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—— Abstract

We propose the first general technique for proving genuine lower bounds in expansion-based QBF
proof systems. We present the technique in a framework centred on natural properties of winning
strategies in the ‘evaluation game’ interpretation of QBF semantics. As applications, we prove
an exponential proof-size lower bound for a whole class of formula families, and demonstrate the

power of our approach over existing methods by providing alternative short proofs of two known
hardness results. We also use our technique to deduce a result with manifest practical import: in
the absence of propositional hardness, formulas separating the two major QBF expansion systems
must have unbounded quantifier alternations.

2012 ACM Subject Classification Theory of computation — Proof complexity
Keywords and phrases QBF, Proof Complexity, Lower-bound Techniques, Resolution

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.12

Acknowledgements We thank Meena Mahajan and Anil Shukla for helpful discussions on this
work. We also thank the anonymous reviewers for useful suggestions, which helped to improve
the presentation of this paper. Research was supported by grants from the John Templeton
Foundation (grant no. 60842) and the EU (CORCON project).

1 Introduction

The central problem in proof complexity is to determine the size of the smallest proof for a
given formula in a specified proof system. From its inception the field has borne tight and
fruitful connections to open problems in computational complexity (separation of complexity
classes [18, 14]) and first-order logic (separation of bounded arithmetic theories [32, 17]).

Proof complexity has since emerged as the natural theoretical counterpart of practical
SAT solving, a subfield of automated reasoning that has enjoyed major success in recent
years. Indeed, complexity of proofs and efficiency of solving are fundamentally related: the
trace of a SAT solver on an unsatisfiable instance can be interpreted as a proof of falsity,
whereby the correctness of each SAT solver is underpinned by a proof system. For example,
the dominant paradigm in SAT, conflict-driven clause learning (CDCL), produces proofs in
a system called resolution [14]. Lower bounds on resolution proof size therefore correspond
to best-case running time for CDCL solvers. Consequently, there has been intense research
activity focussed on proof-size lower bounds, and, in particular, general techniques for proof-
size lower bounds in propositional logic (cf. [40, 14]).

Proof-theoretic techniques are arguably even more valuable in the increasingly challen-
ging settings of modern solving. Consider the logic of quantified Boolean formulas (QBF),
which extends propositional logic with existential and universal quantification. The succinct
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encodings of problem instances afforded by this PSPACE-complete language [42] foster ap-
plications in diverse areas of computer science (automated planning [15, 22, 25, 39], formal
verification [4, 35, 36], ontological reasoning [30], and more [20, 41, 28, 33]). Moreover, the
more complex setting has spawned two distinct paradigms in solving and associated proof
systems.

One approach uses QCDCL [24], the natural extension of the SAT technology, under-
pinned by the P+Vred family of QBF proof systems [6].1 A second approach, implemented in
the solver RAReQs [26], is through expansion of universal variables, embodied by the proof
system VExp+Res [27]. Research in proof complexity has revealed that these two paradigms
are incomparable [27, 7] — that is, their underlying proof systems do not simulate one an-
other.? This observation lead to the proposal of the more sophisticated expansion system
IR-calc [7], which simulates both approaches.

It is fair to say that there is a distinct lack of general lower-bound techniques for QBF, es-
pecially for the expansion-based systems VExp+Res and |IR-calc. Researchers have of course
attempted to lift lower bound techniques from propositional logic, but with mixed suc-
cess. The celebrated size-width relations for resolution [3] are rendered ineffective in QBF
resolution [10]. Prover-delayer games are only applicable to weaker tree-like proofs, both
propositionally [38, 12] and in QBF [11]. Feasible interpolation [31] has been successfully
transferred to QBF [9], but is tailored towards instances of a rather specific syntactic form.

Moreover, lifting techniques from SAT to QBF can be misleading, since it inevitably
entails some degree of non-genuineness [16, 13]. The phenomenon of genuine QBF hardness
—where lower bounds do not originate from the propositional level, as formalised in the oracle
model of [13] — is a more suitable notion for the comparison of algorithms in quantified logic.
Recent work [5] introduced a new technique for genuine QBF lower bounds in the QCDCL
systems P+Vred. In this paper, we show that a semantically-grounded approach can also
be employed in expansion-based systems, fostering the general techniques for genuine lower
bounds that are currently missing.

Our contributions: framework, technique, and applications

We propose the first genuine lower-bound technique for QBF expansion. We introduce a
framework built upon two semantically-grounded measures: strategy size, the minimum
number of responses in a winning strategy; and weight, an extension of strategy size for
unbounded prenex CNFs. Our technique encompasses three valuable theorems that express
proof-size lower bounds for VExp+Res and IR-calc solely in terms of these measures:
Strategy size is an absolute proof-size lower bound in VExp+Res (Theorem 7).
Small strategy size implies short IR-calc proofs for bounded families (Theorem 9).
Weight is an absolute proof-size lower bound in IR-calc (Theorem 22).

All three theorems are proved by counting annotations, a unique feature of expansion
systems. Since propositional inferences preserve annotations, corollaries are invariably genu-
ine QBF lower bounds in the formal sense of [13]. Thus, by providing an account of genuine
hardness based on semantics, our technique offers valuable insight into the underlying reas-
ons for hardness in expansion systems. Applications of our theorems represent important
forward steps on at least three fronts.

1 More precisely, QCDCL is underpinned by Q-Res [29], the special case of P+Vred in which P is resolu-
tion.

2 Proof system P; simulates proof system P2 whenever P1-proofs and be transformed into Pa-proofs with
at most polynomial increase in proof size.
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Intuitive proofs. First, we provide short, semantically-intuitive proofs, supplanting the
complicated ad hoc arguments that hitherto represented the state-of-the-art in QBF ex-
pansion lower bounds. Whereas the authors of [27] needed to invoke Craig’s Interpolation
Theorem [19] on the explicit expansion of their unbounded formulas 7,® we show their hard-
ness as an immediate consequence of their manifest exponential strategy size. Similarly, the
in-depth and lengthy proof of hardness in IR-calc [8] for the unbounded formulas of Kleine
Biining et al. [29] is here replaced with a short argument that determines their exponential
weight based on game semantics.

New hard formulas. Second, we demonstrate new exponential IR-calc proof-size lower
bounds for an entire class of formula families. Using the product constructions of [5, 13],
we combine a group of Il CNFs F; with a minimally unsatisfiable CNF ¢. Provided the F;
have non-trivial strategy size (a natural stipulation), the strategy size of the product formula
grows exponentially with the size of ¢. We present product formulas with a X3 prefix, but
the method easily generalises to arbitrarily many quantifier alternations.

Bounded vs unbounded separations. Third, by applying our second theorem to bounded
families in general, we prove that, in the absence of propositional hardness, any separation
of the two expansion systems is unbounded. Given that IR-calc simulates Q-Res, this result
has a remarkable corollary: any genuine separation of Q-Res from VExp+Res is due to an
unbounded formula family.

Organisation. We begin with preliminaries in Section 2 followed by the necessary back-
ground for QBF expansion in Section 3. We present our lower-bound technique for bounded
CNFs and the associated applications in Section 4, and the extension to the unbounded case
follows in Section 5. We offer conclusions in Section 6.

2 Preliminaries

Quantified Boolean formulas. A literal is a Boolean variable or its negation, a clause is
a disjunction of literals, and a CNF is a conjunction of clauses. Throughout, we refer to a
clause as a set of literals and to a CNF as a set of clauses.

A quantified Boolean formula (QBF) in prenex conjunctive normal form (PCNF) is de-
noted F := Q- ¢, where (a) Q := Q17 --- Q,Z, is the quantifier prefiz, in which the Z;
are pairwise disjoint sets of Boolean variables called blocks, Q; € {3,V} for each i € [n], and
Q; # Q;41 for each i € [n—1], and (b) the matriz ¢ is a CNF over vars(F) := (J;_, (E; UU;).
A PCNF is k-bounded if it has at most k universal blocks.

We denote the existential (resp. universal) variables of F' by vars3(F) (resp. varsy(F)).
For a literal I, we write var(l) := z if [ = z or [ = —z. For a clause C, we write vars(C) :=
{var(l) : I € C'}, and denote the set of existential (resp. universal) literals in C' by C3 (resp.
Cy). The prefix Q imposes a linear ordering <p on the variables of F, such that z; <p z;
holds whenever ¢ < j, in which case we say that z; is right of z; and z; is left of z;. We
extend <p to the blocks of F' in the natural way.

A (partial) assignment p to the variables of F' is represented as a set of literals, typically
denoted {l1,...,1;}, where literal z (resp. —z) represents the assignment z + 1 (resp. z — 0).

3 This is our notation; in [27], the formulas are referred to simply as “(2)”.
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The CNF ¢[p] is obtained from ¢ by removing any clause containing a literal in p, and
removing the negated literals —ly,...,l; from the remaining clauses. The restriction of
F by p is Flp] := Q[p| - #[p], where Qlp] is obtained from Q by removing the variables of
p along with any quantifier whose associated block is rendered empty. For assignments to
single variables we may omit the braces; for example, we write F[I] for F[{l}].

QBF semantics. Semantics for PCNFs are neatly described by the two-player evaluation
game. Over the course of a game, the variables of a PCNF are assigned 0/1 values in the order
of the prefix, with the 3-player (V-player) choosing the values for the existential (universal)
variables. When the game concludes, the players have constructed a total assignment p to
the variables. The V-player wins if and only if p falsifies some clause of the matrix.

A V-strategy dictates how the V-player should respond to every possible move of the 3-
player. A V-strategy S for a PCNF F is a mapping from total assignments to varsz(F') into
total assignments to varsy(F'), such that, for each i € [n], S(«) and S(«’) agree on the first
¢ universal blocks whenever o and o agree on the first 7 existential blocks. A strategy S is
winning if and only if, for each « in the domain of S, ¢[aU S(«v)] contains the empty clause.
We use the terms ‘winning V-strategy’ and ‘countermodel’ interchangeably. A PCNF is false
if and only if it has a countermodel.

QBF proof systems. A refutational PCNF proof system (or calculus) P employs a set of
axioms and inference rules to prove the falsity of PCNFs. A P derivation of a clause C,,
from the input PCNF F is a sequence of clauses m := C,...,Cy, in which (a) each C; is
either an axiom, or is derivable from previous clauses using an inference rule, and (b) C,, is
the unique clause that is not the antecedent of an inference. The subderivation of C; in 7
is the subsequence terminating at C; containing only those clauses used in the derivation of
C;. The size || of a derivation is the total number of literals appearing in it. A refutation
is a derivation of the empty clause.

In this paper, we consider PCNF proof systems based on resolution. Resolution is a well-
studied refutational proof system for propositional CNF formulas with a single inference rule:
the resolvent C7 U Cy may be derived from clauses C; U {z} and Cy U {—z} (variable z is
the pivot). Resolution is refutationally sound and complete: that is, the empty clause can
be derived from a CNF iff it is unsatisfiable. There exist a host of resolution-based QBF
proof systems — see [8] for a detailed account.

For two PCNF proof systems P; and Py, a PCNF family F separates Py from Ps if F
has polynomial-size refutations in P; but not in Py. Py p-simulates Py if each Pp-proof can
be transformed in polynomial time into a Py-proof of the same formula [18].

3 Fundamentals of expansion-based calculi

In this section, we recall the definitions of VExp+Res [27] and IR-calc [7] and discuss the
underlying concepts of the calculi, including their use of annotations. We also cover proof
restrictions and strategy extraction, both of which are central to the following discourse.

Intuition and definition. To explain the concept of expansion, we consider the example
PCNF 3xvVu3t. ¢(x,u,t). The formula is semantically equivalent to 3x3t°3tL. ¢(z,0,t%) A
é(x,1,t'), in which the universal variable u has been ‘expanded out’, yielding a fully ex-
istentially quantified formula. Note that variable x, which is left of u, remains unchanged,
while we have to create two duplicate copies t° and ¢! for the variable ¢, which is right of w.
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To keep track of why we created these copies of ¢, we annotate them with the reason for their
creation, i.e., we write ¢t instead of t° (where —u corresponds to the assignment u + 0)
and likewise t* instead of t!. Syntactically, t™* and t* are just new, distinct existential
variables.

Since a single expansion doubles the formula size in the worst case, the complete expan-
sion of a PCNF can blow up exponentially. In the worst case, an existential in the scope of
n universals will require 2" duplicate copies. Keeping track of all these duplicates requires
annotations that are assignments to sets of the preceding universal variables.

In the basic theoretical model VExp+Res [27], each axiom clause is immediately annotated
with a fized, complete assignment to the universal variables. The proof then proceeds exactly
as a propositional resolution proof, with clauses in fully annotated variables. In short,
VExp+Res is propositional resolution on the conjuncts of a PCNF’s complete expansion.

IR-calc, defined in [7], improves on this approach by working instead with partial as-
signments. In addition to resolution, the calculus is equipped with an instantiation rule
by which partial annotations are grown throughout the course of the proof. To facilitate
instantiation, the o operator describes how partial assignments are combined. Formally, for
each PCNF F, we define ann(F') to be the set of partial assignments to varsy(F'). Then for
each 7,0 € ann(F'), we define Toc:=7U{l€c |-l & T}

The rules of both systems are given in Figure 1. Note that we write annotations as literal
strings (e.g. uj—us—uguy) rather than as sets.

Restrictions. This paper makes frequent use of restrictions of PCNFs and IR-calc refut-
ations, operations that derive from their counterparts in propositional logic. Let m be an
IR-calc refutation of a PCNF F.

As we will see, the purpose of restricting m by an assignment p is to obtain a refutation
of the restricted formula F[p]. Naturally, one applies the assignment to the refutation and
simplifies the result, eliminating all satisfied clauses in the process. The procedure differs
depending on the quantification of the assigned variable.

For an existential literal I, the restricted refutation [l] is obtained as follows. First,
remove all clauses containing a literal of the form [ for some 7 € ann(F), and from the
remaining clauses remove all literals of the form —I” for some 7 € ann(F'). Then 7[l] is the
subderivation of the first occurrence of the empty clause in the resulting sequence.*

For a universal literal | that is unopposed in 7 (meaning that - does not appear in the
annotations), the restricted derivation 7[l] is obtained from 7 simply by removing ! from
the annotations. We need only define restriction for unopposed universal literals.

Finally, for restriction by a partial assignment p := {l1,...,l,} with var(l;) left of
var(liy1) for each i € [n — 1], we define 7[p] := m,, where my := 7 and m; = m_1[l;]
for each i € [n], provided that each intermediate restriction is defined.

Restrictions of IR-calc refutations are central to strategy extraction, which rests upon
the following two propositions. The first implies that first block universal literals are always
unopposed. The second states that IR-calc refutations are closed under restrictions.

» Proposition 1. Let © be an IR-calc derivation from a PCNF F whose leftmost block U
is ungversal. There exists a function f such that, for each clause C' in w, (a) for each
annotation T in C, the projection of T to U is f(C), and (b) f(C") C f(C) for each C' in
the subderivation of C.

4 That such a clause and its subderivation remain is proved as part of Proposition 2. We note that this
subderivation may include weakening steps — the addition of arbitrary literals to a clause — but such
steps are easily erased from a refutation.
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C'is a clause in the matrix of F
=0 [axiom(C, 7)] Tis 3f total assi.ganlent to varsy (F') fz'xlsifying Cy
{r9 e Cs} 7(1) is the projection of 7 to the universal
variables left of var(l)

Cl U {SUT} CQ U {—‘ZL'T}

[res(Cy, Ca, x™)]

CrUC,
C is a clause in the matrix of F.
— Jaxiom(C)] 7 is the smallest assignment falsifying Cy
{I"® |1 e Cs} 7(1) is the projection of 7 to the universal

variables left of var(l)

7 is a partial assignment to varsy(F).
[inst(C, 7)) 7(l) is the projection of 7 to the universal
variables left of var(l).

C
{laor(l) | = C}

Cl U {IT} CQ U {—‘IT}
C1 Uy

[res(C1, Ca,27)]

Figure 1 The rules of VExp+Res [27] (top) and IR-calc [7] (bottom). Note that F' = Q- ¢ is the
input PCNF.

» Proposition 2 ([7]). Let m be an IR-calc refutation of a PCNF F and let | be a literal with
var(l) € vars(F'). Then wl[l] is an IR-calc refutation of F[l] if (a)  is existential, or (b) I is
universal and unopposed in m.

Strategy extraction. Strategy extraction is a prevalent paradigm in QBF proof complexity
[23, 6, 1, 37], and has already been studied for IR-calc [7]. In summary, there exists an
algorithm that takes a refutation and returns a countermodel (the extracted strategy).

Starting with an IR-calc refutation 7 of a PCNF F := 3X1VU; --- 31X, VU, 3X 41 - ¢, we
build a winning V-strategy S, viewing F' as a game of n rounds. In round one, the 3-player
chooses some total assignment a7 to X, and we collect the V-player’s response (31 simply
by negating the U; literals appearing in the annotations of w[a;]. By Proposition 1, all such
literals are unopposed, so 57 is indeed an assignment. Any absent variables are assigned to
0, extending 5 to a total assignment to U;. By Proposition 2, w[ay U f1] is a refutation of
AXoVU, - - - AX, VU, IX 41 - @[ag U By], i.e. of Flag U By], so we repeat the process to obtain
the V-player’s response for the next round.

In this way, one obtains a full response S(«) to each total assignment « to the existentials,
such that a U S(«) falsifies ¢. Moreover, S(a) and S(a’) must agree up to block U; if o and
o' agree up to block X;. This serves as a proof sketch for the following proposition.
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» Proposition 3 ([7]). If 7 is an IR-calc refutation of a PCNF F, then the extracted strategy
for w is a winning V-strategy for F.

4 A technique for bounded formula families

In this section, we present our results for bounded PCNF families, culminating in a theorem
with obvious practical relevance: in the absence of propositional hardness, separation of
IR-calc from VExp+Res is due to an unbounded formula family. We employ the following
(unbounded) formulas from [27] (equation (2) in Section 6) as a running example.

» Definition 4 ([27]). Let J be the PCNF family defined by J(n) := Q7 (n)-¢5(n), where

Qs(n)
¢7(n)

The authors of [27] showed that this PCNF family separates IR-calc from VExp+Res.> In
light of our results, the fact that 7 is an unbounded family is not coincidental; indeed, we
show that coercing J into a bounded family by variable reordering yields a PCNF family
that is hard even for IR-calc.

Q1---Q,, where Q; := Jx;Vu,;Ito;_1to; for each i € [n],
{(=t1y .y mtan) P UL {(mmis toimn), (mwiy tim1), (24, t2:), (wiyt2q)} -

4.1 IR-calc lower bounds by strategy size

Our principal insight for bounded families is that proof-size lower-bounds can be obtained
by appealing to a natural and semantically-grounded measure we call strategy size. The
strategy size of a false PCNF is the minimum number of responses in a winning strategy for
the V-player. We recall that a winning strategy, or countermodel, is represented formally
as a function (cf. Section 2) whose range is the set of responses. Strategy size is therefore
defined as the minimum cardinality of the range of a countermodel.

» Definition 5 (strategy size). The strategy size of a false QBF F is the minimum cardinality
of the range of a countermodel for F'. The strategy size of a PCNF family F is the function
V£ : N — N mapping n to the strategy size of F(n).

» Example 6. For each n € N, the strategy size of J(n) is 2", so the strategy size of J is
V 7(n) = 2™. To see this, observe that the only way for the V-player to win the evaluation
game by force is to set w; not equal to x; for each ¢ € [n]. This necessitates at least 2"
distinct responses. On the other hand, the range of a countermodel for J(n) is at most 2",
since there are exactly n universal variables.

Now, recall that VExp+Res works by applying propositional resolution to the clauses in
the complete universal expansion of a PCNF. In fact, the conjuncts of the full expansion
are exactly the allowable axiom clauses. An interesting question arises: how many such
clauses must be introduced as axioms? It is perhaps not too difficult to see that the smallest
unsatisfiable subset of the allowable axioms has cardinality not less than strategy size —
this holds because the initial instantiations, one per axiom, encompass a complete set of
responses for a winning strategy. Hence strategy size is an absolute proof-size lower-bound
in VExp+Res.

5 In fact, the authors separated Q-Res from VExp+Res; since IR-calc p-simulates Q-Res [7], the result
stated in the text is an immediate corollary.
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» Theorem 7. A PCNF family F requires VExp+Res refutations of size Vx(n).

The hardness of J in VExp+Res is an immediate corollary to Theorem 7. Moreover,
the fact that J has short IR-calc refutations implies that Theorem 7 does not lift to IR-
calc. As we will see, the crux of this counterexample is that J is unbounded. We can in
fact use strategy size as the basis for a lower-bound technique in IR-calc if we restrict our
attention to bounded families. We introduce a technique based on counting annotations in
the refutation. (Refutation size is clearly greater than the number of distinct annotations.)
Of particular importance is the final annotation, the annotation to the final pivot.

» Definition 8. Let 7m be an IR-calc refutation, and let ™ be the unique Boolean variable
for which the empty clause is derived in 7 by resolution over the pivot variable 7. Then 7
is the final annotation of .

Now, if we dig into the details of the strategy extraction paradigm, we unearth a useful
corollary to Proposition 1 from Section 3: Given a refutation of a PCNF whose first block U
is universal, all the U-literals appearing in the annotations of 7 occur in the final annotation.
This fact is crucial in the proof of the following theorem.

» Theorem 9. A k-bounded PCNF family F requires |IR-calc refutations of size {/V z(n).

Proof sketch. Let F be a k-bounded PCNF family. We apply the pigeonhole principle
multiplicatively to deduce the following: for any countermodel S for F(n), there exists some
i € [k] for which the assignments to the i*" universal block U; number at least | {/V£(n)].
By Proposition 1 and the definition of strategy extraction, each such partial response appears
as the projection to U; of the final annotation of 7[a], extended by zeros to a total assignment
to U;, for some existential assignment a. By the definition of restriction, each such final
annotation is in fact the projection to U; of an annotation in the original refutation. It
follows that 7 contains at least {/Vx(n) distinct annotations. <

We illustrate the effectiveness of Theorem 9 by proving that natural 33 versions of J are
hard even in IR-calc. We transform J into a bounded family 7’ by reordering the quantifier
prefix, while preserving the strategy size.

» Definition 10. Let J’ be the PCNF family defined by J'(n) := Qg (n) - ¢7(n), where
Q7/(n) :=3xy -z, Yuy - - up Ity - - - toy.

To see that exponential strategy size is preserved in J’, observe that the unique winning
strategy for the V-player is to play u; not equal to z; for each i € [n]. Since J' is a 1-bounded
PCNF family with V 7/(n) = 2", Theorem 9 yields an exponential proof-size lower bound.

» Theorem 11. The PCNF family J' requires exponential-size |R-calc refutations.

4.2 A new class of bounded hard families

Applying Theorem 7, we present a blueprint for a PCNF family with large strategy size,
yielding a whole class of bounded families that are hard for IR-calc. For any CNF ¢ and
clause C, let us write ¢ @ C:= {C"UC : C' € ¢} for the CNF obtained by augmenting each
clause in ¢ with the literals of C'. Consider the following construction, which is inspired by
the random QBFs in [5].

» Definition 12. Let k : N — N be a function satisfying k(n) = n*(!). Further, for each
n € N, let {C7,.. .,O,?(n)} be a minimally unsatisfiable CNF over variables 7", and, for



O. Beyersdorff and J. Blinkhorn

i € [k(n)], let IXVU* - ¢ be variable-disjoint false PCNFs with strategy size greater than
1. Then the PCNF family P defined by P(n) := Qp(n) - ¢p(n) is a linear product, where

k(n)
Qp(n) == 3XT -+ Xj(,)VUT' - U,y 3T, and  ¢p(n) == U (o7 ® CF).

i=1

The intuition behind the construction of a linear product is this: to win the evaluation
game on P(n), the V-player must win each ‘subgame’ IXVU! - ¢ in order to leave each
clause C}' on the board. The non-trivial strategy size of the subgames causes the overall
strategy size to blow up exponentially.

» Lemma 13. Let P be a linear product. Then Vp(n) = exp(n®M).

Proof sketch. Let P be defined as in Definition 12. The only winning approach for the V-
player — to reduce each CNF ¢]' ® C}* to the clause C]' — encompasses winning strategies for
each PCNF F* := 3X"VU" - ¢}. Since the F}" are pairwise variable disjoint, and therefore
semantically independent from one another, one may deduce that the strategy size of P(n)
is at least the product of the individual strategy sizes of the F}*. Hence the strategy size of
P(n) is at least 25", Tt follows that Vp(n) = exp(n?®). <

Since a linear product is 1-bounded, applying Theorem 9 yields an IR-calc lower bound.

» Theorem 14. Any linear product requires superpolynomial-size IR-calc refutations.

4.3 Separations and propositional hardness

As a further application of Theorem 9, we prove an interesting theorem with clear relevance
to QBF solving.

First, consider a PCNF F := Q- ¢ that has a countermodel S. The elements of the range
of S are all total assignments to the universal variables of F', and it should be clear that
instantiating each clause in ¢ by each element of rng(.S) gives rise to an unsatisfiable set of
clauses in annotated variables. Let us denote this set 1) := inst(¢, rng(S)), and say that F'
expands to . Further, let us say that a PCNF family F ezpands to a CNF family f if and
only if F(n) expands to f(n), for each natural number n.

An immediate corollary to Theorem 9 is that any bounded PCNF family with polynomial-
size IR-calc refutations must have polynomial strategy size; hence any such family expands
to a CNF family of polynomial-size. This observation leads to the following theorem.

» Theorem 15. Let F be a bounded PCNF family separating IR-calc from VExp+Res. Then
F expands to a polynomial-size CNF family requiring superpolynomial-size resolution refut-
ations.

Proof. Let F(n) := Qz(n) - ¢x(n). Since F has polynomial-size IR-calc refutations, Vx
is polynomially bounded, by Theorem 9. Hence, there exist countermodels S(n) for F(n)
for which |rng(S(n))| is polynomially bounded, and the number of literals in the CNF
f(n) := inst(¢x(n),rng(S(n))) is polynomially bounded. Therefore, the function f : n +—
f(n) is a CNF family. Observe that every clause in f(n) may be downloaded as an axiom
in a VExp+Res derivation from F(n), and that F requires superpolynomial-size VExp+Res
refutations. It follows that polynomial-size resolution refutations of f do not exist. <
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The import of Theorem 15. The essence of the result can perhaps be captured as follows:
if the lower bound is not derived from propositional hardness, a separation of IR-calc from
VExp+Res must be due to an unbounded family of PCNFs. In the spirit of [13], it is natural
to label this kind of separation as genuine, since the VExp+Res lower bound is due to a large
expansion, rather than a large number of resolution steps.

Moreover, since IR-calc simulates the well-studied QBF proof system Q-resolution (Q-Res
[29]), Theorem 15 holds when IR-calc is replaced by Q-Res. Thus, a ‘genuine separation’ of
Q-Res from VExp+Res requires an unbounded PCNF family.

As the theoretical models of VExp+Res and Q-Res underpin the two major paradigms in
QBF practice — expansion-based solving [27] and QCDCL [24] — Theorem 15 has a clear prac-
tical import. A typical QBF expansion solver will use a SAT solver as an oracle, assuming
that SAT calls are inexpensive. According to Theorem 15, if bounded formulas separating
Q-Res from VExp+Res exist, they may still be easy for an expansion-based algorithm given
access to a SAT oracle, and hence offer no insight into how to improve the algorithm.

5 The Weight Theorem: conquering unbounded families

In this section, we extend the lower-bound technique to cover unbounded PCNF families.
Since the technical details are quite demanding, the proof of the main theorem is preceded
by a brief overview of the technique. We conclude with an application: a very short proof
of hardness for what is arguably the most famous PCNF family.

5.1 Outline of the technique

We invite the reader to consider once again the example PCNF family J (Definition 4)
from the previous section. That family has exponential strategy size and linear-size IR-calc
refutations. This illustrates that the responses from the extracted strategy do not always
appear as annotations in an IR-calc refutation. However, with careful analysis, we can show
that certain portions of the responses always will.

Our method makes use of a particular class of assignments: assignments to all existentials
except those in the final block. We call such assignments restrictors.

» Definition 16. Let Z be the rightmost block of a PCNF F. Any total assignment to the
variables varsg(F) \ Z is a restrictor of F'.

Now, take a refutation m of a PCNF F and select a restrictor «. First, apply strategy
extraction to 7, and consider the response S(«) in the extracted strategy S. Then compare
this response with the final annotation 7, of the restricted refutation w[a]. On the one
hand, the definition of strategy extraction ensures that the literals in 7, are a subset of the
response S(«). We combine this with a proof that certain critical variables must occur in
To. As a result, we obtain a subset of the response to «, called the critical response, that
must be contained in the annotation 7,. This is the central observation of our method,
depicted in Figure 2. Note that 7, occurs also as an annotation in the original refutation.

Proof of the Weight Theorem. The critical variables of a PCNF are those universals that
appear in every subset of the matrix that is false under the quantifier prefix. The projection
of a restrictor’s response to its critical variables is termed the critical response.

» Definition 17. Let S be a countermodel for a false PCNF F := Q- ¢, and let a be a
restrictor of F. The critical variables of F are the universal variables appearing in every
CNF ¢’ for which (a) ¢’ C ¢ and (b) Q- ¢’ is false. The critical response to o with respect
to S and F is the projection of S(«a) to the critical variables of F[a].
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Refutation of F
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Qvariables anrib
’ critical response to @ C 7, ‘

Figure 2 Depiction of the central observation of our lower-bound technique. The final statement
is proved in Lemma 18.

The key notion in our argument is the following relationship between the critical response
to a restrictor and the final annotation of the restricted refutation.

» Lemma 18. Let S be the extracted strategy for a IR-calc refutation m of a PCNF F. Then,
for each restrictor o of F, the final annotation of w[a] contains the critical response to a
with respect to S and F.

Proof sketch. The lemma is vacuously true if F' contains no universal variables, so we
assume otherwise. Let « be a restrictor of F, and let 7[a] be the final annotation of 7[a]. In
combination with Proposition 1, the fact that F[«] has a IIy prefix is enough to deduce that
vars(7,) contains the critical variables of F[a]. Hence, the lemma follows from the claim
that 7, C S(a), a fairly straightforward consequence of the definition of strategy extraction,
and Propositions 1 and 2. <

Since the final annotation of 7[«] appears also in 7, any k& mutually inconsistent critical
responses give rise to k distinct annotations in 7. For that reason, given a winning V-strategy
S, we define the critical response graph that has a vertex for each critical response and an
edge between each inconsistent pair. Hence, as we prove subsequently, the number of distinct
annotations in a refutation is lower bounded by the clique number of the critical response
graph for the extracted strategy. The clique number of a graph G is denoted w(G).

» Definition 19. Let S be a countermodel for a PCNF F. The critical response graph of S
with respect to F' is the undirected graph G(S, F') defined as follows: (a) For each restrictor
aof F, G(S, F) has a vertex labelled with the critical response to a with respect to S and F;
(b) G(S, F) has an edge between two vertices if and only if their labels are inconsistent.

» Lemma 20. Let S be the strategy extracted from an IR-calc refutation © of a PCNF F.
Then there are at least w(G(S, F)) distinct annotations in w.

Proof. Let k := w(G(S, F)), and let aq,...,ax be restrictors of F whose critical responses
(with respect to S and F') are pairwise inconsistent. For each ¢ € [k], the final annotation 7,
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of 7[a;] contains the critical response to «;, by Lemma 18, and 7, appears as an annotation
in 7 (an existential restriction of m preserves any annotation that is not deleted). Hence, for
each 4,5 € [k] with i # j, 7o, and 7, are distinct annotations appearing in 7. |

An IR-calc proof is at least as large as the number of distinct annotations; hence, the
minimal clique number of a critical response graph for a countermodel yields a refutation-
size lower bound. This motivates the following definition, in which we define the weight of
a PCNF F, denoted u(F'), to be equal to this minimal clique number.

» Definition 21. The weight u(F') of a false PCNF F is the minimum value of w(G(S, F'))
over the countermodels S of F.

The main result of this section, the Weight Theorem, is almost immediate from Lemma 20.

» Theorem 22 (Weight Theorem). The size of any IR-calc refutation of a PCNF F is at
least the weight of F'.

Proof. Let S be the strategy extracted from a refutation m of F. Since S is a winning
V-strategy by Proposition 3, the weight of F' is at most w(G(S, F)). By Lemma 20, at least
w(G(S, F)) distinct annotations, and at least as many distinct literals, appear in 7. <

5.2 Application to the formulas of Kleine Biining et al.

The final application of our framework is to the familiar QBFs introduced in [29] which
occupy a central place in the QBF proof complexity literature (e.g. [21, 8, 2, 34]; the
original formulas from [29] are called ®; and appear there in the proof of Theorem 3.2).
We state the formulas and then prove that they have exponential weight. The IR-calc lower
bound follows immediately, by the Weight Theorem (Theorem 22).

» Definition 23 ([29]). Let K be the PCNF family defined by K(n) := Qx(n) - ¢x(n), where

Ql(:(n) = Hxlylv'ul - Elg;nynvunﬂtl cet

{(_‘xl, _\yl), (J?n, Uy s _‘tl, BN _‘tn)7 (yn, Uy, _‘tlv e, _‘tn)}
-1

Uich 1@, wis ~@ien, ~wir1), (Yi s, = @ig1, ~Wita)}

Uity { (wis t), (muis ti) } -

<

A

2
|

» Lemma 24. For cach n € N, the weight of K(n) is at least 2™.

Proof sketch. Consider the set A of restrictors of K(n) that contain exactly one of —x; and
—y; for each i € [n], and let o € A. For any countermodel S of (n), the gameplay implies
that —u; € S(a) & —z; € a and u; € S(a) & —w; € «, for each i € [n]. Moreover, it can be
verified that varsy(IC(n)) are all critical in K(n)[a]. It follows that every total assignment
to the universals is the critical response to some restrictor in A. Hence, the critical response
graph G(S,/K(n)) has a 2™-clique. <

Applying the Weight Theorem concludes a very short proof of this historic QBF result.

» Theorem 25 ([29, 8]). The family KC(n) requires exponential-size |R-calc refutations.
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6

Conclusions

We introduced the first technique for genuine QBF lower bounds in expansion systems. As
applications, we proved exponential IR-calc lower bounds for a new class of formula families,
and produced greatly simplified proofs of two known hardness results. Whereas our work on

unbounded families was based on restrictions up to the penultimate existential block, the
technique could be explored in greater generality by considering restrictions up to the 7"
block. We also applied the technique to prove that any bounded separation of IR-calc from

VExp+Res is due to a non-genuine lower bound. It remains an open problem whether such

a bounded separation exists.
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