written consent. The study 

conformed to the Declaration of Helsinki. Following explant, established SMC were 

maintained in Dulbeccos’s Modified Eagle Medium (DMEM) supplemented with 10% foetal 

calf serum (FCS), 1% L-Glutamine and 1% penicillin/streptomycin fungizone (full growth 

medium, FGM) at 37oC in 5% CO2 in air and serially passaged using trypsin/EDTA as 

necessary. All experiments were performed on cells between passages 3-6.  

Bioreactor and porcine cell isolation  

Porcine carotid arteries (PCA) were harvested from four month old, 65kg animals as 

previously described [9]. All procedures were performed according to UK Home Office 

regulations. Isolated vessels were treated with control gel (VEH) or gel containing 

collagenase and elastase (CCE), to induce an aneurysm-like dilatation of the vessel and 

maintained in a bioreactor under flow for 12 days (classified as 'end stage'), as previously 
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described [9] or 3 days (classified as 'early stage'). SMC were subsequently explanted from 

the retrieved vessels and maintained in FGM. As for human SMC, experiments were 

performed on early passage cells (3-6). 

Light microscopy 

Sub-confluent cells in FGM were imaged under phase at x100 magnification to examine any 

visible cytoskeletal and ultra-structural features. For quantification of multi-nucleation, 

multiple fields of view were acquired and the number of nuclei in ~150 individual cells were 

enumerated. Multi-nucleated cells were represented as a proportion of the total number of 

cells examined. 

Immunocytochemistry 

Cells were cultured on glass coverslips in FGM for 96h prior to fixation in 4% 

paraformaldehyde. The F-actin cytoskeleton was visualised using rhodamine phalloidin as 

previously described [18]. Both low (x200) and high magnification (x630) images were taken 

in multiple fields using a LSM510 Upright confocal microscope. 

To examine nuclear morphology, five random fields of view were imaged for each DAPI-

stained cell population at x400 magnification. Nuclei were classified as ‘normal’ (ovoid) or 

‘aberrant’ (irregular with blebbing, or apoptotic), and the proportion of aberrant nuclei 

calculated. To aid the distinction between the two classifications, DAPI was visualised in 

yellow to give a clear contrast. 

For quantification of H2AX-positive nuclei, cells were stained with primary H2AX 

antibody (1:100) overnight followed by Cy3-conjugated donkey anti-rabbit secondary 

antibody (1:400) for 3 h at room temperature before mounting using ProLong Gold 

containing DAPI nuclear stain. Five random fields of view were captured from each cell 
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population at x200 magnification. Data were expressed as the proportion of H2AX-positive 

nuclei (pink) relative to the total number of nuclei (blue and pink). 

RNA isolation and RT-PCR  

RNA was isolated from cells cultured in FGM and reverse transcribed as previously 

described [19]. Expression of SIRT-1, SIRT-3 and SIRT-6 in human and porcine cells was 

determined using specific TaqMan assays and expressed as a percentage of GAPDH. 

For miR-145, RNA was reverse transcribed as previously described [20] and expression of 

human and porcine miR-145 determined using specific TaqMan assays and expressed as a 

percentage of short ribonuclear RNA, U6. 

Statistical analyses 

Data are expressed as mean±SEM with n representing the number of experiments on cells 

from different patients or animals. Statistical analysis was performed using GraphPad Prism 

and ratio t-tests, one-way ANOVA with Newman-Keuls post-hoc test as appropriate. 

Correlative data was tested for normality using D’Agostino and Pearson omnibus test and any 

associations identified using Spearman or Pearson correlation as appropriate. Correlation 

between different factors is indicated by r. P<.05 was considered statistically significant. 

Results 

SMC morphology 

AAA -SMC frequently presented perinuclear granulation; a feature seldom observed in non-

aneurysmal SV or IMA-SMC (Fig. 1A). Most strikingly, AAA-SMC often exhibited a 

defined, fragmented cytoskeleton that was clearly visible under light microscopy (Fig. 1A). 

We examined the cytoskeleton in more detail using rhodamine phalloidin to stain F-actin 

fibres. Low magnification images (x200) were used to illustrate that staining was apparent in 
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all cells within the population, and high magnification images (x630) were obtained to 

visualise the organisation of F-actin fibres in greater detail. Substantial fragmentation was 

evident under both low and high power magnification in AAA-SMC, in contrast to long, 

parallel F-actin fibres that were visible in SV-SMC (Fig. 1B) and in IMA-SMC [21].  

As previously noted, porcine SMC were smaller than human SMC [9] making perinuclear 

granulation and the cytoskeleton more difficult to decipher using light microscopy, although 

they were visible to a degree. There was no apparent difference in granulation or cytoskeletal 

prominence in any early stage CCE-SMC (Fig. 1C), and F-actin fibres were maintained in an 

ordered configuration resembling those of VEH-SMC (Fig. 1D). In contrast, there was clear 

evidence of perinuclear granulation in end stage CCE-SMC and disruption to the 

cytoskeleton which was not evident in VEH-SMC (Fig. 1E); an observation that was 

exemplified using immunofluorescence (Fig. 1F).  

Senescence markers 

AAA -SMC expressed SIRT-1, -3 and -6, and had significantly lower expression of SIRT-1 

compared to SV-SMC but not IMA-SMC (Fig. 2A). SIRT-3 and SIRT-6 were not different 

between the groups. SIRT-6 expression levels were consistently lower than SIRT-1 and 

SIRT-3 regardless of SMC source (Fig. 2A).  

The reduced expression of SIRT-1 in AAA-SMC was not replicated in porcine SMC. In early 

stage CCE-SMC, SIRT-1 expression was comparable to VEH-SMC in two out of the three 

vessels studied, however the third vessel had a higher expression of SIRT-1 in the VEH-

SMC. This skewed the data yet, it still remains non-significant (P=.494, Fig. 2C). SIRT-3 

was also unaffected by CCE treatment (Fig. 2C). In end stage experiments, there were no 

significant differences between CCE-SMC and VEH-SMC (Fig. 2D). Expression of SIRT-1 

and SIRT-3 was routinely higher in porcine SMC (by 2.6- and 2.1-fold respectively) than in 
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human cells; although expression of SIRT-6 was undetectable in all porcine RNA samples 

(data not shown). 

Expression levels of miR-145 in AAA-SMC were >2-fold higher than in non-aneurysmal 

cells (57.4% vs. 26.0% in SV-SMC and 20.5% in IMA-SMC; Fig. 2B). However, we did not 

see this variance in porcine cells (neither early nor end stage) where overall expression levels 

were similar between all CCE- and VEH-SMC (Fig. 2E-F). 

Given that SV- and IMA-SMC were phenotypically comparable (Fig. 1, 2) we subsequently 

used SV-SMC as a non-aneurysmal comparator for the remainder of the study due to ready 

availability of primary tissue and consistency with our published report [9]. 

Markers of DNA damage 

AAA -SMC exhibited a higher frequency of multi-nucleation than SV-SMC, with 7.4% of 

cells containing two or more nuclei (Fig. 3A). In contrast, only 1.8% of SV-SMC were multi-

nucleated (Fig. 3A). AAA-SMC also had a greater proportion of aberrant nuclei (18.5%) 

compared to 7.6% in SV-SMC (Fig. 3B). Furthermore, 32.4% of AAA-SMC stained 

positively for H2AX compared with only 8.3% in SV-SMC (Fig. 3C). 

Early stage SMC demonstrated a modest elevation in the proportion of multi-nucleated cells 

compared with end stage cells, either human or porcine. However, there was no difference 

between VEH- versus CCE-SMC at this time point (Fig. 3D). Consistent with this, there were 

few aberrant nuclei in either group (Fig. 3E). In early stage experiments, H2AX positive 

nuclei were frequent although the degree of DNA damage was minor, as evidenced by few 

positive foci per nucleus (Fig. 3F).  

In contrast, there was divergent multi-nucleation and aberrant nuclei in end-stage porcine 

SMC which was significantly elevated in CCE-SMC (Fig.3G, H). There was a trend towards 
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a greater number of H2AX-positive nuclei in CCE-SMC, and these exhibited a higher degree 

of DNA damage with multiple foci (Fig. 3I).  

Association of experiments with age 

SMC were isolated from surgical samples acquired from a total of 31 patients undergoing 

AAA open repair (mean age 72.61.1 years, range 67-87 years, 93% male) and from the SV 

from a total of 57 patients harvested sequentially during coronary artery bypass grafting 

(mean age 62.61.5 years, range 40-83 years, 89% male; P<.001, Fig. 5A). 

In order to determine whether chronological patient age accounted for the differences we 

observed, we performed correlative analysis for chronological age in both the AAA and SV 

groups. Here, analysis was performed specifically on the subset of patient cells that were used 

for each particular experiment. Cells were selected for experimental use chronologically and 

not preselected according to clinical or cell behavioural data. This investigation revealed that 

patient donor age was not significantly correlated to SIRT-1 or miR-145 expression (Fig. 5B-

C), the number or morphology of nuclei (Fig. 5D-E) or the degree of H2AX positivity (Fig. 

5F). We propose that these features are therefore markers of pathological, vascular aging 

rather than attributable to the age of the patient donor. 

 

Discussion  

AAA disease is a significant healthcare problem with high mortality from rupture. The 

present study builds on our previous work demonstrating that end-stage AAA-SMC and 

porcine CCE-SMC are significantly larger than non-aneurysmal controls [9] and has revealed 

for the first time that SMC derived from both human end-stage AAA tissue and ex vivo 

protease-treated porcine arteries maintained under flow, exhibit features consistent with 
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premature aging and increased DNA damage. This could conceivably underlie, at least in 

part, their impaired functionality. 

The morphological characteristics of aneurysmal SMC (both human and end-stage CCE) 

were distinct, comprising a large spread cell area and rhomboid morphology [9]. Importantly, 

aberrant morphology was apparent in cells emerging early from primary explants (data not 

shown). All experiments in this study and in our previous report [9] were performed on early 

passage cells (p3-p6), an interval over which we have confirmed that morphological 

characteristics are retained [21]. In the current study, we have extended our morphological 

characterisation by noting marked aberrations in the F-actin cytoskeleton. Similar F-actin 

features – namely, truncated and disorganised fibres – have also been described in SV-SMC 

from patients with Type 2 diabetes (T2DM) [22, 20, 21]. As both aneurysm disease and 

T2DM are considered to be conditions characterised by premature aging [23, 24] it is feasible 

that disorganisation of F-actin in SMC is a feature of aged cells, rather than representative of 

a particular disease pathology per se. 

SMC are highly plastic and can switch between differentiated, contractile and 

dedifferentiated, synthetic phenotypes which is essential to their function [5]. The synthetic 

phenotype is characterised by morphological changes including adoption of a rhomboid 

appearance, myofilament loss and an increase in synthetic organelles including Golgi 

apparatus and rough endoplasmic reticulum [5]. Whilst we did not investigate markers of 

secretory organelles it is likely that the perinuclear granulation we observed in the human and 

end-stage porcine aneurysmal cells, in combination with aberrant cell morphology and 

disorganisation of the cytoskeleton, are indicative of a switch towards a secretory phenotype. 

It has been suggested that this could be an artefact caused by the in vitro nature of this study, 

and could have been induced due to differences in cell size or proliferative capacity that we 

have previously described [9]. AAA-SMC are undeniably larger than SV-SMC in culture and 
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have a slower proliferative rate [9], however their size and impaired proliferative capacity are 

comparable with our documented phenotypic characterisation of IMA-SMC [21]. In the 

present study, a substantially higher proportion of AAA-SMC exhibited ‘secretory’ features 

compared to IMA-SMC (Fig. 1A/B), asserting that our observations are not due to in vitro 

conditions but instead are related to their previous in vivo environment.    

Cells that permanently withdraw from the cell cycle adopt a senescence-associated secretory 

phenotype (SASP) characterised by secretion of various mediators, typically IL-1, IL-6, IL-8 

and monocyte chemoattractant protein (MCP)-1 [16]. These secreted factors can induce 

senescence in neighbouring cells via paracrine/autocrine mechanisms, a phenomenon known 

as a ‘bystander effect’ [25]. AAA-SMC exhibit telomere attrition [26] and we previously 

demonstrated that aneurysmal SMC exhibit a greater degree of senescence, indicated by ȕ-

galactosidase staining [9]. We therefore examined the expression of sirtuins; longevity 

proteins whose expression is inversely correlated with cell age [27]. Indeed SIRT-1, via a 

p53-dependent mechanism, can promote DNA repair and regulate the cell cycle, thereby 

promoting viability and longevity [28]. Whilst lower expression levels of SIRT-1 in AAA-

SMC compared to non-aneurysmal SV-SMC supports our hypothesis of premature aging, this 

was not a feature replicated in the porcine model (either early or end-stage) nor in IMA-SMC, 

suggesting that SIRT-1 expression may be inherently variable between vascular beds. 

However, basal expression levels of SIRT-1 in porcine SMC were 2.6-4.9-fold higher than 

corresponding expression levels in human SMC, supporting the concept that the porcine cells 

were physiologically ‘younger’ than the end-stage human cells. In patients with AAA, 

dilation progresses over many years [29]. In order to induce a temporally aged porcine model 

that more accurately mirrors the human condition, it seems likely that culture in the 

bioreactor over an extended period is necessary, whilst providing conditions that are able to 

maintain vessel viability throughout. 
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MiR-145 is highly expressed in SMC and is involved in differentiation [24] and is reportedly 

dysregulated in a number of cardiovascular pathologies [21, 25]. miR-145 is an important 

regulator of vascular SMC phenotype, and we demonstrated its role in driving phenotypic 

change in human SV-SMC. Specifically, over-expression of miR-145 caused cells to become 

large and spread, disrupted the F-actin cytoskeleton, and reduced proliferation. This previous 

report also discovered elevated levels of miR-145 in native T2DM-SMC compared to non-

diabetic SV, which was maintained throughout serial passaging [20]. Importantly, this 

elevation was observed in age-matched patients which strengthens the notion that miR-145 is 

unlikely to be related to donor age. Our data presented here and previously [9] indicate that 

an enlarged, slowly proliferating cell phenotype is common to both AAA-SMC and T2DM-

SMC.  Here we observed elevated levels (2.2-fold) of miR-145 relative to venous and arterial 

non-aneurysmal SMC. Interestingly, expression of miR-145 is reportedly elevated in 

ascending aortic aneurysm tissue [30]. Increasing age is a key risk factor for the development 

of AAA, which is most prevalent in males over the age of 65 years [1], and premature 

vascular aging is also considered to underlie the development of cardiovascular 

complications in T2DM [31]. SV-SMC from T2DM patients express miR-145 at levels 

comparable to those described here in AAA-SMC [20]; it is therefore conceivable that miR-

145 serves as a marker of prematurely aged vascular SMC in general, and is not necessarily 

specific to a particular pathology. In the bioreactor, where the time course of vessel dilatation 

is accelerated, it is unlikely that porcine cells undergo a comparable sequential disease 

process following the application of CCE.  

A key driver of cellular aging is DNA damage, whereby cells temporarily withdraw from the 

cell cycle and undergo DNA repair to prevent mutations in future generations. When DNA 

damage is overwhelming to a degree that exceeds the capacity of the cell to undergo DNA 

repair, permanent withdrawal from the cell cycle and senescence or apoptosis ensues [32]. 
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Multi-nucleation and nuclear deformation are features of sustained DNA damage and aging 

[13, 27] and further, phosphorylation of histone H2AX (H2AX) is an early event in double-

stranded DNA damage signalling [28]. Our current and previous data demonstrate 

conclusively that aneurysmal SMC are senescent [9], therefore it was logical to explore any 

evidence of persistent DNA damage. We examined multi-nucleation (a feature of senescent 

and damaged cells [33, 34]), deformation of normal ovoid nuclear morphology (more 

common in aged and DNA damaged cells [35, 13]) and the presence of H2AX (an early 

event in double-stranded DNA damage [36]). Our results show unequivocally that human 

AAA -SMC exhibit a greater extent of DNA damage than non-aneurysmal SMC, in 

agreement with a previous study that also examined H2AX and 8-dihydro-8-oxo-2'-

deoxyguanosine as a marker of oxidative DNA damage [26]. However, in that study AAA-

SMC were explored in situ in tissue sections, or isolated as primary cells by a cytospin 

method without culturing [26]. It is notable that in early-stage PCA-SMC, the presence of 

multi-nucleation was high in both VEH- and CCE-SMC alike. This was paralleled by a 

higher proportion of H2AX-positive cells in both groups, however these cells exhibited  few 

foci in each nucleus compared with  either human or porcine end stage aneurysmal cells (Fig. 

3C, F, I). It could be argued that the procedure of preparing and placing vessels in the 

bioreactor induces transient and reversible DNA damage although this would require 

additional corroboration. 

Persistence of DNA damage throughout culture and passaging is likely explained by the 

existence of epigenetic mechanisms. A number of microRNAs are known to regulate proteins 

involved in the DNA damage response pathway, for example miR-421 (targets ATM), miR-

24 (targets H2AX) and miR-125b (targets p53). Furthermore, activation of the DNA damage 

response up-regulates transcription and processing of a further subset of miRs including miR-

34, miR-145 and miR-215 (reviewed in [37]). In the present study we observed persistent 
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DNA damage in porcine cells without elevated levels of miR-145, therefore it is unlikely that 

miR-145 is a causative factor of the DNA damage we observe in both human and porcine 

aneurysmal SMC. miR-24 reportedly inhibits SMC proliferation [38] and miR-34 is up-

regulated in senescent SMC [39]; these are worthy of investigation and may represent 

promising candidates for future research.  

In summary, our data support the notion that end-stage aneurysmal SMC (both human and 

porcine) exhibit characteristics consistent with DNA damage and a senescence associated 

secretory phenotype. These features are not present in early-stage porcine SMC, suggesting 

that they are imparted later in the temporal progression of aneurysm development. Identifying 

the critical time point where DNA damage can first be detected may provide opportunities to 

develop interventions which could prevent or even reverse this damage. In this respect, 

application of a further interim time point in the bioreactor could provide an opportunity for 

evaluating potential therapeutic agents, introduced early and evaluated for efficacy at the later 

times. In the longer term, these data may lead to development of new pharmacological 

interventions for AAA in man. 
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Figure 1: Morphological features of aneurysmal SMC. Sub-confluent cells were cultured 

in full growth medium and imaged at x100 magnification. (A) AAA-SMC commonly 

exhibited granulation in the perinuclear region and often had a cytoskeleton that was visible 

under phase (arrows). SV-SMC and IMA-SMC did not exhibit these features. Representative 

images, with the previously described difference in cell size clearly evident [9]. Scale bar = 

100 ȝm. (B) Cells were fixed and stained with rhodamine phalloidin to visualise the F-actin 

cytoskeleton (red). Nuclei were stained blue with DAPI. Truncated and disorganised F-actin 

filaments were apparent under both low (x200) and high (x630) magnification, whereas SV-

SMC fibres were elongated and traversed the cells. Upper panel scale bar = 100 ȝm, lower 

panel scale bar = 20 ȝm. (C) and (D) The same analyses were performed on VEH-SMC and 

CCE-SMC from porcine carotid arteries maintained for 3 days in the bioreactor (‘early 

stage’). Granulation and aberrant cytoskeletal features were very infrequent under any 

conditions. (E) and (F) Conversely, perinuclear granulation and truncation of the F-actin 

cytoskeleton was readily visible in CCE-SMC from 12 day bioreactor experiments (‘end 

stage’) compared to VEH-SMC. 

Figure 2: Expression of markers related to DNA damage and senescence. SMC were 

cultured for 4 days in full growth media and RNA isolated. (A) Expression of SIRT-1, SIRT-

3 and SIRT-6, all of which are known to decline in senescent cells (n=10, *P<.05, ns=non-

significant vs. SV-SMC). (B) Expression of miR-145, a microRNA involved with DNA 

damage and that we have previously shown to be up regulated in senescent SMC from 

patients with type 2 diabetes [20] (n=12, ***P<.001 vs. SV-SMC or IMA-SMC). (C) and (D) 

In ‘early’ or ‘end-stage’ experiments, there was no difference in SIRT-1 or SIRT-3 

expression amongst any conditions. SIRT-6 was not detected in porcine cells (n=3). (E) and 

(F) Expression of miR-145 was not affected by CCE in either ‘early’ or ‘end-stage’ 

experiments (n=3), in contrast to the increase seen in AAA-SMC. 
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Figure 3: Aneurysmal SMC display features of DNA damage. Sub-confluent cells were 

cultured in full growth medium and their nuclear morphology analysed. (A) The proportion 

of multi-nucleated cells in ~100 cells per patient were quantified (n=20, ***P<.001 vs. SV-

SMC). Lower panel = representative images from AAA-SMC and SV-SMC with number of 

nuclei per cell indicated, scale bar = 100 ȝm. (B) Cells were fixed and the proportion of 

aberrant nuclei in ~100 cells per patient counted (n=6, *P<.05 vs. SV-SMC). Lower panel = 

representative images from AAA-SMC and SV-SMC, scale bar = 50 ȝm. Nuclei are stained 

with DAPI (yellow). Aberrant nuclei are denoted by an asterisk. (C) Cells were fixed and the 

proportion of ~150 cells per patient exhibiting double stranded DNA damage was quantified 

(n=6, ***P<.01 vs. SV-SMC). Lower panel = representative images from AAA-SMC and 

SV-SMC, scale bar = 100 ȝm. DNA damage positive nuclei counterstain pink through co-

localisation of H2AX (red) and DAPI (blue). (D-F) Identical experiments were performed 

on control and enzyme-treated porcine SMC from ‘early-stage’ experiments for (D) multi-

nucleation (n=3, ns = non-significant vs. VEH-SMC), (E) nuclear morphology (n=3, ns = 

non-significant vs. VEH-SMC) and (F) H2AX-positive nuclei (n=3, ns=non-significant vs. 

VEH-SMC). (G-I) Identical experiments were performed on control and enzyme-treated 

porcine SMC from ‘end-stage’ experiments for (G) multi-nucleation (n=3, **P<.01 vs. VEH-

SMC), (H) nuclear morphology (n=3, *P<.05 vs. VEH-SMC) and (I) H2AX-positive nuclei 

(n=3, ns=non-significant vs. VEH-SMC). 

Figure 4: Correlation of chronological age with features associated with pathological 

premature ageing. (A) Age of patients whose SMC were used in this study (AAA-SMC 

n=31, SV-SMC n=57, ***P<.001). (B-F) Correlations of chronological age with markers of a 

pathological premature ageing phenotype in both AAA- and SV-SMC (B) SIRT-1, (C) miR-

145, (D) multi-nucleation, (E) aberrant nuclear morphology, (F) H2AX-positive nuclei. Data 

were tested for normality using D’Agostino & Pearson omnibus normality test followed by 
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Pearson or Spearman correlation analysis as appropriate. r refers to the correlation between 

the two factors. All P values non-significant. 
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