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Abstract. Measurements of OH, HO2, RO2i (alkene and

aromatic-related RO2) and total RO2 radicals taken during

the ClearfLo campaign in central London in the summer

of 2012 are presented. A photostationary steady-state calcu-

lation of OH which considered measured OH reactivity as

the OH sink term and the measured OH sources (of which

HO2+NO reaction and HONO photolysis dominated) com-

pared well with the observed levels of OH. Comparison with

calculations from a detailed box model utilising the Master

Chemical Mechanism v3.2, however, highlighted a substan-

tial discrepancy between radical observations under lower

NOx conditions ([NO] < 1 ppbv), typically experienced dur-

ing the afternoon hours, and indicated that the model was

missing a significant peroxy radical sink; the model overpre-

dicted HO2 by up to a factor of 10 at these times. Known

radical termination steps, such as HO2 uptake on aerosols,

were not sufficient to reconcile the model–measurement dis-

crepancies alone, suggesting other missing termination pro-

cesses. This missing sink was most evident when the air

reaching the site had previously passed over central Lon-

don to the east and when elevated temperatures were experi-

enced and, hence, contained higher concentrations of VOCs.

Uncertainties in the degradation mechanism at low NOx of

complex biogenic and diesel related VOC species, which

were particularly elevated and dominated OH reactivity un-

der these easterly flows, may account for some of the model–

measurement disagreement. Under higher [NO] (> 3 ppbv)

the box model increasingly underpredicted total [RO2]. The

modelled and observed HO2 were in agreement, however,

under elevated NO concentrations ranging from 7 to 15 ppbv.

The model uncertainty under low NO conditions leads to

more ozone production predicted using modelled peroxy rad-

ical concentrations (∼ 3 ppbv h−1) versus ozone production

from peroxy radicals measured (∼ 1 ppbv h−1). Conversely,

ozone production derived from the predicted peroxy radicals

is up to an order of magnitude lower than from the observed

peroxy radicals as [NO] increases beyond 7 ppbv due to the

model underprediction of RO2 under these conditions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

With more than 50 % of the global population residing in ur-

ban conurbations, poor urban air quality has a demonstra-

ble effect on human health. OH and HO2 radicals (collec-

tively termed HOx), together with RO2 radicals, mediate vir-

tually all of the oxidative chemistry in the atmosphere. The

hydroxyl radical initiates the removal of primary emissions,

including toxic gases such as CO and benzene, leading to

the formation of peroxy radicals which, in the presence of

NO, form secondary pollutants such as NO2, O3 and partic-

ulates. Public Health England (2014) reports that pollutants

contribute to 29 000 deaths a year in the UK, with a reduc-

tion in life expectancy (by an average of 6 months) caused

by long-term exposure to pollutants, and the cost to society

is estimated at up to GBP 20 billion per year. In areas of

London up to 1 in 12 deaths are at least partly attributable

to air pollution, yet big uncertainties still remain relating to

the chemistry, transformation and removal rate of primary

emissions in large urban conurbations, meaning our ability

to predict pollution episodes is compromised.

The EU air quality guidelines recommend that ozone con-

centrations do not exceed 60 ppbv for longer than an 8 h

period (http://www.eea.europa.eu/themes/air/ozone), with a

10 ppbv increment in long-term exposure to ozone increasing

the risk of death from respiratory causes by ∼ 3–4 % (Jerrett

et al., 2009). Short-term exposure to elevated levels of tro-

pospheric ozone have been associated with several adverse

health effects including, for example, exacerbation of asthma

in children (Thurston et al., 1997).

Despite successful reductions in many ozone precursors

across Europe, ozone levels have increased at certain urban

sites due to the long-term decrease in NOx emissions. For

example, Bigi and Harrison (2010) report a steady increase

in ozone between 1996 and 2008 in North Kensington, an

urban background site in London.

To implement efficient reduction strategies for ozone, a de-

tailed understanding of the factors controlling free radicals is

critical since the reaction of HO2 and RO2 radicals with NO,

forming NO2, followed by the subsequent photolysis of NO2

represents the only net formation pathway to tropospheric

ozone:

OH+RH(+O2)→ RO2+H2O (R1)

NO+RO2→ NO2+RO (R2)

RO+O2→ R−HO+HO2 (R3)

NO+HO2→ NO2+OH (R4)

NO2+hv→ NO+O (R5)

O+O2
M
−→ O3 (R6)

NO+O3→ NO2+O2. (R7)

Measurements of radicals have been made at various ur-

ban and suburban locations worldwide, both during the sum-

mer and winter (Stone et al. (2012) and references therein).

Observations of OH and HO2 in the urban atmosphere have

primarily been made using fluorescence assay by gas expan-

sion (FAGE), and comparisons with predicted radical con-

centrations using chemistry box models constrained with co-

located radical precursor measurements have revealed vary-

ing levels of success in replicating observations. Radical con-

centrations have been reported to be underpredicted by mod-

els (Ren et al., 2003; Martinez et al., 2003; Emmerson et al.,

2005a; Chen et al., 2010; Lu et al., 2012, 2013), overpre-

dicted (George et al., 1999; Konrad et al., 2003; Dusanter

et al., 2009) and, at times, models and measurements have

been reported to be in reasonable agreement, to within 40 %

(Shirley et al., 2006; Emmerson et al., 2007; Kanaya et al.,

2007; Sheehy et al., 2010; Elshorbany et al., 2012; Ren et

al., 2013; Griffith et al., 2016). Often the level of agree-

ment observed was found to be dependent on the time of day

(Brune et al., 2016), with poorest agreement between mod-

elled and measured OH concentrations generally observed

at night. Griffith et al. (2016) found that the level of agree-

ment between modelled and measured HO2 was dependent

on whether it was a weekday or weekend: the model un-

derpredicted HO∗2 by a factor of 3.4 during the week, when

NO mixing ratio were greater than 4 ppbv but agreed well on

weekends (observed to modelled HO∗2 = 1.3) when NO con-

centrations were below 4 ppbv (where HO∗2= [HO2]+
∑

iαi

[RO2i], and αi is the mean fractional contribution of the

RO2 species that interfere (RO2i)). In a number of studies,

the model–measurement discrepancy was noted to increase

as NOx levels increased beyond ∼ 1 ppbv (Martinez et al.,

2003; Ren et al., 2013; Brune et al., 2016). This increasing

underprediction of the free radicals (particularly for HO2)

with increasing observed NOx concentrations may reflect

inaccuracies in the radical propagation steps in the model,

which cycle HO2 to OH. In light of the recently reported RO2

interference suffered by FAGE (Fuchs et al., 2011; Whalley

et al., 2013) when detecting HO2, however, it is possible that

the measured HO2 under these conditions may have been in-

creasingly influenced by the presence of RO2 species. The

extent of this interference will be dependent upon the level

of interference suffered by the specific FAGE instrument

utilised and the concentration of those RO2 species that in-

terfere (principally aromatic, alkene and > C3 alkane-derived

RO2 species) and were present in a particular environment.

Similarly, two FAGE groups have reported interferences in

their OH measurements made using wavelength modulation

in the presence of ambient levels of ozone and alkenes (Mao

et al., 2012; Novelli et al., 2014), whilst, in contrast, good

agreement between OH measurements made using FAGE

and differential optical absorption spectroscopy (DOAS) dur-

ing chamber measurements suggests minimal interferences

in the presence of ozone and alkenes for a third FAGE in-

strument (Fuchs et al., 2013). This lack of interference was

further corroborated in recent laboratory tests (Fuchs et al.,

2016), although an artefact signal under dark conditions (de-

Atmos. Chem. Phys., 18, 2547–2571, 2018 www.atmos-chem-phys.net/18/2547/2018/



L. K. Whalley et al.: Understanding in situ ozone production in the summertime 2549

riving from NO3 in the presence of H2O) was identified.

These potential artefacts make it difficult to identify trends in

earlier model–measurement comparisons and to assess how

well the models are performing under a range of chemical

conditions. Some of the more recently published radical mea-

surements at urban sites include corrections for OH interfer-

ences (e.g. Ren et al., 2013; Brune et al., 2016; Griffith et

al., 2016) and radical measurements from the MEGAPOLI

project, which took place at a suburban site close to Paris

employed the chemical ionisation mass spectrometry (CIMS)

technique to make observations of OH and the sum of HO2

and RO2 species rather than FAGE (Michoud et al., 2012).

HO∗2 model–measurement comparisons are now often re-

ported (rather than HO2) to take into account contributions

from RO2 species (Lu et al., 2013; Griffith et al., 2016) and

very recently Tan et al. (2017) presented interference-free

HO2 observations alongside RO2 observations which were

made using the FAGE technique coupled to a flow reac-

tor (Fuchs et al., 2008) at a rural site in Wangdu, China.

In contrast to some of the earlier HO2 model–measurement

comparisons which diverged at NO concentrations > 1ppbv

with models increasingly underpredicting the levels of ob-

served HO2, the predicted levels of HO2 were in good agree-

ment with HO2 observations made in Wangdu over the whole

range (0.1–4 ppbv) of NO encountered (Tan et al., 2017).

However, the authors did report an increasing model under-

prediction of the observed RO2 with increasing NO (Tan et

al., 2017).

Despite uncertainties in some of the earlier radical ob-

servations and discrepancies between observed and pre-

dicted radical concentrations, detailed modelling studies

have demonstrated a number of common themes relevant to

urban photochemistry:

1. The primary source of OH from the photolysis of ozone

and subsequent reaction of the excited state oxygen

atom with H2O, which is often considered the dominant

radical source in many other environments (e.g in the re-

mote marine atmosphere, Whalley et al., 2010), tends to

only play a minor role in urban centres, with this source

accounting for < 6 % of the total radical sources during

MCMA-2006 campaign (Dusanter et al., 2009), which

took place in Mexico City.

2. Owing to the prevalence of carbonyl and dicarbonyl

species in the urban atmosphere, a number of stud-

ies have highlighted the role that the photolysis of

these species play as key radical precursors (and,

hence, ozone precursors) in the summertime: during the

SHARP-2009 project that took place in Houston, Texas,

the photolysis of formaldehyde accounted for 14 % of

radical production, with the photolysis of other OVOCs

contributing a further 15 % (Ren et al., 2013). During

the CAREBeijing-2006, HCHO was estimated to con-

tribute ∼ 30 % to the overall radical production (Lu et

al., 2013).

3. Ozonolysis reactions have been reported as important

primary radical sources in a number of studies, for ex-

ample accounting for 67 % of the OH initiation in Birm-

ingham during the PUMA campaign in winter (Emmer-

son et al., 2005b), whilst in Tokyo during the IMPACT

campaign ozonolysis reactions were the dominant radi-

cal source at night-time in winter (Kanaya et al., 2007).

4. The photolysis of HONO, which takes place at longer

wavelengths than ozone photolysis, has been demon-

strated to act as an important OH source in the morning

(Kleffmann, 2007). At urban sites (including London),

significant concentrations of HONO (often several hun-

dred pptv) have been reported to persist throughout the

day (Lee et al., 2016), and so HONO should be consid-

ered an important OH source throughout sunlit hours,

and not just at sunrise, in these environments. Dusanter

et al. (2009) found that HONO photolysis contributed

35 % of daytime HOx production in Mexico City dur-

ing MCMA-2006, whilst Tan et al. (2017) found that

HONO photolysis was the most important primary rad-

ical source in Wangdu in the North China Plain.

There have now been several observations of total OH re-

activity (kOH) in urban environments with some of the high-

est reactivities of > 120 s−1 recorded in megacities such as

Mexico City, London and Paris. In many of the large cities

(Houston, New York City, Mexico City), OH reactivity has

been found to be dominated by anthropogenic hydrocarbons,

CO and NOx . OVOCs have been highlighted as significant

OH sinks in a number of urban studies, contributing between

11 and 24 % during summertime at these urban centres (Mao

et al., 2010b), whilst we recently reported that the oxidation

products of biogenic emissions contributed a significant frac-

tion to the total OH reactivity observed in London (Whal-

ley et al., 2016). A measurement of OH reactivity can pro-

vide an additional model target, with model–measurement

comparisons helping to identify unmeasured primary emis-

sions or unmeasured oxidised intermediates which may pro-

mote radical propagation. Furthermore, when coupled with

OH (and HO2) observations, the closure of OH production

(POH) and OH loss (DOH= kOH[OH]) terms can be critically

assessed independent of a model. In an urban atmosphere

the dominant OH sources include recycling from HO2+NO,

HONO photolysis, O(1D) (from ozone photolysis) +H2O

and ozonolysis reactions. In the recent study in the Wangdu

region of China, POH was found to equal DOH within uncer-

tainties throughout the day (Tan et al., 2017), demonstrating

consistency between the observed radical concentrations and

observed OH reactivity (Fuchs et al., 2017). Several previ-

ous studies in urban regions, however, have found that POH

is balanced by DOH during the afternoon but not in the morn-

ings, with measured POH approximately twice DOH from

sunrise to noon (Brune et al., 2016). This imbalance of POH

and DOH suggests either a negative bias of OH reactivity

measurements, an error in the HO2 measurement or uncer-

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018
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tainties in the chemistry of other key OH sources, e.g. HONO

(Brune et al., 2016).

Urban radical measurements can be used to estimate lo-

cal ozone production (Kanaya et al., 2007; Ren et al., 2013;

Brune et al., 2016) by approximating the rate of ozone pro-

duction to the production rate of NO2 from the reaction of

NO with HO2 and RO2 radicals and assuming instantaneous

O3 production following photolysis of NO2 at wavelengths

< 400 nm. Any loss of NO2 which does not yield O3, for ex-

ample the reaction of OH or RO2 radicals with NO2, and also

deposition, should also be considered:

P (O3)=
(

kHO2+NO [HO2] [NO]+ kRO2+NO [RO2] [NO]
)

−
(

kOH+NO2+M [OH][NO2] [M]

+kRO2+NO2+M [RO2] [NO2] [M]
)

. (1)

Given the short lifetime of the radicals, this estimate provides

a method of gauging the extent to which the fast local chem-

istry influences the net ozone levels observed relative to O3

generated during transport. A shortcoming of this approach

in earlier studies is that often the RO2 concentration used in

Eq. (1) is estimated or modelled, as traditionally the FAGE

technique measures OH and HO2 only. In the Wangdu study,

however, Tan et al. (2017) using observed RO2 demonstrated

that models may underpredict ozone production at high NO

due to an underestimation of the RO2 radical concentration.

In the present paper we utilise observations of OH and

HO2 radicals made using the FAGE technique and RO2 rad-

icals using the ROxLIF method (Whalley et al., 2013). The

radical observations were made during the Clean air for Lon-

don project (ClearfLo) during the summer of 2012 and are

used to directly determine local ozone production. To assess

the factors controlling the radical budget and in turn ozone

production, we have employed a detailed box model based

on the MCM v3.2 (Master Chemical Mechanism). By com-

paring model predictions to radical observations the key re-

actions taking place in London that are ultimately controlling

the air quality are identified and uncertainties in our current

understanding of urban oxidation chemistry are highlighted.

2 Experiment

2.1 Site description

The ClearfLo intensive operation period (IOP) ran from

22 July to 18 August and overlapped with the London 2012

summer Olympics. An extensive suite of instrumentation was

deployed and operated from the grounds of Sion Manning

School in North Kensington (51◦31′16′′ N, 0◦12′48′′W),

which is located adjacent to a long-term air quality moni-

toring site in North Kensington (Bigi and Harrison, 2010).

Further details on the campaign and location may be found

in Bohnenstengel et al. (2015).

2.2 FAGE instrument description

The University of Leeds ground-based FAGE instrument was

deployed to the North Kensington site and made measure-

ments of OH, HO2 and RO2 radicals. Further details on the

instrument for OH and HO2 detection can be found in Whal-

ley et al. (2010) with only an outline of the specific set-up

and running conditions during ClearfLo described here. The

radical measurements were made from a 20 ft air-conditioned

shipping container which had been converted into a mobile

laboratory. The instrument consists of two FAGE detection

cells which were located on the roof of the shipping con-

tainer, in a weatherproof housing, at a height of 3.5 m. A

Nd : YAG pumped Ti : Sapphire laser (Photonics Industries)

generated pulsed (repetition rate of 5 kHz), tunable near-IR

radiation, which was doubled in frequency and tripled to pro-

vide UV light at 308 nm and was used to excite OH via the

Q1(1) transition of the A26+, v′ = 0←X25i , v
′′= 0 band.

On-resonance fluorescence was detected using a gated chan-

nel photomultiplier and photon counting for a period of 300 s.

The laser was then scanned beyond the OH transition (by

0.004 nm) and a background signal collected for a further

75 s to determine the contribution of laser, solar scatter and

detector noise to the total signal for subtraction (OHWAVE).

In previous configurations, the two detection cells were

used to simultaneously detect OH by laser-induced fluores-

cence (LIF) (cell 1) and HO2 by NO titration to OH followed

by LIF (cell 2). The UV laser light was split upon exiting

the laser and focussed into fibre optics (5 m length) for deliv-

ery to each cell individually. During ClearfLo, the two cells

were coupled together via a connecting side arm, which en-

abled light exiting cell 1 to pass into cell 2 and meant that

light previously needed for the detection of HO2 in cell 2

could be used for other applications (for example OH reac-

tivity measurements, as was the case during this deployment

Stone et al., 2016). As in previous configurations, the light

exiting the fibre optic passed through a collimator coupled to

a baffled entrance arm. This arrangement produced a beam

profile of ∼ 1 cm diameter, which remained well collimated

as it passed through both cells. A UV anti-reflective coated

window was placed in the centre of the connecting arm to

effectively seal the cells from each other. A further modifi-

cation to the previously deployed configuration involved the

coupling of a flow reactor to detection cell 2 to enable an

RO2 radical measurement. Further details on this approach

are outlined below. Consequently, cell 1 was used for sequen-

tial measurements of OH and HO2, with NO (BOC, 99.5 %)

injected into this cell during the second half of the online

detection period.

2.3 ROxLIF description

An 83 cm long, 6.4 cm internal diameter flow reactor was

coupled vertically to the second FAGE detection cell to fa-

cilitate detection of RO2 radicals by LIF using the approach

Atmos. Chem. Phys., 18, 2547–2571, 2018 www.atmos-chem-phys.net/18/2547/2018/
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Table 1. Relative efficiency of RO2 to HOx conversion for different

RO2 species.

Hydrocarbon RO2 relative

sensitivity

Methane 1.0± 0.03

Isoprene 1.0± 0.05

Ethene 0.94± 0.04

Toluene 0.88± 0.05

Butane 0.78± 0.03

Cyclohexane 0.79± 0.02

described by Fuchs et al. (2008). This flow reactor was held

at approximately 30 Torr, with∼ 7.5 SLM ambient air drawn

into the reactor via a 1 mm diameter pinhole. The flow reactor

was operated in two modes. In the first, referred to as the HOx

mode, 250 sccm CO (BOC, 5 % in N2) was mixed with the

ambient air close to the inlet to promote conversion of ambi-

ent OH to HO2. In the second, referred to as the ROx mode,

25 sccm of NO in N2 (BOC, 500 ppmv) was also added to

the CO flow, which led to the conversion of RO2 to OH. The

CO present rapidly reconverted any OH formed (or any OH

sampled) to HO2. Air (5 SLM) sampled by the flow reac-

tor was transferred into the FAGE fluorescence detection cell

(which was held at ∼ 1.5 Torr) via a 4 mm diameter pinhole

and 100 sccm NO (BOC, 99.5 %) was injected into the flu-

orescence cell, converting HO2 to OH for subsequent detec-

tion by LIF. In ROx mode a measure of OH+HO2+6RO2

was obtained.

In laboratory tests, the relative sensitivity of the instru-

ment to a range of different RO2 species was investigated

(see Table 1). Similar sensitivities were determined for the

RO2 species tested; therefore, we use the assumption that un-

der ambient conditions individual RO2 species are converted

and, hence, detected with the same efficiency as methane-

derived RO2 radicals. The same assumption was drawn in

the recent ROx study in Wangdu, China (Tan et al., 2017).

This assumption means that the concentration of RO2 ob-

served may be a lower estimate as certain RO2 species will

not convert as efficiently as the methane-derived RO2 radical.

For example, the MCM predicts that only ∼ 20 % of NO3-

adduct RO2 radicals which derive from the reaction of sim-

ple alkenes (e.g. ethene and propene) with NO3 will convert

to HO2 in the presence of NO at the reduced pressures of the

flow reactor and so we expect ROxLIF to have low sensitivity

to these RO2 types.

2.4 Calibration

The instrument was calibrated twice weekly on average

using photolysis of a known concentration of water vapour

at 185 nm within a turbulent flow tube to generate OH

and HO2, with the product of the photon flux at 185 nm

and the water vapour photolysis time measured using

a chemical actinometer (Commane et al., 2010). For

RO2, methane (BOC, CP grade, 99.5 %) was added to

the humidified airflow in sufficient quantity to rapidly

convert OH to CH3O2. The limit of detection (LOD) at

a signal-to-noise ratio of one for one data acquisition

cycle lasting 7 min was ∼ 4.5× 105 molecule cm−3

for OH, ∼ 2.1× 106 molecule cm−3 for HO2 and

∼ 6.9× 106 molecule cm−3 for CH3O2 at a typical

laser power of 13 mW in each cell. The measurements were

recorded with 1 s time resolution, and the accuracy of the

measurements was ∼ 26 % (2σ).

2.5 Potential radical artefacts and corrections

2.5.1 OH

A small OH artefact signal (OHINT) which is derived from

photolysis of O3 by the 308 nm laser light, followed by the

abstraction of an H atom from H2O vapour within the FAGE

cell, has been observed in laboratory tests. This artefact has

been observed in other FAGE systems (Griffith et al., 2016;

Fuchs et al., 2016; Tan et al., 2017), and although the re-

ported magnitude of the interference is variable for different

systems, the signal scales linearly with both O3 and H2O and

displays a quadratic dependence with laser power. The fol-

lowing correction has been applied to the OH data presented

here which corresponds to 5.2× 105 molecule cm−3 of OH

at 50 ppbv O3, 2 % H2O and 10 mW laser power (determined

after the campaign but under the same experimental condi-

tions):

OHRAW CORR = OHRAW OBS−OHINT, (2)

where

OHINT

(

molecule cm−3
)

= 520(±200) × [O3](ppbv)

× [H2O](%) × Laserpower (mW). (3)

It should be noted that in later laboratory tests on the Leeds

FAGE system with a modified nozzle design, the deter-

mined OHINT was slightly lower than reported here. Fuchs

et al. (2016) also report a variable artefact signal for the

Jülich FAGE system. This variability introduces a high level

of uncertainty into this correction. The OHINT presented here

should likely be considered an upper limit as any increase in

the magnitude of this correction would lead to negative OH

concentrations calculated during night-time periods.

Along with a full characterisation of the O3-H2O OH arte-

fact signal, the Leeds FAGE system has subsequently been

characterised with respect to other potential artefact sig-

nals, for example, an artefact deriving from reaction prod-

ucts of ozone and alkenes. Furthermore, in the most recent

field campaigns, an inlet pre-injector (IPI) has been used to

chemically scavenge ambient OH, and provides an alterna-

tive method for determining background signals (to gener-

ate OHCHEM) alongside the wavelength tuning approach dis-

cussed above (OHWAVE). The laboratory interference tests

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018
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and field comparison of OHCHEM and OHWAVE in differ-

ent environments will be the subject of a future publica-

tion (Woodward-Massey et al., 2018). In general, however,

good agreement between OHCHEM and OHWAVE has been

observed for the Leeds FAGE instrument (including during

ambient measurements conducted in another urban environ-

ment in central Beijing with an OHWAVE to OHCHEM ratio of

1.04 and 1.07 in winter and summer respectively, Woodward-

Massey et al., 2017) and no significant artefact signal was ob-

served in the interference tests conducted to date, providing

confidence in the OH measurements presented here.

2.5.2 HO2 and RO2i

Fuchs et al. (2011) and later Whalley et al. (2013) identi-

fied that specific RO2 radical classes (primarily those de-

rived from alkene and aromatic hydrocarbons, defined here

as RO2i) have the potential to decompose into OH in the

presence of NO under typical FAGE cell conditions and, as

a result, may be classed as an HO2 interference. Depending

on the type of FAGE cell, pressures employed, and NO con-

centration used, the level of interference can be deliberately

varied (Whalley et al., 2013). During ClearfLo, two different

NO concentrations (1.0 and 9.0× 1013 molecule cm−3) were

introduced into cell 1 to promote detection of (a) mainly HO2

under low concentrations of added NO, and (b) HO2+RO2i

under high concentrations of added NO. With knowledge of

the sensitivity to HO2 and RO2i at the two added NO con-

centrations, determined by adding a known concentration of

HO2 and ethene-derived RO2 during calibration, and using

the methodology outlined in Whalley et al. (2013), the con-

centration of RO2i and interference-free HO2 can be deter-

mined. In the following Results and Discussions we compare

RO2i derived from measurements using αi = 0.72± 0.09

and αi = 0.19± 0.09 at the high and low NO flows to mod-

elled RO2i.

2.5.3 RO2

Fuchs et al. (2008) described the potential of peroxy ni-

tric acid and methyl peroxy nitric acid, HO2NO2 and

CH3O2NO2 (the concentration of which will be most ele-

vated at high NOx) to thermally decompose in the ROx-LIF

flow reactor. In this urban setting, the RO2 signal that we

attribute solely to non-interfering RO2 species (RO2ni) (de-

termined by subtracting HO2+RO2i measured in cell 1 from

the total RO2 signal measured by ROxLIF in ROx mode) may

also include a contribution from CH3O2NO2. Here, we refer

to the measurement of non-interfering RO2 species (RO2ni),

which includes a contribution from the thermal decomposi-

tion of CH3O2NO2 as RO2ni∗. If the concentration of RO2ni

is dominated by CH3O2, it is possible to estimate the ambi-

ent concentration of CH3O2NO2 from the radical measure-

ments themselves and, thus, make a correction for this arte-

fact without relying on model predictions of CH3O2NO2.

The methodology for this correction is outlined in the Sup-

plement along with the RO2ni data corrected for this po-

tential artefact. Owing to the unknown fraction of the total

RO2ni that is CH3O2, we have left the data uncorrected in

Sects. 3 and 4 below. It is worth noting, however, that this

correction is most significant when NO concentrations peak

during the morning, a time (as discussed in Sect. 3.3.2) at

which the RO2ni observations are underestimated by model

predictions.

2.6 Model description

A zero-dimensional box model based on the MCM v3.2

(Jenkin et al., 2012) was used to predict radical concentra-

tions for comparison with those observed. Complete details

of the kinetic and photochemical data used in the mechanism

are available at the MCM website (http://mcm.leeds.ac.uk/

MCMv3.2/). The model was run with a subset of the MCM

and treated the degradation of simultaneously measured trace

VOCs, CH4 and CO following oxidation by OH, O3 and

NO3, and included ∼ 15 000 reactions and ∼ 3800 species.

The model was constrained by measurements of NO, NO2,

O3, CO and CH4; 62 individual VOC species measured by

GC-FID; and also 2D-GC PAN, HCHO, HNO3, HONO,

water vapour, temperature and pressure. The model was

constrained with measured j (O1D), j (NO2), j (HONO),

j (HCHO), j (CH3COCH3) and j (CH3CHO) made using a

spectral radiometer. For further instrumental details relating

to all the model constraints please refer to Table 2 (and the

references therein). For all other photolabile species in the

model, photolysis rates were scaled to the ratio of clear-

sky j (O1D), calculated using a two-steam isotropic scatter-

ing model (Hayman, 1997), to observed j (O1D) to account

for clouds. A constant H2 concentration of 500 ppbv was

assumed (Forster et al., 2012). The model inputs were up-

dated every 15 min. For species measured more frequently,

data were averaged to 15 min intervals, whilst those mea-

sured at a lower time resolution were interpolated. The loss of

all non-constrained, model-generated species by deposition

or mixing was represented as a first-order loss rate equiva-

lent to 1 cm s−1 in a boundary layer depth which varied from

∼ 300 m at night to 1800 m in the afternoon (estimated from

vertical velocity variance, Barlow et al., 2015) leading to life-

times of ∼ 8 h at night and ∼ 50 h during the afternoons.

The model was run for the entirety of the campaign in

overlapping 7-day segments. To allow all the unmeasured,

model-generated intermediate species time to reach steady-

state concentrations, the model was initialised with inputs

from the first measurement day (23 July) and spun-up for

5 days before comparison to measurements were made.

Comparison of these 5 spin-up days demonstrated that the

concentration of model-generated species rapidly converged

and there was less than a 1 % difference in (for example)

modelled OH concentration by the second spin-up day. As

Atmos. Chem. Phys., 18, 2547–2571, 2018 www.atmos-chem-phys.net/18/2547/2018/
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Table 2. Listing of the concurrent measurements made during ClearfLo.

Measurement Instrument Technique LOD Reference

O3 Thermo 49i series UV absorption 0.05 ppbv

CO Aerolaser 5002 VUV fluorimetry 1 ppbv Gerbig et al. (1999)

NO, NO2 Air Quality Design Inc. Chemiluminescence with LED

NO2 converter

1.8 pptv (NO), 5.5 pptv (NO2) Lee et al. (2009)

HONO LOPAP Long-path absorption photometry 3 pptv (4 min) Heland et al. (2001)

PAN GC-ECD Gas chromatography with electron

capture detection

5 pptv (90 s) Whalley et al. (2004)

HCHO Aerolaser 4021 analyser Hantzch reaction < 0.05 ppbv Salmon et al. (2008)

Actinic flux Ocean optics QE65000 Spectrometer coupled to 2π quartz

collection dome

–

j(O1D) Meteorologie Consult Filter radiometry – Bohn et al. (2016)

C1-C8 hydrocarbons (DC)-GC-FID Dual-channel gas chromatography with

flame ionisation detection

1–40 pptv Hopkins et al. (2003)

C6-C13 hydrocarbons GCxGC-FID 2-dimensional gas chromatography

with flame ionisation detection

0.01–0.2 pptv Lidster et al. (2014)

OH, HO2, RO2 FAGE Laser-induced fluorescence See text Whalley et al. (2013)

kOH LP-LIF Laser flash photolysis, laser induced

fluorescence

2.1 s−1 Stone et al. (2016)

Meteorological parameters Davis Vantage Vue Met station –

Boundary layer depth Halo-Photonics scanning Doppler lidar Doppler lidar 30 m Barlow et al. (2015)

Aerosol surface area TSI Inc, model 3321 Aerodynamic particle sizer

spectrometer

0.001 particle cm−3 Peters and Leith (2003)
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Figure 1. Observed temperature (black line), j(O1D) (yellow area), NO (brown line), NO2 (green line), O3 (purple line) and CO (red line)

mixing ratios during the summer ClearfLo IOP. Data time resolution is 15 min. Periods of easterly flow are highlighted with the black boxes.

a result of this, the model segments were run so as to overlap

for 2 days only to reduce the computing time.

In all model scenarios a first of loss (k′loss) for HO2 was

included to represent heterogeneous removal (Ravishankara,

1997):

k′loss =
ωAγ

4
, (4)

where ω is the mean molecular speed of HO2 (equal to

43 725 cm s−1 at 298 K), γ is the aerosol uptake coefficient

and A is the aerosol surface area density in cm2 cm−3. A is

calculated using data from an aerodynamic particle sizer in-

strument (TSI Inc, model 3321) which counts particles in 53

size bins ranging from 0.53 to 21.29 µm. For most of the sce-

narios considered γ was held constant at 0.1.

A series of distinct model scenarios were simulated to as-

sess the sensitivity of the modelled radical concentrations to

a number of model parameters. In the following results and

discussions the radical measurements are compared (for the

most part) to the base model scenario (MCM-BASE), which

was run with the constraints outlined above.

3 Results

3.1 Radical observations and model predictions during

the summer ClearfLo IOP

Near-continuous radical measurements were made in Lon-

don from 23 July to 17 August 2012. Typically, winds from

the south-west, ranging from less than 1 ms−1 at night to

between 4 and 6 ms−1 in the afternoon, were encountered.

Close to the start of the campaign (24–27 July) and also later

in the campaign (9–12, 14 August), however, the wind direc-

tion switched to an easterly flow, bringing air that had passed

over central London to the site, and wind speeds dropped.

Fine weather prevailed during these easterly flows, with en-

hancements in air temperature and solar radiation (Fig. 1, top

panel). During these periods, radical concentrations (partic-

ularly the peroxy radicals) were elevated; the time series of

OH, HO2, RO2i, and the sum of RO2 species (not including

a HO2 contribution) is presented in Fig. 2. The concentration

of a number of other species such as NOx , CO and O3 were

also elevated (Fig. 1) during the easterly flows. Indeed, the

concentration of the O3 was observed to increase rapidly on

the warmer days from sunrise, peaking during the afternoon

at concentrations between 60 and 100 pbbv, and was found,

on the 25 July, to exceed EU air quality recommendations

of 60 ppbv for greater than a 6 h period. The average diurnal

profiles of the different radicals during south-westerly and

easterly flows are presented in Fig. 3.

The short lifetime of OH (10–100 ms) measured directly

in London from OH reactivity measurements (Whalley et al.,

2016) dictates that OH exists in a photostationary steady state

(PSS), where the rate of OH production is balanced by the

rate of OH destruction (f is the fraction of O(1D) that reacts

with H2O to form OH):

[OH]PSS =

∑

k× [OHsource]
∑

k× [OHsink]
=

POH

kOH
(5)

[OH]PSS =
∑

2j
(

O1D
)

[H2O][O3]f+kHO2+NO[HO2][NO]

+j(HONO)[HONO]+ozonolysis

kOH.
(6)
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Figure 2. Observed (coloured lines) and MCM-BASE modelled (black lines) OH, HO2, RO2i and RO2 during the summer ClearfLo IOP;

steady-state [OH] ([OH]PSS) is displayed by the orange line. Periods of easterly flow are highlighted inside the black boxes.

[OH]PSS may be estimated from the rate of production from

the sum of co-measured OH sources; here the rate of OH pro-

duction from the rate of reaction of HO2 with NO, HONO

photolysis, O3 photolysis and the subsequent reaction of

O1D with H2O vapour yielding two OH radicals, and ozonol-

ysis is considered. The measured total OH reactivity (Whal-

ley et al., 2016), which is representative of the sum of the

concentration of all the individual OH sinks present multi-

plied by their bimolecular rate coefficients for reaction with

OH, is used as the denominator Eq. (6).

The [OH]PSS time series is overlaid with the OH observa-

tions in Figs. 2 and 3 and, on the whole, is able to predict

the observed [OH] reasonably well, particularly during the

south-westerly flows. The campaign median ratio of the rate

of OH production to the turnover rate of OH (DOH), equal to

the product of the total OH reactivity and the observed [OH]

concentration, is close to 1 throughout the day (Fig. 4), high-

lighting consistency between the OH, HO2 and OH reactivity

observations as well as the ancillary, co-located HONO (Lee

et al., 2016) and NO observations (Lee et al., 2009). From

late morning and throughout the afternoon, when NO con-

centrations dropped, the production rate of OH from HONO

photolysis becomes competitive with the rate of production

of OH from the secondary reaction of HO2 with NO. Dur-

ing the easterly conditions experienced at the beginning of

the IOP, [OH]PSS does underpredict the observed [OH] be-

tween 10:00 and 18:00 (Fig. 2), however, suggesting that,

if all the observed OH sources used in the PSS calculation

are correct, there may be a missing OH source under these

conditions (discussed further below). The small OH interfer-

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018
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Table 3. Model constraints and their average and maximum noontime concentrations during south-westerly and easterly flows.

Species Mean Mean Max noontime Max noontime

concentration/ concentration/ concentration/ concentration/

ppbV, south- ppbV, easterly ppbV, south- ppbV, easterly

westerly flow flow westerly flow flow

Ozone 24.2 37.4 34.4 87.8

Nitric oxide 2.5 5.5 33.4 11.9

Nitrogen dioxide 10.6 18.8 101.6 39.3

Carbon monoxide 213.8 272.7 298.4 311

Nitrous acid 0.32 0.56 0.89 0.89

Nitric acid 0.67 1.54 1.59 3.89

Peroxyacetyl nitrate 0.07 0.23 0.09 2.63

Methanol 2.4 5.2 5.5 8.9

Ethanol 2.4 5.7 5.2 6.8

Propanol 0.3 0.64 0.83 1.5

Butanol 0.6 0.84 1.42 2.1

Methane 1853 1903.2 1939 1971.5

Ethane 3.1 6.8 4.6 6

Propane 1.2 2.7 3.1 3.6

i-Butane 0.5 1.1 1.5 1.8

n-Butane 1 2.2 2.9 4.3

i-Pentane 0.5 1.2 1.5 2.4

n-Pentane 0.2 0.6 0.6 1

Hexane 0.3 0.7 1.7 1.4

Heptane 0.2 0.4 0.5 0.5

Octane 0.1 0.3 0.5 0.4

2-Methyl pentane 0.2 0.3 0.5 0.8

Nonane 0.2 0.4 0.8 0.5

Decane 0.2 0.4 0.6 0.4

Undecane 0.3 0.7 1 0.6

Dodecane 0.6 1.3 2.4 1.3

Dichloromethane 0.03 0.06 0.08 0.09

Acetylene 0.3 0.5 0.9 0.8

Ethene 0.5 0.9 1.7 1.7

Propene 0.2 0.3 0.5 0.3

Trans-2-butene 0.02 0.03 0.04 0.05

But-1-ene 0.05 0.08 0.1 0.12

Metyl propene 0.04 0.07 0.1 0.1

Cis-2-butene 0.01 0.02 0.03 0.03

Pent-2-ene 0.02 0.04 0.06 0.06

Pent-1-ene 0.02 0.04 0.04 0.05

Trichloroethene 0.01 0.02 0.03 0.03

Benzene 0.12 0.2 0.3 0.3

Toluene 0.36 0.7 1 1

Ethylbenzene 0.06 0.1 0.2 0.2

1,3-Dimethylbenzene 0.04 0.08 0.1 0.1

1,4-Dimethylbenzene 0.04 0.08 0.1 0.1

1,2-Dimethylbenzene 0.05 0.11 0.1 0.2

1,2,3-Trimethylbenzene 0.01 0.01 0.04 0.02

1,3,5-Trimethylbenzene 0.01 0.01 0.13 0.03

1,2,4-Trimethylbenzene 0.02 0.03 0.25 0.11

Phenylethene 0.02 0.05 0.06 0.07

1-Methylethylbenzene 0.002 0.003 0.01 0.01

Propylbenzene 0.03 0.09 0.17 0.24
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Table 3. Continued.

Species Mean Mean Max noontime Max noontime

concentration/ concentration/ concentration/ concentration/

ppbV, south- ppbV, easterly ppbV, south- ppbV, easterly

westerly flow flow westerly flow flow

3-Ethyltoluene 0.01 0.02 0.14 0.08

4-Ethyltoluene 0.01 0.02 0.07 0.05

2-Ethyltoluene 0.01 0.01 0.11 0.03

Benzaldehyde 0.01 0.01 0.03 0.06

α-Pinene 0.12 0.2 0.31 0.46

Limonene 0.04 0.07 0.12 0.23

Formalydehyde 6.7 13.8 10.1 29.9

Acetaldehyde 3.3 6.6 7.6 9.2

Acetone 2 3.4 3.7 5.3

Methacrolein 0.02 0.03 0.06 0.12

Methylvinylketone 0.02 0.04 0.07 0.13

2-Methylpropanol 0.04 0.06 0.1 0.2

Acetic Acid 0.04 0.06 0.1 0.2

Butan-2-one 0.05 0.08 0.14 0.25

n-Butanal 0.01 0.02 0.03 0.06

2-Penanone 0.02 0.04 0.07 0.13

n-Pentanal 0.02 0.03 0.06 0.1

4-Methyl-2-pentanone 0.04 0.07 0.12 0.23

Hexan-2-one 0.03 0.05 0.09 0.15

Cyclohexanone 0.01 0.02 0.04 0.08

1,3-Butadiene 0.01 0.02 0.05 0.02

Isoprene 0.1 0.2 0.3 0.48

ence deriving from the photolysis of O3 within the FAGE

cell (determined through laboratory tests) is corrected for in

all OH data presented. Interestingly, when the wind direc-

tion switched for a second time to an easterly flow, [OH]PSS

reproduces the observed [OH] well (Fig. 2, lower panel).

A zero-dimensional box model (MCM-BASE), which is

run unconstrained to the radicals but constrained to all other

measured OH sources and constrained to the very detailed

VOC observations (Table 3 provides the mean and maximum

noontime concentration for all model constraints both un-

der south-westerly and easterly flows), performs much bet-

ter than [OH]PSS during the first period of easterlies from

late morning to late evening. However, under south-westerly

conditions and also under the easterly conditions encoun-

tered during the second half of the campaign MCM-BASE

overpredicts [OH] during the daytime by ∼ 25 % during the

south-westerlies and by over a factor of 2 during the easter-

lies encountered at the end of the campaign. The box model

also has a tendency to underpredict the observed [OH] dur-

ing the morning rush hour (from dawn to 10:00) through-

out the IOP. Since the model is able to reproduce the ob-

served OH reactivity well during the easterly flows (Whal-

ley et al., 2016), an underestimation of the total sink term

for OH is not the cause of the daytime (10:00–18:00) dis-

crepancy. Rather, as can be seen in Figs. 2 and 3, this model

significantly overpredicts the observed [HO2] by close to a

factor of 10 during the day under easterly conditions. The

model overestimates the total RO2 concentration observed

by close to a factor of 2 during the easterly flows but pre-

dicts RO2i well in this air mass. It should be noted that the

model RO2 is simply the sum of all individual RO2 species

that the model predicts from the VOCs it is constrained to,

and no attempt is made to subtract the contribution of RO2

species that ROxLIF may have a low sensitivity to. This

model–measurement RO2 discrepancy could, therefore, in-

dicate the presence of RO2 species which do not readily con-

vert to HO2 in the ROxLIF reactor in these easterly flows.

Alternatively the modelled RO2 overestimate may either be

due to the model overestimating the sources of RO2 or under-

estimating RO2 sinks. Previous work (Whalley et al., 2016)

highlighted that in general the model was able to capture the

observed OH reactivity (kOH) well during the easterly con-

ditions encountered once the contribution to reactivity from

monoterpenes and the heavier-weight alkanes which derive

from diesel emissions (Dunmore et al., 2015) was consid-

ered. This agreement between modelled and observed kOH

suggests that the production of RO2 from the oxidation of

VOCs by OH should be reasonably well captured by the

model and suggests that the model–measurement disagree-

ment during the easterly flow may derive from an underes-

timation of the RO2 sinks. During the south-westerly flows,

the model is able to capture the observed [RO2] and [RO2i]

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018
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Figure 3. Average diel observed (coloured lines with error bars) and MCM-BASE (black line) OH, HO2, RO2i and RO2 profiles dur-

ing (a) south-westerly and (b) easterly flows; [OH]PSS is displayed by the orange line. The error bars represent the 1σ variability in the

observations. The average diel observed NO (brown line) and NO2 (green line) are displayed in the bottom panels.

Figure 4. Median diurnal profiles for the whole campaign of the

observed DOH = kOH× [OH]. The summed rate of production of

OH (POH) from the photolysis of HONO, the reaction of O(1D)

with H2O, ozonolysis reactions and the reaction of HO2 with NO

is overlaid. The dashed black line represents the median daytime

(06:30–18:30) POH :DOH ratio; error bars highlight the 1σ stan-

dard deviation of this ratio. The red line represents a ratio of 1.

well during the afternoon on most days. However, the model

underpredicts the observed [RO2] throughout the morning

hours and into the early afternoon (Fig. 3a). Our previous

work highlighted that this model slightly underpredicted the

observed OH reactivity (by ∼ 25 %) during south-westerly

flows (Whalley et al., 2016) and indicates, therefore, that a

RO2 source (from the oxidation of VOCs by OH) may be

missing from the model under these conditions.

Despite the factor of 5 increase in modelled [HO2] as the

air mass arriving at the site switched from south-westerly

to easterly (the [HO2] increase is driven to a large extent

by the increase in [HCHO] a major source of HO2 un-

der easterly flows), [OH] observed (and modelled) increased

by only ∼ 35 % on average. This demonstrates that the in-

crease in OH sources was almost entirely compensated for

by an equivalent increase in OH sinks during these dif-

ferent flow regimes. The differences between [OH]PSS and

[OH]MCM-BASE observed throughout the IOP reflects the

impact of changing HO2, the dominant OH source (see

Sect. 3.2) by an order of magnitude without changing the

total OH sink term.

During 4 nights of the IOP, [RO2] is predicted to be ele-

vated, reaching concentrations of > 1× 1010 molecule cm−3

at 20:00 on 24 July. These high night-time [RO2] were not

observed to the magnitude predicted by the model, and other

radical types (OH and HO2) were not observed nor predicted

to increase at the same time. These high modelled RO2 ex-

cursions correspond to evenings on which VOC concentra-

tions were elevated and NO concentrations were low and

which reflect periods of active nitrate chemistry in the model

Atmos. Chem. Phys., 18, 2547–2571, 2018 www.atmos-chem-phys.net/18/2547/2018/
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Figure 5. Mean daytime (11:00–15:00 black number and 06:00–21:00, red number) rates of reaction for formation, propagation and termi-

nation of radicals in units of 105 molecule cm−3 s−1 for the whole campaign period.

(see brown area, Fig. 6). The ROxLIF technique is likely in-

sensitive to some NO3-adduct alkene peroxy radicals. Only

around 20 % of the short-chain alkene-derived NO3-adduct

peroxy radicals (e.g. those deriving from ethene and propene)

are expected to convert to HO2 in the reactor with the dom-

inant reaction pathway (around 80 %), instead leading to

the formation of two aldehydes and NO2 (according to the

MCM). For the NO3-adduct peroxy radical deriving from

isoprene, however, the MCM assumes 100 % yield of HO2.

The insensitivity of ROxLIF to certain NO3-adduct alkene

peroxy radicals may explain the RO2 model–measurement

discrepancy at night-time.

3.2 Model radical budget analysis

Figure 5 shows the main initiation, propagation and termina-

tion pathways in the model, and the hourly mean diel profiles

of the modelled rates of primary radical initiation and termi-

nation are shown in Fig. 6. Similar budget analyses have been

conducted at other urban locations and may be compared and

contrasted with the radical cycling here. During ClearfLo, the

chain termination reaction of OH with NO2, which leads to

a net loss of radicals, accounts for 24 % of the modelled loss

of OH between 06:00 and 21:00 (21 % for 11:00 and 15:00

if morning and evening rush hours are excluded) (Whalley et

al., 2016). For comparison, this reaction contributed 20 % to

the total modelled OH loss in Los Angeles during CALNEX

(Griffith et al., 2016), 19 % in Mexico City during MCMA-

2006 (Dusanter et al., 2009), and just 11 % in Birmingham

during PUMA in summer (11:00–15:00) (Emmerson et al.,

2005b).

In terms of total radical destruction reactions, OH+NO2

accounts for 32 % (red area, Fig. 6, lower panel), with net

(forward – backward) RO2+NO2 to PAN species account-

ing for 35 % (green area, Fig. 6, lower panel). As shown in

Fig. 6, the termination of ROx is dominated by loss of the OH

radical (by reaction with NO2) in the morning, whilst during

the afternoon, radical termination is dominated by the loss

of RO2 species via PAN formation. In Birmingham, during

the PUMA campaign (Emmerson et al., 2005b) net PAN for-

mation reactions contributed close to 50 % of the total rad-

ical destruction pathways, reflecting the high OVOC frac-

tion of total VOCs present, particularly aldehydes, in Birm-

ingham. The photolysis of HONO is the dominant primary

radical source in London, accounting for 40 % of the total

radical initiation steps between 11:00 and 15:00 (Lee et al.,

2016); the photolysis of formaldehyde that yields two HO2

radicals contributes 20 %, whilst O(1D)+H2O contributes

12 % and ozonolysis reactions only 9 %. HONO photoly-

sis also contributed a significant fraction to radical initiation

in the MCMA-2006 and CALNEX studies. In Birmingham

the contribution of HONO photolysis as a primary radical

source was likely underestimated as HONO was not mea-

sured directly. In London, the model significantly underesti-

mated [HONO] if only gas phase reactions were considered

(Lee et al., 2016). Ozonolysis reactions were identified as the

most important primary source of radicals in Birmingham,

with these reactions accounting for 25 % of the radical initi-

ation, which is much more significant than for London and

highlights the very different VOC profile that exists in these

two major UK cities. The PUMA campaign took place in

Birmingham in the 2000 and so the difference in the VOC

speciation may reflect, in part, the change in VOC emis-

sions in the UK over the past decade. As shown by Fig. 6,

blue area, ozonolysis reactions form an increasingly signif-

icant fraction of the radical initiation reactions during the

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018



2560 L. K. Whalley et al.: Understanding in situ ozone production in the summertime

Figure 6. Mean diurnal profiles of MCM-BASE modelled rates of

ROx initiation (a) and termination (b) reactions for the whole cam-

paign period. CH3C(O)O2+NO2 (Net) represents the net (forward

minus backward) CH3C(O)O2+NO2↔PAN species.

afternoon hours and, along with VOC+NO3 reactions, ac-

counts for all the night-time radical initiation reactions. In

London formaldehyde acts as a significant source of HO2

radicals via photolysis and its reaction with OH. The latter

(OH to HO2) propagation step (including OH+HCHO but

also OH+CO, OH+ aromatics and OH+O3) accounts for

27 % of all the OH reactions in London. This OH to HO2

propagation step, which is lower at other urban sites (19 and

20 % during CALNEX and MCMA-2006 and 11 % in Birm-

ingham) contributes, in part, to the high modelled HO2 con-

centration predicted for ClearfLo.

The relative importance of the individual formation, prop-

agation and termination reactions under south-westerly and

easterly flows remains similar. However, as highlighted by

Fig. 7, the rate of many of the reactions are at least twice as

fast under the easterly flows with HO2+RO2 and RO2+RO2

reactions approximately 6 and 8 times faster and NO3+VOC

reactions close to 4 times faster.

3.3 Observed and modelled HOx radical behaviour as

a function of NO

As highlighted in Figs. 2 and 3, the degree of model-to-

measured agreement varies depending on the chemical con-

ditions encountered, which changed as a function of the wind

direction and time of day. To gain further insight into chem-

ical regimes under which model performance becomes com-

promised, the observed and modelled radical trends as a

function of NO are considered and are shown in Figs. 8 and 9.

3.3.1 Low NO

This analysis highlights that under low [NO] conditions

(< 1 ppbv) the median [OH]MCM-BASE and [OH]obs agree rea-

sonably well (black and blue squares, Fig. 8, upper panel),

whilst the [OH]PSS (orange squares) underestimate the ob-

servations by ∼ 35 % (and up to a factor of 3 during the first

easterlies). By expanding the number of bins representing

the OH data at [NO] < 1 ppbv (Fig. 9) it is evident that both

the MCM-BASE and PSS calculation underestimate the ob-

served OH at [NO] < 0.5 ppbv, with the MCM-BASE agree-

ing with the observations between 0.5 and 1 ppbv [NO]. Be-

yond 1 ppbv [NO], [OH]obs and [OH]PSS are in good agree-

ment.

In several other urban studies, during which a range of

NOx conditions were encountered, a tendency to underpre-

dict the observed [OH] at [NO] below 1 ppbv has been re-

ported (Kanaya et al., 2007; Lu et al., 2012, 2013). As noted

above in Sect. 3.1, the differences in the MCM-BASE and

PSS model predictions observed for ClearfLo at low [NO]

derives from the large overestimation of HO2 by the box

model. If the box model is missing a large peroxy radical sink

(discussed further in Sect. 4 below) and therefore a model

constrained to the observed HO2 provides a better represen-

tation of the OH sources. Then, in agreement with the find-

ings from Tokyo and China, an important OH source under

low NOx conditions must be missing from the model mecha-

nism for London. In both central Tokyo (Kanaya et al., 2007)

and Beijing (Lu et al., 2013) an observed-to-modelled OH

ratio of ∼ 2–3 was found at 200 pptv NO. At [NO] 0.2–

1 ppbv, the median [OH]obs to [OH]PSS ratio was ∼ 1.5 for

ClearfLo; the mean ratio was∼ 3, reflecting the larger differ-

ence between the observed OH and [OH]PSS during the first

easterlies. Lu et al. (2013) considered an additional recycling

mechanism of HO2 to OH by an unknown species and found

that the rate of recycling required to reconcile the modelled

and measured OH in Beijing was roughly half that required

in an earlier study conducted in the Pearl River Delta (Lu et

al., 2012).

In contrast to the findings from these field observations

made in China where modelled and observed [HO2] were
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Figure 7. Mean daytime (06:00–21:00) rates of reaction for formation, propagation and termination of radicals in units of

105 molecule cm−3 s−1 for south-westerly (black) and easterly (red) air masses.

generally in reasonable agreement, the peroxy radical con-

centrations measured in London, particularly HO2 concen-

trations, were greatly overestimated by MCM-BASE under

lower NOx conditions. It is interesting to note that HO∗2,

which comprises HO2 and a fraction of RO2 radicals that

rapidly decompose into HO2 within low pressure FAGE cells

(RO2i) (Fuchs et al., 2011; Whalley et al., 2013), more

closely follows the decrease in HO2 predicted by the box

model under the low NO conditions, than the interference-

free HO2 concentration that was observed (Fig. 8b). As

shown in Fig. 8b, the HO2 and HO∗2 observations display the

greatest deviation from each other at the lowest NO concen-

trations encountered, and as NO concentrations increased the

two measurements merged (i.e. HO2 represented an increas-

ing fraction of the HO∗2 signal). The lowest [NO] tended to

occur during the daytime after the morning rush hour and

so considering the diurnal profile of RO2 radicals (i.e. peak

concentrations during the day, low concentrations at night

and in the early morning) this trend is perhaps expected.

There was variability in the day-to-day HO2 : HO∗2 ratio with

a smaller ratio observed under easterly conditions compared

to south-westerly conditions. The similarity in the HO2 and

HO∗2 concentrations at high NO (Fig. 8b) demonstrates that

the HO2 artefact signal from RO2 radicals is unlikely to con-

tribute to any model measured discrepancies under high NOx

conditions as discussed below. It is possible that previous

HO2 measurements made at urban sites which did not cor-

rect for the RO2 artefact (Fuchs et al., 2011; Whalley et al.,

2013) may have masked a problem with model predictions

of HO2 under lower NO conditions. Recent radical observa-

tions made in Wangdu, a rural site in the North China Plain,

however, which corrected HO2 for possible RO2 interfer-

ences, did not highlight any model deviation from measured

HO2 under low NO conditions (Tan et al., 2017). The model

overestimation of HO2 (and higher peroxy radicals) during

ClearfLo, therefore, may be a reflection of the model’s skill

in predicting radical propagation in the presence of the com-

plex VOC mix which was observed in central London. The

VOCs observed in London included a range of long-chain

hydrocarbons deriving from diesel emissions as well as a

range of monoterpene emissions from biogenic sources. This

breakdown in model performance will be discussed further

in Sect. 4.

3.3.2 High NO

During ClearfLo, at [NO] > 15 ppbv, encountered primar-

ily in the mornings, the modelled [OH]MCM-BASE underpre-

dicted the observed [OH]. However, [OH]PSS was able to re-

produce the OH measurements well (out to [NO]= 25 ppbv),

as seen in Fig. 8. The underprediction in OH by the MCM-

BASE corresponds to an underprediction in HO2 between

15 and 30 ppbv NO. An underprediction in HO2 at elevated

[NO] has been highlighted during a number of earlier ur-

ban studies (Martinez et al., 2003; Ren et al., 2013; Brune

et al., 2016). Brune et al. (2016) measured HO2 concentra-

tions that were a factor of 10 greater than those predicted

when NO concentrations reached 10 ppbv during the CalNex

study which took place in Bakerfield, USA. During ClearfLo,

the modelled and observed HO2 were in good agreement un-

der NO concentrations ranging from 7 to 15 ppbv but beyond

15 ppbv the model began to underestimate the observations

by approximately a factor of 3. It should be noted that the

number of radical observations made under these elevated

[NOx] were relatively few and in fact at [NO] concentrations

greater than 30 ppbv, the model and observed HO2 converge
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Figure 8. Observed and modelled HOx behaviour as a function of NO for the whole campaign period. (a) Median OH measured (blue

squares), OH modelled (base MCM model is black squares, steady-state calculation is orange squares). (b) Median HO2 measured (red

squares), HO∗
2

measured (pink squares), HO2 modelled (black squares). Patterned areas represents the 25/75th percentiles. Data are filtered

for daytime hours between 06:00 and 19:00 and binned by [NO] with a bin width of 1 ppbv for [NO] between 0 and 20 ppbv and bin width

of 5 ppbv for [NO] between 20 and 45 ppbv. The number of points in each bin is displayed in the lower panel.

once more (Fig. 8). At high NOx , Brune and co-workers

report a measured OH production rate (POH) (determined

by summing the rates of production from all measured OH

sources), which was about twice the measured OH turnover

rate (determined from the product of the total OH reactivity

and observed [OH]), highlighting an inconsistency between

the OH, HO2 and OH reactivity observations. In contrast to

this, as demonstrated by the good agreement between the

median observed OH production and OH loss rates during

ClearfLo (Fig. 4), the [HO2] observed at the highest NO is

supported by the observed [OH] and OH reactivity.

The median modelled and measured total RO2 and RO2i

trend as a function of NO are shown in Fig. 10. The model

predicts RO2 well at [NO] < 1 ppbv; the overprediction of

total RO2 during the first easterlies does not bias the over-

all median model trend, which instead largely reflects the

good agreement between modelled and measured RO2 un-

der the dominating south-westerly conditions at low [NO]. In

contrast to the reasonable agreement between modelled and

observed HO2 at high [NO], the model increasingly under-

predicts the total RO2 concentration (particularly RO2ni) at

[NO] beyond ∼ 3 ppbv. As highlighted in Fig. S3 in the Sup-

plement, applying a correction to the RO2 data to account for

the possible decomposition of CH3O2NO2 with the ROxLIF

flow reactor leads to an improved agreement between the

model and observations for RO2 under high NO conditions,
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Figure 9. Observed and modelled OH behaviour as a function of NO (< 1 ppbv) for the whole campaign period. Median OH measured (blue

squares), OH modelled (base MCM model is black squares, steady-state calculation is orange squares). Patterned areas represents the 25/75th

percentiles. Data are filtered for daytime hours between 06:00 and 19:00 and binned by [NO] with a bin width of 0.1 ppbv. The number of

points in each bin is displayed in the lower panel.

although the extent to which CH3O2NO2 decomposes within

the flow reactor is highly uncertain. The photolysis of ClNO2

to Cl atoms may provide an additional source of RO2 radi-

cals early in the morning as reported by Riedel et al. (2014).

ClNO2 was measured during the ClearfLo project (Bannan

et al., 2015) and, although Cl atom chemistry can increase

the modelled RO2 concentrations in the morning when NOx

levels are high, the predicted increase is modest at ∼ 20 %,

and so cannot fully reconcile the model underprediction in

RO2. For the more complex VOCs present (e.g. biogenics

and the long-chain alkanes) the rate of RO2 propagation vs.

RO2 termination may be faster than assumed in the model

which would help to bring the model into better agreement

with the observations.

4 Discussion

4.1 Possible explanations for the differences between

observed and modelled peroxy radical

concentrations at low NO

A number of possible explanations for the differences be-

tween the observed and modelled peroxy radical concen-

trations under the low NO conditions have been explored

through a series of model scenarios (detailed below and also

in the Supplement). The impact of [NOx] deviations from a

photostationary steady state in the real atmosphere as well as

underestimation of the heterogeneous loss of HO2 to aerosol

surfaces are discussed in the Supplement, and model runs

highlighting the sensitivity of the modelled radical concen-

trations to these parameters are presented in Fig. S4. Enhanc-

ing the rate of HO2 termination in the model, e.g. by en-

hancing the uptake probability of HO2 to aerosols, only im-

proves the HO2 modelled to measured agreement by a mod-

est amount. So, given the dominant reactions involving HO2

are radical propagating, with the reaction of RO2 + NO act-

ing as the largest source of HO2 and the reaction of HO2

with NO (recycling OH) acting as the dominant HO2 sink

(Fig. 5), this raises the question of whether the model dis-

crepancy relates to uncertainties in the RO2 oxidation chem-

istry and the cycling of RO2 to HO2. Of particular relevance

are the reactions involving the complex RO2 species deriving

from VOCs emitted from diesel and biogenic sources.

Hydrocarbon autoxidation processes which are known to

readily occur in the liquid phase (Bolland, 1949) were, until

recently, thought to be unimportant in the gas phase owing

to the low probability of intermolecular H-atom abstraction.

The low probability is due to the low concentration of hy-

drocarbons in the atmosphere and the competition between

intramolecular H-shift reactions (from a C–H to an R–O–O

bond forming a peroxide) and bimolecular reactions of the

RO2 radical (e.g. with NO, HO2 or RO2). There is increasing

www.atmos-chem-phys.net/18/2547/2018/ Atmos. Chem. Phys., 18, 2547–2571, 2018



2564 L. K. Whalley et al.: Understanding in situ ozone production in the summertime

Figure 10. Observed and modelled ROx behaviour as a function of NO for the whole campaign period. (a) Median RO2i measured (green

squares), RO2i modelled (black squares). (b) Median RO2 measured (green squares), RO2 modelled (black squares). Patterned areas repre-

sents the 25/75 percentiles. Data are filtered for daytime hours between 06:00 and 19:00 and binned by [NO] with a bin width of 1 ppbv for

[NO] between 0 and 20 ppbv and bin width of 5 ppbv for [NO] between 20 and 45 ppbv.

evidence, however, that autoxidation processes are occurring

in the atmosphere, which can quickly lower the volatility of

VOCs and promote SOA formation. Laboratory studies have

shown that monoterpenes, α-Pinene and limonene, following

an initial attack by ozone or OH, form highly oxidised RO2

radicals within a few seconds via repeated H-shift from C–

H to an R–O–O bond and subsequent O2 additions (Crounse

et al., 2011; Jokinen et al., 2014; Ehn et al., 2014; Berndt et

al., 2016). Mass spectrometric signals relating to these highly

oxidised RO2 species have also been observed during field

measurements (Jokinen et al., 2014). Autoxidation processes

could be relevant during ClearfLo and omission of these pro-

cesses in the model mechanism could account for some of

the radical overprediction observed under the lower NO con-

ditions, particularly under easterly flow conditions when el-

evated concentrations of monoterpenes were observed. At

high NO, bimolecular RO2+NO reactions likely outcom-

pete intramolecular processes. Importantly here, autoxida-

tion steps which involve intramolecular H-atom abstraction

from a C–H to an O–O bond and subsequent addition of O2

to reform a more oxidised RO2 radical do not generate HO2.

Jokinen et al. (2014) observed a high formation rate of or-

ganic nitrates (of the order of 30 %) when NO was added

to experiments, which would serve to further decrease RO2

to HO2 propagation. For ClearfLo conditions, a model run

unconstrained to the monoterpenes and the heavier-weight

alkanes (MCM-VOC-STANDARD) underestimated OH re-

activity (Whalley et al., 2016) with the missing OH reactiv-

ity fraction largely reconciled by the model-generated inter-

mediates which derive from α-Pinene and limonene. If the

current oxidation mechanism for these species is inaccurate,

the reactivity attributed to these oxidation products could be

wrong and instead may derive from other oxidised species.

The missing reactivity in the MCM-VOC-STANDARD run

can be included by adding a single OH to RO2 conversion

to the model equivalent to the missing reactivity (in s−1) at

each time stamp. To represent an autoxidation pathway, we

convert OH to MCM species C6H5O2. This RO2 species is

formed via a minor phenol +OH channel. C6H5O2 does not

readily convert to HO2 by reaction with NO (due to the lack
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Figure 11. Average diel observed and modelled HOx profiles during (a) south-westerly and (b) easterly flows. The base model predictions

are represented by the black line. The model scenario run with standard VOC species only and missing reactivity represented by converting

OH to C6H5O2 is represented by the pale blue line; the purple line represents the model scenario run with standard VOC species only and

missing reactivity represented by converting OH to C6H5O2 and an enhanced heterogeneous loss of HO2, γHO2
= 1.

of available H on the alpha C) and, instead, following oxy-

gen atom abstraction, C6H5O reacts with NO2 to form a ni-

trophenol, or reacts with ozone to reform C6H5O2, which

reacts with further NO and so on. We do not consider the

reactions of C6H5O2 to be representative of what is actu-

ally occurring but rather chose this species to represent a

mechanism by which the propagation of RO2 to HO2 is in-

hibited. Inclusion of OH→C6H5O2 leads to a ∼ 30 % de-

crease in modelled HO2 (see pale blue vs. black diel profiles

in Fig. 11) and close to a 50 % decrease in modelled HO2

if the heterogeneous loss to aerosol is enhanced also by in-

creasing the HO2 uptake probability to aerosols from 0.1 to 1

(purple vs. black diel profiles in Fig. 11). Including autoxi-

dation in the model improves the agreement with the obser-

vations during the daytime for all radical species apart from

the total RO2 species observed during south-westerly flows.

As discussed in Sect. 3.1, however, the model is, likely, miss-

ing VOCs under this air mass regime (implied from the un-

derprediction of the observed kOH) and this may contribute

to the model underprediction of RO2. The underprediction

of RO2i when an autoxidation step is included is due to the

choice of OH→RO2 conversion species (i.e. C6H5O2 is an

RO2 species that does not decompose into HO2 in the pres-

ence of NO within a FAGE cell). The model underprediction

of RO2i suggests that at least some of the RO2 species that

undergo autoxidation are species that would decompose into

HO2 within a FAGE cell.

The partitioning of larger, lower volatility OVOCs to the

aerosol phase may be another important step which is not in-

cluded in the model. The partitioning of gases to the aerosol

phase will reduce RO2 to HO2 propagation and act as a net

radical sink, and omitting this process may further contribute

to some of the discrepancy between observed radical concen-

trations and MCM-BASE predictions.

As depicted by the model radical flux (Fig. 5)

roughly half (162× 105 molecule cm−3s−1 of 314× 105

molecule cm−3 s−1 between 11:00 15:00) of the modelled

RO2 radicals that react with NO eventually form HO2 (via

an alkoxy radical, RO). If, however, RO2 to HO2 propaga-

tion is overestimated by the model due to the uncertainties

outline above, modelled HO2 may become artificially high.

A steady-state [HO2] can be estimated (without the use of

a model) by balancing the dominant HO2 production and

destruction reactions (first- and second-order loss processes)

that occur:

kCO+OH [CO][OH]+ kHCHO+OH[HCHO][OH]

+ 2× j (HCHOradical channel) [HCHO]

+
(

α× kRO2+NO [RO2] [NO]
)

= kHO2+HO2
[HO2]

2
+ kHO2+NO [NO] [HO2]
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Figure 12. Average diel profiles of HO2 concentration observed (red line with error bars) under (a) south-westerly and (b) easterly conditions.

Overlaid is HO2 calculated using the solution to the HO2 quadratic expression Eq. (8) (represented by the black line) with α equal to 0.15.

+ kHO2+RO2
[RO2] [HO2] + kHO2+O3

[O3] [HO2]

+ kLoss to Aerosols[HO2]. (7)

α is equal to the fraction of RO2 radicals which propagate to

HO2 (which is roughly half in MCM-BASE).

Equation (7) can be rewritten as a quadratic equation for

HO2 and then solved for HO2 to yield the following solution:

[HO2]=
−b+

√

(b2− 4ac)

2a
, (8)

where

a = 2× kHO2+HO2
(9)

b = kHO2+NO [NO]+ kHO2+RO2
[RO2]+ kHO2+O3

[O3]

+ kLoss to Aerosols (10)

c = kCO+OH [CO][OH]+ kHCHO+OH[HCHO][OH]

+ 2× j (HCHOradical channel) [HCHO]+
(

α× kRO2+NO [RO2] [NO]
)

. (11)

Using the observed RO2 and OH concentrations in Eqs. (8)–

(11) above to calculate [HO2], generally good agreement be-

tween HO2 observed and HO2 calculated can be achieved

if α equal to 0.15 is assumed as shown in Fig. 12. Us-

ing α = 0.15 leads to a model underprediction of HO2

for the higher NOx conditions experienced in the early

morning, however. This may indicate that α is depen-

dent on NO concentrations and likely on the VOC speci-

ation too. Furthermore, the value for α is sensitive to the

rate coefficient, kRO2+NO used with the [HO2] in Fig. 11

calculated using kRO2+NO = kCH3O2+NO (= 7.7× 10−12 cm3

molecule−1 s−1 at 298 K). If some of the RO2 species con-

tributing to the total RO2 measured react faster with NO (as is

the case for CH3CO
q

O2 radicals, kRO2+NO = 2× 10−11 cm3

molecule−1 s−1 at 298 K), α would become < 0.15. This low

fraction of RO2 to HO2 conversion (if this is the cause for the

observed and modelled discrepancy) compared to α∼ 0.5 in

MCM-BASE highlights a significant misunderstanding in the

oxidation chemistry mechanism of the larger more complex

VOCs. This misunderstanding likely becomes increasingly

important in low-NO and high-VOC environments such as

forests.

4.2 Impact of the model uncertainties on predictions of

in situ ozone production

Poor representation of the observed peroxy radical concen-

tration leads to significantly more ozone production pre-

dicted by the model than is calculated from the observed con-

centrations under low NO conditions (Fig. 13) using Eq. (1)

(which is repeated below for clarity). Conversely, signifi-

cantly less ozone production is predicted by the modelled

peroxy radicals than by the observed peroxy radicals as [NO]

increases.

P (O3)=
(

kHO2+NO [HO2] [NO]+ kRO2+NO [RO2] [NO]
)

−
(

kOH+NO2+M [OH][NO2] [M]

+kRO2+NO2+M [RO2] [NO2] [M]
)

. (1)

As highlighted in Sect. 3.3, the model’s failure to predict

the observed HO2 radical concentrations is most evident un-

der low NOx conditions, typically experienced during the

afternoon hours and particularly during easterly flows. At

this time the observed ozone concentrations peaked (Fig. 13)

due to reduced destruction by titration with NO. At NO

concentrations < 3 ppbv, the ozone production rate deter-

mined from the modelled peroxy radical concentrations re-

mains relatively constant at ∼ 3 ppbv h−1. P (O3) calculated

with the observed peroxy radical, however, decreases to

∼ 1 ppbv h−1. Under higher NOx conditions, [NO] > 3 ppbv,

the ozone production rate determined from the modelled

peroxy radical concentrations is up to an order of mag-

nitude lower than the ozone production rate calculated

from the observations (which at the highest [NO] reaches

∼ 30 ppbv h−1). The calculation of ozone production from

many earlier urban studies often relied on an inferred RO2

concentration estimated from the measured [HO2] and as-

sumed value of RO2 : HO2, as measurements of total RO2

were not available (e.g. Ren et al., 2013; Brune et al., 2016).
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Figure 13. Mean ozone production (ppbv h−1) calculated from observed (red squares) and modelled (black squares) ROx concentrations

using Eq. (1) as a function of NO. Data are filtered for daytime hours between 06:00 and 19:00 and binned by [NO] with a bin width of

1 ppbv for [NO] between 0 and 20 ppbv and bin width of 5 ppbv for [NO] between 20 and 45 ppbv.

In these studies, under high NO conditions, the P (O3) cal-

culated from the observed HO2 (and inferred RO2) was sig-

nificantly greater than P (O3) calculated using the modelled

HO2 and RO2, reflecting the model underestimation of HO2

at high NO reported from these studies. In the recent Wangdu

study conducted in China, Tan et al. (2017), using observed

RO2, demonstrated that models may underpredict ozone pro-

duction at high NO due to an underestimation of the RO2

radical concentration rather than underestimation of HO2. In

the Wangdu study modelled and measured HO2 were in good

agreement at high NO. From the rate of ozone production

calculated from the modelled and measured peroxy radicals

for ClearfLo, we would draw similar conclusions as drawn

by Tan and co-workers; i.e. there would be missing RO2 at

high NO if the correction for decomposition of CH3O2NO2

was not applicable. Although there are some uncertainties

surrounding the magnitude of CH3O2NO2 decomposition in

the ROxLIF cell (which is experimentally difficult to deter-

mine), in agreement with Tan et al. we find no evidence from

the ClearfLo HO2 data set that there is a significant model

bias for HO2 which influences the model-predicted P (O3)

under the elevated NO conditions encountered.

The discrepancy between model and observations at low

NO may arise from the model uncertainties in the treatment

of the oxidation and removal of the complex VOC species

observed as discussed above. The oxidation of these complex

species tend not to be included in air quality models used

to predict ozone and other secondary pollutants. The MCM,

however, is used as the benchmark mechanism against which

simpler mechanisms used within air quality models are tested

(Malkin et al., 2016) and so the chemistry of these complex

VOCs present in the urban atmosphere and the impact they

have on peroxy radical concentrations needs to be adequately

resolved.

5 Conclusions

Measurement and model comparisons of OH, HO2, RO2i

and total RO2 have displayed varying levels of agreement

as a function of NOx . Under higher NOx conditions the box

model increasingly underpredicted total [RO2] and, as a con-

sequence, ozone production derived from the predicted per-

oxy radicals is up to an order of magnitude lower than from

the observed peroxy radicals.

A large uncertainty in peroxy radical cycling,

RO2→HO2, has been identified under lower NO con-

ditions experienced during the daytime. We hypothesise

that uncertainties in the degradation mechanism of RO2

deriving from complex biogenic and diesel-related VOC,

species which were particularly elevated and dominated

the OH reactivity under easterly flows when the model–

measurement discrepancy was largest, may account for the

model–measurement disagreement. Autoxidation processes

now known to play a role in the chemical oxidation of

monoterpenes in the gas phase, and which can enhance

SOA formation, may serve to reduce the rate of RO2 to
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HO2 propagation under lower NO conditions. Omission of

this oxidation process from the model mechanism leads to

more ozone production predicted using modelled peroxy

radical concentrations versus those measured at a time when

ozone destruction (by NO titration) is slow. Although air

quality models do not typically consider these VOC types

and tend to run with simplified chemistry schemes, the

MCM is viewed as a benchmark mechanism against which

these simpler chemistry schemes may be tested. Hence,

these uncertainties in the mechanism identified here need

to be critically assessed through further laboratory and field

measurements.
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