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Abstract 18 

The Neogene Period (23.03ʹ2.58 Ma) underwent a long-term, relatively gradual cooling trend, 19 

culminating in the glacial-interglacial climate of the Quaternary. Palaeoclimate studies on the 20 

Neogene have provided important information for understanding how modern patterns of 21 

atmospheric and oceanic circulation developed, and how they may relate to wider environmental 22 
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change. Here we use a newly created global database of Neogene dinoflagellate cysts (the Tertiary 23 

Oceanic Parameters Information System - TOPIS) to investigate how dinoflagellate cysts recorded 24 

the cooling of Neogene surface marine waters on a global scale. Species with warm and cold water 25 

preferences were determined from previously published literature and extracted from the database. 26 

Percentages of cold water species were calculated relative to the total number of species with 27 

known temperature preferences from each site and compared throughout the Neogene at differing 28 

latitudes. Overall, the percentage of cold water species increases gradually through the Neogene. 29 

This trend indicates a gradual global cooling that is comparable to that reported from other marine 30 

and terrestrial proxies. This also demonstrates the use of dinoflagellate cysts in determining 31 

temperature change on both extended temporal and wide geographical scales. The increase in the 32 

percentage of cold water species of dinoflagellate cysts recorded worldwide from the Early and 33 

Middle Miocene to the Late Pliocene indicates a global scale forcing agent on Neogene climate such 34 

as CO2.  35 

 36 

1. Introduction 37 

The Neogene Period (23.03ʹ2.58 Ma) was significantly warmer than the present, and is considered 38 

ƚŽ ŚĂǀĞ ďĞĞŶ ƚŚĞ ͚ŵĂŬŝŶŐ ŽĨ ƚŚĞ ŵŽĚĞƌŶ ǁŽƌůĚ͛ (Potter and Szatmari, 2009; Pound et al., 2012a) 39 

because many important changes occurred that resulted in our current climate. These include 40 

alterations to marine gateways (Osbourne et al., 2014; Sijp et al., 2014; Montes et al., 2015), the 41 

growth of high latitude continental scale ice sheets (Dowsett et al., 2016; De Schepper et al., 2014; 42 

2015; Brierley and Fedorov, 2016; Stein et al., 2016; Liebrand et al., 2017) and the development of 43 

major mountain belts (Raymo and Ruddiman, 1992; Spicer et al., 2003; Graham, 2009; Ruddiman, 44 

2013; von Hagke et al., 2014; Fauquette et al., 2015). All these phenomena combined to change the 45 

oceanic and the atmospheric circulations and hence, together with carbon dioxide (CO2) 46 
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fluctuations, altered the climate from the relatively warm and ice-free Paleogene, gradually cooling 47 

during the Neogene, to the significantly colder temperatures of the Pliocene and Pleistocene 48 

(Pearson and Palmer, 2000; Zachos et al., 2001; 2008; Kürschner et al., 2008; Salzmann et al., 2008; 49 

2013; Pound et al., 2012a; Herbert et al., 2016; Pound and Salzmann, 2017). The general cooling 50 

trend throughout the Cenozoic was occasionally interrupted by several relatively short-lived globally 51 

warm intervals. The principal examples of these are the Mid Miocene Climatic Optimum (MMCO) 52 

between 17 and 15 Ma (Wright et al., 1992; Flower and Kennett, 1993; 1994; Zachos et al., 2001; 53 

2008; Herbert et al., 2016), and the mid Piacenzian Warm Period (mPWP) between 3.264 and 3.025 54 

Ma (Haywood et al., 2002; 2013; Robinson et al., 2011). Nevertheless, the longer-term global cooling 55 

continued, and eventually culminated in the establishment of large ice sheets in the high northern 56 

latitudes (e.g. Shackleton et al. 1984, Jansen et al. 1988, Balco and Rovey 2010) and the decrease of 57 

deep sea temperatures by over 10 °C as well as the decrease of surface temperatures of 6 °C (Zachos 58 

et al., 2001; 2008; Hansen et al., 2013; Herbert et al., 2016). 59 

1.1 Dinoflagellate cysts 60 

The paleogeographical distribution of dinoflagellate cysts is increasingly being used to make 61 

inferences about palaeoenvironments, including relative temperature estimates (Head, 1994; 1997; 62 

Versteegh and Zonneveld, 1994; De Schepper et al., 2009; 2011; 2015; Warny et al., 2009; Schreck 63 

and Matthiessen, 2013; Verhoeven and Louwye, 2013; Hennissen et al., 2014). Dinoflagellates are an 64 

extant group of unicellular eukaryotic phytoplankton; they are typically marine and planktonic in 65 

habit, and are important primary producers (Taylor et al., 2008). Their organic walled resting cysts 66 

are most common in marine sediments. Dinoflagellate cysts are normally composed of the 67 

biopolymer dinosporin (Fensome et al., 1993; Versteegh et al., 2012; Bogus et al., 2012; 2014), 68 

although wall composition differs between taxa, probably related to feeding strategy (Bogus et al., 69 

2014). While the wall of autotrophic dinoflagellate cysts is generally resistant to oxidation, 70 

heterotrophic taxa can be degraded and destroyed by oxidation (Zonneveld et al., 1997). 71 
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Nevertheless, they are useful proxies for palaeoenvironmental reconstruction because they have 72 

global distributions, are abundant and diverse, occur continuously in the fossil record from the mid 73 

Triassic onwards and their distribution is controlled by different environmental parameters (Marret 74 

and Zonneveld, 2003; Zonneveld et al., 2013). Modern biogeographical distributions are related to 75 

parameters such as nutrient levels, salinity, sea ice cover and temperature, although temperature 76 

and nutrient availability (phosphate and nitrate concentrations) are thought to be the most 77 

important controlling variables (Harland, 1983; Rochon et al., 1999; Marret and Zonneveld, 2003; 78 

Radi and de Vernal, 2008; Bonnet et al., 2012; de Vernal et al., 2013; Limoges et al., 2013; Zonneveld 79 

et al., 2013a). The environmental preferences of modern dinoflagellate cysts can be compared to the 80 

Neogene fossil record of extant taxa, making it possible to infer palaeoenvironmental conditions 81 

(Brinkhuis et al., 1998; Sluijs et al., 2005; Masure and Vrielynck, 2009; De Schepper et al., 2011; 82 

Woods et al., 2014). However, in deeper time there is an increase in extinct species, which limits the 83 

use of the nearest living relative concept (Head, 1996, 1997; Wijnker et al. 2008; De Schepper et al. 84 

2015). 85 

Deciphering the palaeoecology of extinct dinoflagellate cyst species can be achieved by comparing 86 

dinoflagellate cyst assemblages with other proxies that provide absolute sea-surface temperatures 87 

(De Schepper et al., 2011; Hennissen et al. 2017). These studies have demonstrated that (1) extant 88 

species have comparable sea surface temperature ranges in the Pliocene and (2) sea surface 89 

temperature ranges can be estimated for extinct species. Other methods include using multivariate 90 

analysis to identify temperature-sensitive species (Versteegh, 1994; Hennissen et al. 2017) and 91 

determining the latitudinal preferences of species from palaeogeographical maps and inferring a 92 

climatological niche from these (Masure and Vrielynck, 2009; Masure et al., 2013). 93 

Due to a limited number of dinoflagellate cyst species with a known absolute temperature range and 94 

a lack of abundance data, this study is limited to presenting relative temperature change rather than 95 

quantifiable temperatures (Marret and Zonneveld, 2003; Zonneveld et al., 2013a). Species that are 96 
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constrained to certain temperatures are often regarded as only being abundant in such temperature 97 

regimes and rarely outside of them. This means that when using presence and absence data, rather 98 

than abundance data, the presence of an individual specimen with cold water preferences does not 99 

necessarily rule out warm water conditions. Another example is, in areas of upwelling or river 100 

discharge, there is often an increase in the concentration of dinoflagellate cysts due to enhanced 101 

nutrient availability (Crouch et al., 2003). Without abundance data, it is difficult to determine the 102 

location of upwelling systems and river outlets, and care must be taken to interpret results in light of 103 

local phenomenon such as the upwelling of colder, nutrient rich waters. 104 

This is the first global study of Neogene marine environmental cooling using dinoflagellate cysts as a 105 

temperature proxy. This investigation of an important group of phytoplankton over an interval of 106 

>20 Myr provides an unprecedented view of the marine realm worldwide. As such, we are able to 107 

answer three key questions: can dinoflagellate cysts be used to determine global cooling in the 108 

Neogene? Was the cooling during the Neogene uniform at all latitudes? Was the rate of cooling 109 

uniform across the whole Neogene? 110 

2. Materials 111 

The data used come from the newly developed Tertiary Oceanic Parameters Information System 112 

(TOPIS), a Microsoft Access - ArcGIS database containing public domain, peer-reviewed literature on 113 

Neogene dinoflagellate cysts. Overall 275 publications are included, totalling 500 globally distributed 114 

sites. The database was produced by compiling and entering data from published studies into three 115 

ĨŽƌŵƐ͗ ͚ŵĂŝŶ͕͛ ͚ůĂǇĞƌ͛ ĂŶĚ ͚ĨůŽƌĂ͛͘ IŶ ƚŚĞ ͚ŵĂŝŶ͛ ĨŽƌŵ͕ ŬĞǇ ŝŶĨŽƌŵĂƚŝŽŶ ;ďŝďůŝŽŐƌĂƉŚŝĐal references, 116 

location and approximate age of the samples, dating methods and sample preparation method) is 117 

entered with the option to include information on the nearest country and/or ocean basin to the 118 

sample site (Figure 1)͘ TŚĞ ͚ůĂǇĞƌ͛ ĨŽƌŵ contains stratigraphical information such as lithology, 119 

formation/member and the detailed age model (Figure 1). This format allows more precise ages to 120 
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be given by breaking down the overall cores/outcrop sections into smaller divisions. Therefore, once 121 

the third and final form (the ͚ĨůŽƌĂ͛ ĨŽƌŵͿ ŝƐ ĐŽŵƉůĞƚĞĚ͕ ƚŚĞ ĚŝŶŽĨůĂŐĞůůĂƚĞ ĐǇƐƚƐ ĐĂŶ ďĞ ƐŚŽǁŶ ĂƐ ƉĂƌƚ 122 

of a smaller and more constrained age range, representing individual assemblages (Figure 1). The 123 

͚ĨůŽƌĂ͛ ĨŽƌŵ documents the individual dinoflagellate cyst taxa and, if available, their relative 124 

abundance as a percentage of the total dinoflagellate cyst assemblage (Figure 1). The new database 125 

makes it possible to analyse and compare the results of published research on a global scale, and 126 

enables global analysis of the development of Neogene oceans and dinoflagellate cyst biogeography 127 

over long time scales. 128 

 129 

Figure 1: Example screen shot from the Microsoft Access database; Tertiary Oceanic Parameters Information System 130 

(TOPIS) showing the three key forms: Main, Layer and Flora. 131 

2.1 Construction of the database 132 

The John Williams Index of Palaeopalynology (JWIP; Riding et al., 2012) was interrogated in order to 133 

ensure that the coverage was as comprehensive as possible. The JWIP is the most comprehensive 134 

reference catalogue on palaeopalynology in the world, and contains 23,350 references as of 135 
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February 2012 (Riding et al., 2012). Whilst it is inevitable that a small amount of literature may have 136 

been missed, confidence can be placed in TOPIS to have included the vast majority of available 137 

published material on Neogene dinoflagellate cysts. Data published after 2014 have not been 138 

included in the analysis in order to facilitate the investigation in a consistent manner. 139 

The diverse nature of the literature used in the TOPIS database means that multiple dating 140 

techniques are incorporated into the synthesis. The majority of published dinoflagellate cyst 141 

assemblage age assessments were derived biostratigraphically, typically using calcareous 142 

nannofossils, foraminifera and palynomorphs, with fewer based on diatoms, mammals, molluscs, 143 

magnetostratigraphy or radiometric methods. The dating method in each paper is given a 144 

confidence value termed Quality (Figure 1) between one (high) and five (low) in order to estimate 145 

the reliability of the dating in a semi-quantitative fashion. In general, studies that utilised multiple 146 

dating methods or radiometric dating were assigned Quality values of one or two. Publications using 147 

biostratigraphy were assigned a Quality value of either three or four depending on the number of 148 

fossil groups used. Whereas, Quality values of five were assigned to publications where only vague 149 

dating information was provided. 150 

Because TOPIS contains a diverse range of publications, each with its own different aims and 151 

objectives, the resolution of the individual assemblages is variable. Age ranges of individual 152 

dinoflagellate cyst assemblages vary from less than 0.001 Myr to over 25 Myr. The majority of the 153 

assemblages (1394 assemblages) are dated to within one or two stages of the Neogene and 154 

assemblages with a maximum and minimum age range spanning longer than two stages (267 155 

assemblages) were excluded from the analysis to avoid using poorly constrained data that may 156 

influence the results. An additional 442 assemblages were included that had estimated age ranges 157 

spanning less than one million years. A maximum of two stages were chosen as TOPIS contains 158 

assemblages that have a relatively high dating resolution, but happen to span the boundary between 159 

two stages. 160 
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During the production of this compilation, the date of publication was carefully noted due to the 161 

evolving nature of the geological time scale. If the time scale was not explicitly stated in a 162 

publication, it was assumed that the most up to date iteration at the time of issue was used. Any 163 

changes between pre-2012 versions and Gradstein et al. (2012) were noted. Where necessary, the 164 

estimated age ranges of the assemblages were emended to represent the current geological time 165 

scale (Gradstein et al., 2012). The majority of the publications affected were those that did not give 166 

quantitative age controls, and only provided the stage name(s) as the estimated age range of the 167 

assemblages. The major change to the calibration of the Neogene recently was the transition of the 168 

Gelasian from the Pliocene into the Pleistocene, effectively shortening the Pliocene to 2.58 Ma 169 

(Gibbard et al., 2010). This meant that the age estimates of any publications published prior to 2010, 170 

which dated assemblages as Pliocene, were recorded in the database as having an age range of 171 

5.333ʹ1.806 Ma rather than the post-2010 shorter 5.333-2.58 Ma age range of the Pliocene in the 172 

modern geological time scale. 173 

Site locations are given as latitude and longitude coordinates, either taken directly from the 174 

published literature (when provided), or projected (from the location figure provided) onto a map 175 

using online cartographical resources such as Google Earth. If the location was not provided with 176 

sufficient resolution, the notes section of the database states that it is approximate. Sites are rotated 177 

to their palaeoposition (Figure 2) using a plate rotation model (Pound et al., 2011; Hunter et al., 178 

2013) that is compatible with the underlying palaeogeographies of Markwick et al. (2000). 179 

2.2 Taxonomy, reworking and treatment of dinoflagellate cyst assemblages 180 

The rationale of the TOPIS database follows that of the Tertiary Environmental Vegetation 181 

Information System (TEVIS; Salzmann et al., 2008; 2013; Pound et al., 2011; 2012a) and the 182 

Bartonian/Rupelian dinoflagellate cyst database of Woods et al. (2014). As in these previously 183 

published databases, TOPIS undertakes little reinterpretation of the primary data in order to allow 184 

rapid construction and interpretation of large-scale trends (Salzmann et al., 2008; 2013; Pound et al., 185 
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2011; 2012a; Woods et al., 2014). The large amount of data collated, and the broad scale of the 186 

analysis, helps mitigate against any problematic taxonomy (Woods et al., 2014). 187 

A consistent dinoflagellate cyst taxonomy based upon Fensome et al. (2008) was used to identify 188 

and disregard synonyms. Obvious synonyms were combined/disregarded, and where doubt existed, 189 

species were checked against published photographic plates or were not included in any analysis. 190 

Synonyms that are combined that are not included in the current version of Dinoflaj2 include: 191 

Barssidinium pliocenicum and Barssidinium wrennii (De Schepper et al., 2004); Dapsilidinium 192 

pseudocolligerum and Dapsilidinium pastielsii (Mertens et al., 2014) and Operculodinium tegillatum 193 

and Operculodinium antwerpensis (Louwye and De Schepper, 2010). These were all recently noted 194 

by Williams et al. (2017). Subspecies were treated at the species level; for example, Achomosphaera 195 

andalousiensis subsp. andalousiensis was entered in the database as Achomosphaera andalousiensis. 196 

Several of the species included in the analysis of this paper have been grouped into complexes 197 

(supplementary data A); for example, Spiniferites elongatus and Spiniferites frigidus have been 198 

grouped due to gradations in morphology (Rochon et al., 1999) as were Batiacasphaera 199 

micropapillata and Batiacasphaera minuta (Schreck and Matthiessen, 2013). Taxa not defined to 200 

species level and questionably assigned species were also not included in any analysis. 201 

The stratigraphical range for each species in TOPIS was checked, and if reworking of a species was 202 

suspected, the species in question was removed from that record. Reworked species were identified 203 

by the original authors and/or by checking with previously published range charts produced for the 204 

Neogene (e.g. de Verteuil and Norris, 1996; Munsterman and Brinkhuis, 2004; De Schepper and 205 

Head, 2008). There is a possibility that some reworked species were still included. However, 206 

according to Woods et al. (2014), reworking is unlikely to bias any results due to the large quantity of 207 

data analysed, combined with limited evidence of reworking in younger sediments (Mertens et al., 208 

2009; Verleye and Louwye, 2010).  209 
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Published dinoflagellate cyst assemblages can be presented as either presence/absence of taxa (e.g. 210 

Londeix and Jan du Chene, 1998; Louwye et al., 2000), categorically (e.g. between a range of relative 211 

abundances; Head, 1989, McCarthy and Mudie, 1996), as raw abundance counts (e.g. Pudsey and 212 

Harland 2001; Louwye et al., 2007) or as relative abundance counts (e.g. Richerol et al., 2012; Shreck 213 

et al., 2013). In addition, several different counting techniques were used in the literature compiled 214 

herein, for example Spiniferites spp. or Spiniferites/Achomosphaera. Consequently, it was necessary 215 

to transform all data into the lowest common form: presence/absence of taxa in order to maximise 216 

the geographical and temporal extent of the dataset from TOPIS and to enable identification of large 217 

scale trends in dinoflagellate cyst biogeography through the Neogene. Whilst this necessarily loses 218 

some of the fine details of abundance variations with regional environmental changes (Marret and 219 

Zonneveld, 2003), the focus of this paper is to identify the global scale change. 220 

2.2.1 Preservation/sample preparation technique 221 

The preservation of dinoflagellate cysts can be affected by oxidation, causing decay and poor 222 

preservation (de Vernal and Marret, 2007). Oxidation of dinoflagellate cysts can occur naturally and 223 

during sample preparation, particularly in older publications, when reagents such as hydrogen 224 

peroxide, ŶŝƚƌŝĐ ĂĐŝĚ Žƌ “ĐŚƵůƚǌĞ͛Ɛ “ŽůƵƚŝŽŶ ǁĞƌĞ ĂĚĚĞĚ ƚŽ ƌĞŵŽǀĞ residual fine organic material 225 

(Riding and Kyffin-Hughes, 2004). Oxidation particularly affects heterotrophic species (e.g. 226 

Brigantedinium spp.), which are less resistant, and often results in their complete or partial 227 

destruction (Marret, 1993; Head, 1996; Zonneveld et al., 1997; 2001; Hopkins and McCarthy, 2002). 228 

By contrast, autotrophic species (G-cysts), such as Impagidinium spp., are less sensitive to oxidation 229 

(Marret and Zonneveld, 2003). This means that the method used for sample preparation must be 230 

carefully chosen as some techniques will selectively remove the more oxidation-prone taxa from the 231 

assemblage (Marret, 1993; Mudie and McCarthy, 2006). 232 

The distribution of heterotrophic species is mainly controlled by the presence of nutrients, and thus 233 

it is likely that both cold and warm water species will be equally affected by any biasing due to 234 
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sample preparation methods. If nutrient availability and oxidation are the main controlling 235 

influences on the presence and distribution of heterotrophic taxa, rather than temperature 236 

(Bockelmann and Zonneveld, 2007), it explains the lack of heterotrophs included amongst the list of 237 

species with known temperature preferences (Figure 3 and supplementary data A). Because of these 238 

factors, the data compiled herein were not filtered by the sample preparation technique used. 239 

2.2.2 Transport 240 

Dinoflagellate cysts behave as silt sized particles (Dale, 1983; Kawamura, 2004) and, like other 241 

microfossil groups, can be transported both vertically through the water column and laterally with 242 

ocean currents. This means that there is a possibility that the location at which the fossil was found 243 

may not represent the environmental conditions of their original habitat (Dale, 1996; de Vernal and 244 

Marret, 2007). Several studies have investigated the effects of vertical and lateral movements of 245 

dinoflagellate cysts through the water column by comparing cyst assemblages in the water column 246 

to the collection of cysts in the underlying sediments (e.g. Harland and Pudsey, 1999; Zonneveld and 247 

Brummer, 2000; Pospelova et al., 2008). These studies indicate that the transport of cysts is only a 248 

minor factor in the distribution of cysts and is likely to be a local influence only. Experiments in both 249 

laboratories and in the oceans, demonstrate that dinoflagellate cysts sink through the water column 250 

relatively rapidly (by several metres per day), which can increase to hundreds of metres per day if 251 

they are incorporated into faecal pellets or marine snow (Zonneveld and Brummer, 2000). 252 

In our global scale study, transport does not bias the interpretations. Firstly, transport is a process 253 

affecting an entire assemblage, meaning that selective transport of only cool water (or warm water) 254 

species is very unlikely. Secondly, the modern biogeographical distribution of cool water species 255 

accurately reflects the sea surface temperature distribution in the global oceans (Figure 4i, 4j). Both 256 

points, together with the modern observations from sediment traps, suggest that transport in the 257 

modern oceans is not a major issue when interpreting the relationship of Cold Water Species (CWS) 258 

and Warm Water Species (WWS) in a global dataset. 259 
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3. Methods 260 

Dinoflagellates and their cysts make excellent temperature proxies, and as such, numerous 261 

publications provide evidence of their temperature preferences (Head, 1997; Marret and Zonneveld, 262 

2003; Wijnker et al., 2008; De Schepper et al., 2009; Schreck et al., 2013; Zonneveld et al., 2013a). 263 

The supplementary data (A) presents an updated synthesis of literature from which the temperature 264 

preference for each dinoflagellate cyst was obtained. Both modern and palaeontological studies 265 

were used to ascertain Neogene dinoflagellate cyst temperature preferences. Temperature 266 

categories used in the literature include: tropical, warm-temperate to tropical, temperate, cool-267 

temperate and subpolar, but were simplified in this study into Warm Water Species (WWS) and Cold 268 

Water Species (CWS). Our WWS group contains 48 species and includes species within the warm-269 

temperate to tropical categories. The CWS consists of 11 species belonging to the cool-temperate to 270 

polar categories (Figure 3; supplementary data A). Sites with any of these species present were 271 

extracted from TOPIS for use in this analysis. 272 
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 273 

Figure 2: Distribution of all the Neogene records used in this study; the sites are plotted at their modern latitude and 274 

longitude, and references are provided in supplementary information B. 275 
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 276 

Figure 3: Age ranges of the Neogene dinoflagellate cyst species with known temperature preferences used in this study. 277 

Dashed lines represent ages when species are known to have lived, but are not present in the datasets used in this 278 

study. References pertaining to temperature preferences are provided in the Supplementary data A. 279 



15 

 

This resulted in a dataset of 733 records (Figure 2; supplementary data B). The records are from 306 280 

sites (183 publications) and as some sites contain several records of different ages, they have 281 

palaeo-latitudes and -longitudes that change through time. A record is defined as one or more 282 

dinoflagellate cyst species with a known temperature preference occurring at a location with a 283 

specific age range. The percentage of CWS, relative to the total number of species with known 284 

temperature preferences in each record, was calculated and plotted in ArcGIS 10.4. For the purposes 285 

of plotting the data, records were grouped by geological stage and plotted using their palaeo-286 

latitudes and palaeo-longitudes (Salzmann et al., 2013; Pound et al., 2012a; Pound and Salzmann, 287 

2017). The mean percentage of CWS was calculated for each stage (Figure 6a and b) as well as for 288 

each 5° latitudinal bin (Figure 7a-i) to understand the change in surface temperature over the 289 

Neogene at different latitudes. As the majority of the data are located in the Northern Hemisphere, 290 

much of the analysis ignores the Southern Hemisphere. This is an unfortunate limitation that will be 291 

addressed as the literature expands to include more Southern Hemisphere study sites. 292 

Our TOPIS fossil database was compared against the modern dinoflagellate cyst world atlas compiled 293 

by Zonneveld et al. (2013b). In the latter database, 33 WWS and 10 CWS were recorded. Seventeen 294 

of the WWS and five of the CWS are also found in the Neogene, with the remaining species 295 

restricted to the modern or Quaternary oceans. After removing records without known temperature 296 

preferences, the modern database was left with a remaining 1,784 records. Cosmopolitan species 297 

were considered to have no known temperature preferences as they are not informative for this 298 

type of analysis. 299 

4. Results 300 

4.1 Early Miocene (23.03ʹ15.97 Ma) 301 

Only 20% of the records in both the Aquitanian and Burdigalian (Figure 4a, b) had any CWS present, 302 

and, with the exception of two records northeast of South America (between 5 and 10° N), no CWS 303 
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were found between zero and 25° N (Figures 4a, b, 5). Yet these records off South America contain 304 

the highest percentage of CWS relative to WWS in the Northern Hemisphere (25%; Batiacasphaera 305 

micropapillata complex). 306 

In this study, the Batiacasphaera micropapillata complex is defined as a CWS, but they can be found 307 

in low quantities at lower latitudes (Schreck and Matthiessen, 2013). This highlights the importance 308 

of providing abundance data because without it, it is unclear whether the B. micropapillata complex 309 

made up a higher percentage of the assemblage (indicating cooler waters), or were present in low 310 

abundances.  311 

The highest percentage of CWS in the Southern Hemisphere is between 60 and 65° S, off the 312 

Antarctic Peninsula, where two records have CWS percentages of 50 and 100%. Globally, both the 313 

Aquitanian and Burdigalian have low mean percentages of 4 and 3% respectively (Figure 6a), 314 

although when exclusively using data from the Northern Hemisphere, the mean percentages are 2 315 

and 3% respectively (Figure 6b). The mean percentage of CWS in each five degree latitude bin ranges 316 

from zero to 11% for both stages (Figure 7a, b). 317 

4.2 Mid Miocene (15.97ʹ11.62 Ma) 318 

The mean percentage of CWS (relative to WWS) for each five degree latitude bin ranges from zero to 319 

18% for both the Langhian and Serravallian (Figure 7c, d), and globally the mean percentage is 4 and 320 

5% (Figure 6a) respectively (3 and 6% for just the Northern Hemisphere; Figure 6b). The proportion 321 

of records with CWS present increased, compared with the Early Miocene (24 and 31% for the 322 

Langhian and Serravallian respectively; Figure 4c, d). Unlike in the Aquitanian and Burdigalian, CWS 323 

appeared in three records off the east coast of India (10ʹ15° N; Batiacasphaera micropapillata 324 

complex and Bitectatodinium tepikiense) and are also seen in the West Pacific (20%, 35ʹ40° N). 325 

Between 40 and 45° N the proportion of CWS increased from mean values of 0.2% in the Burdigalian 326 

to 1.8% in the Langhian to 5.3% in the Serravallian (Figure 7b-d). Central Europe in particular 327 
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experienced an increase in the proportion of CWS relative to WWS during the Mid Miocene (40ʹ55° 328 

N; Figures 4c, d, 5a). 329 
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 335 

Figure 4: Distribution of dinoflagellate cyst records in (a) Aquitanian, (b) Burdigalian, (c) Langhian, (d) Serravallian, (e) 336 

Tortonian, (f) Messinian, (g) Zanclean, (h) Piacenzian and the (i) modern (from Zonneveld et al., 2013b). (j) Mean annual 337 

sea surface temperature observed between 2009 and 2013 ;ĨƌŽŵ NASA͛Ɛ OĐĞĂŶ CŽůŽƌ ĚĂƚĂďĂƐĞ͗ 338 

http://oceancolor.gsfc.nasa.gov; NASA Ocean Biology OB.DAAC; 2014). For a-i, records are plotted at their palaeo-339 

latitudes and -longitudes. Size of the points represents the number of Cold Water Species (CWS) present in each record. 340 

The colour of the points represents the percentage of CWS relative to the total number of species with known 341 

temperature preferences present in each record. Darker shades represent higher percentages of CWS. Small red circles 342 

represent records that only contain Warm Water Species. 343 

4.3 Late Miocene (11.62ʹ5.333 Ma) 344 

In the Late Miocene over half of the records contain CWS (Figure 4e, f), and the mean percentage of 345 

CWS (relative to WWS) in each latitudinal bin has a much larger range than for the Mid Miocene, 346 

between 0 and 27% (Figure 7e, f). One latitudinal bin (in the Tortonian; 75ʹ80° N) is comprised of 347 

only CWS (Figures 5a, 7e). Globally the mean percentage of the Tortonian is 19% and the Messinian 348 

is 12% (Figure 6a). However, when using just data from the Northern Hemisphere the mean 349 

percentage is 11% and 10% for the Tortonian and Messinian respectively (Figure 6b). The high 350 

latitudes in particular (50ʹ65° N) had an increase in the proportion of CWS relative to WWS with the 351 

introduction of CWS to records off the coast of Norway (up to 33% CWS) and off the coast of Japan 352 

(17% CWS; Figure 4e, f). One of the more significant differences between the Tortonian and the rest 353 
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of the Neogene is the number of records in the Southern Hemisphere, which is substantially higher 354 

in the Tortonian than for any of the other stages (Figure 5a). The additional records appear off the 355 

Antarctic Peninsula (CWS percentages range from 50 to 100%), and off the west coast of South 356 

Africa (CWS percentages of 100%; Bitectatodinium tepikiense. 357 
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 359 

Figure 5: Dinoflagellate cyst data for the entire Neogene is divided into latitudinal bins spanning five degrees. There are 360 

consistently more data for the Northern Hemisphere than the Southern Hemisphere. For each record, the percentage of 361 



25 

 

CWS was calculated relative to the number of species with known temperature preferences. The percentage of CWS is 362 

displayed and is represented by the horizontal thickness of the line. The shading of the lines represents the number of 363 

records present within each latitudinal bin. Dashed red lines represent records with no CWS. Figure 5a represents all 364 

records and Figure 5b contains only those records with no CWS present. Arrows indicate the two main periods of 365 

cooling. To help explore uncertainties, the number of records found within each latitudinal bin is represented by the 366 

shading. The darker the shading, the more data are present, and therefore the more reliable the signal is likely to be. 367 

4.4 Pliocene (5.333ʹ2.58 Ma) 368 

In the Zanclean and Piacenzian (Figure 4g, h), the mean percentages of CWS between 0 and 45° N 369 

are all under 7%. The exception are data from between the latitudes of 10 to 15° N, which has a 370 

mean CWS percentage of 17%. The mean percentages of CWS north of 55° N are all over 20%, and 371 

above 75° N they are 87% or higher. Globally, the mean percentages of the Zanclean and Piacenzian 372 

are 17 and 28%, which are very similar to the values calculated when using data exclusively from the 373 

Northern Hemisphere (17 and 27%). The proportion of records with CWS present attained as high as 374 

71% in the Piacenzian and the proportion of CWS making up each record increases particularly 375 

between the Zanclean and the Piacenzian. For example, in the Piacenzian records, CWS percentages 376 

of 11 to 15% appear in the Mediterranean. Records where all of the species with known 377 

temperatures preferences are CWS can be found north of Canada, east of Greenland and west of 378 

Svalbard. 379 

4.5 Modern surface sediments 380 

Data for surface sediments comes from Zonneveld et al. (2013b). There is a significantly higher 381 

number of sites in the modern than for the Neogene and a broad global distribution is achieved 382 

(Figure 4i). However, as in the Neogene, there are fewer records for the Southern Hemisphere 383 

compared to the Northern Hemisphere, and the Indian and Pacific oceans are also under-384 

represented (Figure 4i). For the majority of ocean basins, most of the records come from the coasts, 385 

and relatively few come from deeper and more oceanic regions. Sites that are composed only of 386 

CWS are common in higher latitudes in both the Southern and Northern Hemispheres. In the lower 387 
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latitudes, species with known temperatures are nearly all WWS. Between 20° N and 20° S, there are 388 

only four records (out of 377) that contain any CWS. Three of these are found off the west coast of 389 

Africa and the fourth is off the east coast of Africa, all have CWS percentages under 10%. Records 390 

composed entirely of CWS are common above and below 45° N and 45° S, respectively. Asymmetry 391 

occurs either side of the North Atlantic. Records where all of the species with known temperature 392 

preferences are CWS reach as far south as 42° N on the western edge of the North Atlantic, but only 393 

as far south as 56° N on the eastern side. This likely stems from the presence of the North Atlantic 394 

Current, which transports warm water to the higher latitudes of the northeast North Atlantic Ocean. 395 

The global mean percentage of CWS for surface sediments is substantially higher than for the stages 396 

of the Neogene (38%; Figure 6a), as is the mean percentage when comparing just the Northern 397 

Hemisphere (43%; Figure 6b). When calculating the mean percentage of CWS for just those latitudes 398 

where data is present for the Neogene, the mean percentage of CWS is still high at 34% (Figure 6b). 399 

In the modern (Figure 5i), between 0 and 35° N, the mean percentages of CWS relative to WWS are 400 

all under five percent, which quickly rises to 50% and above north of 45° N (Figure 7i). 401 

An example of where the spread of data influences the results can be seen in the modern map 402 

(Figure 4i). There are a very high number of records (95) in the Gulf of St. Lawrence, on the east 403 

coast of Canada, contributing 33% of all the records between 45 and 55° N. In 72 of these records, all 404 

the species with known temperature preferences are CWS (mostly Spiniferites elongatus and 405 

Islandinium minutum). The remaining 13 records from the Gulf of St. Lawrence have CWS 406 

percentages between 50 and 83%. These results indicate that the Gulf of St. Lawrence is particularly 407 

cold compared to the rest of the oceans at this latitude (Figure 7i). It is a small, restricted basin that 408 

receives a large quantity of freshwater and has limited exchange with the open ocean (Long et al., 409 

2015). The only open ocean water source is through the Belle Isle Strait, bringing cool Labrador Sea 410 

water into the Gulf. However, the majority of the cool waters form in situ during the winter season 411 

(Banks, 1966; Saucier et al., 2003). The plethora of sites reflecting the cool water Gulf of St. 412 
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Lawrence microclimate produces a noticeable feature in the modern. In the modern 45ʹ55° N 413 

latitudinal bins, the mean percentage of CWS relative to WWS is significantly higher than it was in 414 

the 40ʹ45° N latitudinal bin (Figure 7i). If the 95 records from the Gulf of St. Lawrence are removed 415 

from the analysis, this step like change seen at roughly 45° N is no longer present, providing a clear 416 

example of how a large number of records in a small region can alter the global signal, and 417 

demonstrating why it is preferable to have an even spatial coverage of data. 418 
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 419 

 420 

Figure 6: Mean percentages of Cold Water Species (CWS) of dinoflagellate cysts for each stage for (a) all records, (b) only 421 

records from the Northern Hemisphere and using only the latitudinal bins (in the Northern Hemisphere) where data are 422 
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ĂǀĂŝůĂďůĞ ĨŽƌ Ăůů ƐƚĂŐĞƐ͘ ;ĐͿ BĞŶƚŚŝĐ ɷ18O compilation (Zachos et al., 2001; 2008) demonstrating cooling through the 423 

Neogene to present for comparison with the mean percentage of CWS. Error bars are included in panels a and b and 424 

represent the standard deviation. In general the error bars are larger in the younger time intervals. This is due to the 425 

increasing latitudinal temperature gradient and, as a result of this, the percentage of CWS in each assemblage becomes 426 

more variable through time.  427 

 428 

Figure 7: The mean percentage of Cold Water Species (CWS) of dinoflagellate cysts relative to the total number of 429 

species present with known temperature preferences for each five degree latitudinal bin. (a) Aquitanian, (b) Burdigalian, 430 

(c) Langhian, (d) Serravallian, (e) Tortonian, (f) Messinian, (g) Zanclean, (h) Piacenzian and (i) the modern. For the 431 

modern, results were replotted without data from the Gulf of St. Lawrence (grey dotted), a densely sampled region, to 432 



30 

 

investigate sampling bias. This grey dotted line is included in all stages for comparison. Error bars represent the standard 433 

deviation. 434 

4.6 The pull of the recent and the latitudinal biodiversity gradient 435 

Temperature preferences of dinoflagellate cysts are better known for those species that are either 436 

extant or most recently ďĞĐĂŵĞ ĞǆƚŝŶĐƚ͘ TŚŝƐ ƉŚĞŶŽŵĞŶŽŶ ŝƐ ŬŶŽǁŶ ĂƐ ͚ƚŚĞ ƉƵůů ŽĨ ƚŚĞ ƌĞĐĞŶƚ͛ ĂŶĚ 437 

was originally conceived for diversity studies, particularly in the Cenozoic (Raup, 1979; Jablonski et 438 

al., 2003). If the pull of the recent was affecting the results, it is possible that the increasing number 439 

of CWS in successively younger stages is due to a better understanding of the temperature 440 

preferences of dinoflagellate cysts. It is for this reason that the main analysis compared the 441 

proportion of CWS to WWS, rather than the absolute number of CWS present (Figures 3, 4). 442 

However, with the exception of the Early Miocene, which has the fewest species with known 443 

temperature preferences (Figure 8; five CWS and 30 WWS), the pull of the recent does not seem to 444 

have influenced the rest of the Neogene, and the number of species found in each stage is highest 445 

for the Tortonian (Figure 8). It is also worth noting that when the percentage of CWS and WWS 446 

(present in each stage) is calculated relative to each other (Figure 8), the percentage of CWS in each 447 

stage increases through the Neogene with the cooling temperatures. As the pull of the recent 448 

presumably affects CWS and WWS equally, suggesting the CWS and WWS ratio is unaffected (Figure 449 

8; black dashed line), we surmise that the increase in the proportion of CWS relative to WWS 450 

through the Neogene is a robust feature of the dataset caused by the cooling climate. 451 
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 452 

Figure 8: The number of dinoflagellate cyst species with warm or cold water preferences for each stage are plotted on 453 

the left axis and the percentage of Cold Water Species (CWS) that make up the total number of species with known 454 

temperature preferences for each stage (black dashed line) are plotted on the right axis. The data were obtained by 455 

counting the number of species in each stage from the range chart in Figure 3. 456 

Throughout the Neogene, there is a significantly higher number of WWS than CWS (Figure 8). This is 457 

likely due to the latitudinal biodiversity gradient where the warmer, lower latitudes have a higher 458 

diversity than the cooler, higher latitudes. This phenomenon has been observed in the geological 459 

record for at least the last 30 Myr (Crame, 2001; Mittelbach et al., 2007; Mannion et al., 2014). This 460 

relatively low species richness of CWS is an enduring feature of the dinoflagellate cyst record, and 461 

hence does not affect our interpretations. There are fewer localities in the most northerly/southerly 462 

latitudes, which potentially led to higher numbers of WWS compared to CWS in the database. 463 

However, as this is consistent throughout the Neogene, it is unlikely to bias our results. 464 

 465 
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4.7 Uncertainty from geographical and temporal distribution of data 466 

The majority of CWS occurrences are in the Northern Hemisphere (Figure 4). This is a clear sampling 467 

bias due to the lack of Neogene dinoflagellate cyst records from the Southern Hemisphere (Figure 4). 468 

For this reason, the mean percentage of CWS for each stage (Figure 6a) was recalculated only using 469 

the records from the Northern Hemisphere (Figure 6b). The most obvious difference between the 470 

two methods (global versus northern only) was in the Tortonian. The mean percentage of CWS was 471 

higher for the Tortonian than for the immediately adjacent stages. This difference for the Tortonian 472 

can be explained by the Southern Hemisphere having substantially more records than in the other 473 

time intervals (Figures 4e, 5a), the majority of which have CWS values of 33% or higher. These 474 

records, between 65 and 70° S and 20 to 25° S, are numerous, with tightly constrained ages, and 475 

result in a much larger percentage of CWS in the Tortonian (19%, Figure 6a) than in the stages below 476 

and above (5% in the Serravallian and 12% in the Messinian). When only using data from the 477 

Northern Hemisphere, which has a more equal spatial distribution, there is a reduced discrepancy 478 

between the Tortonian and the immediately adjacent stages (Figure 6b). It is for this reason that the 479 

conclusions drawn from this study mainly concern the Northern Hemisphere. As the majority of data 480 

in the Northern Hemisphere were collected from the North Atlantic and Arctic oceans and the 481 

Mediterranean region, it is likely that the signal produced is from those areas, rather than for the 482 

whole of the Northern Hemisphere. 483 

This implies that care must also be taken in the Northern Hemisphere in latitudinal bins that are 484 

devoid of data for some of the stages. For example, the three most northerly latitudinal bins only 485 

have data for the Pliocene, all of which have high percentages of CWS. To ensure that the Pliocene 486 

data were not skewing the results, further analysis of the data was carried out excluding latitudinal 487 

bins that did not have data for all stages (Figure 6b). Comparing results using all the Northern 488 

Hemisphere data, to those using simply latitudinal bins with data present for every stage (Figure 6b), 489 

indicates that the cooling was more extreme when all the data for the Northern Hemisphere were 490 
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used. However, the overall trend is the same, and leads to the conclusion that the absence of data in 491 

the high latitudes for stages other than the Pliocene has not skewed the results. 492 

The average age range of the records for each stage is variable (Figure 9). The records from the 493 

Aquitanian and Burdigalian have the longest age range (4.7 and 4.4 Myr respectively), and the 494 

Zanclean and Piacenzian records have the shortest age ranges (0.9 and 0.8 Myr respectively). This is 495 

partly due to the nature of the dating. For example, many of the records dated in the literature are 496 

dated to within a stage or in some cases, to the nearest sub-epoch (i.e. the Early Miocene). Thus, the 497 

records of the longer stages, such as the Burdigalian (spanning 4.47 Myr) have a higher average age 498 

range, while the Piacenzian (the shortest stage of the Neogene; 1.02 Myr in duration) has a much 499 

lower average record length. Unfortunately, this means that any evidence of short scale events 500 

affecting dinoflagellate cysts, such as the MMCO and the mPWP, is not resolved in this study. 501 

Further to this an individual data-ƐĞƚ ŵĂǇ ĨĂůů ŝŶƚŽ ĞŝƚŚĞƌ Ă ͞ǁĂƌŵ͟ Žƌ ͞ĐŽůĚ͟ ƉŚĂƐĞ of the Neogene 502 

orbital cycle (Salzmann et al., 2013; Liebrand et al., 2017). If all the records used to define the %CWS 503 

ĨŽƌ Ă ƐƚĂŐĞ ǁĞƌĞ ƚŽ ĐŽŵĞ ĨƌŽŵ Ă ͞ǁĂƌŵ͟ ƉŚĂƐĞ͕ ƚŚĞŶ Ă ͞ĐŽůĚ͟ ƉŚĂƐĞ ƌĞƐƵůƚ ŵŝŐŚƚ ďĞ ďŝĂƐĞĚ ŝŶ ƚŚĂƚ 504 

direction. Despite this uncertainty in the time-averaging approach applied to Neogene dinoflagellate 505 

cyst records a trend from low %CWS during the Early Miocene to high %CWS in the Late Pliocene is 506 

seen. It is therefore still possible to interpret long-term changes and, in the future, the generation of 507 

higher-resolution dinoflagellate cyst records would facilitate more detailed studies of climate and 508 

environmental change.  509 

 510 

 511 
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 512 

Figure 9: The average duration of dinoflagellate cyst records for each stage. Generally, temporal resolution of the data is 513 

higher in shorter stages because much of the data are dated to within a stage. 514 

 515 

5. Discussion 516 

5.1 Driving factor of the cooling Neogene 517 

The increase in CWS through the Neogene (Figures 6, 7) strongly supports the cooling trend seen in 518 

the benthic oxygen isotope stack, global vegetation records and global alkenone data (Zachos et al., 519 

2008; Pound et al., 2012a; Salzmann et al., 2013; Utescher et al., 2015; Herbert et al., 2016). 520 

Dinoflagellate cyst species that indicate cold waters are largely absent from the Aquitanian to the 521 

Serravallian (Figures 6, 7). This was followed, in the Late Miocene and Pliocene, by increasing 522 

proportions of CWS at individual data sites and the biogeographical expansion of cold water 523 

dinoflagellate cysts species towards the lower latitudes (Figures 4, 7). By the Piacenzian, a 524 

forerunner of the modern latitudinal distribution of CWS was present (Figure 7). The global scale 525 

changes in dinoflagellate cysts through the Neogene points to a global scale control on Neogene 526 

climate. The most likely candidate would be changing concentrations of atmospheric CO2 (Pound et 527 
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al., 2011; 2012a; Bolton and Stoll, 2013). The role of CO2 in driving Pliocene climate is well 528 

established (Haywood et al., 2016), whilst it has been strongly debated whether Miocene climate 529 

was also controlled by atmospheric CO2 (Knorr et al., 2011; Pound et al., 2011; Bradshaw et al., 2012; 530 

Forrest et al., 2015). Much of the argument stems from older records of marine proxies for CO2, 531 

which show flat-lining atmospheric CO2 or values below the pre-industrial standard of 280 ppmv for 532 

most of the Miocene (Pagani et al., 1999; 2005; Beerling and Royer, 2011). The counterarguments to 533 

these lines of evidence have been that these CO2 records are incorrectly calculated (Ruddiman, 534 

2010) and/or the true Miocene CO2 level has yet to be detected in the record (Bolton and Stoll, 535 

2013). 536 

More recent records of Neogene CO2 have demonstrated higher atmospheric values and high-537 

resolution fluctuations that are in tune with other climate proxy records (Zhang et al., 2013; 538 

Greenop et al., 2014). Carbon dioxide as a controlling factor on Neogene climate is consistent with 539 

the global scale changes in CWS dinoflagellate cysts (Figures 4, 7). Modelling results compared to 540 

global datasets consistently show that higher (ca. 360-500 ppmv) CO2 levels are necessary for 541 

successful simulation of Neogene climates (Dowsett et al., 2013; Bradshaw et al., 2015; Haywood et 542 

al., 2016; Stap et al., 2016). The global increases in Neogene cold water dinoflagellate cysts species 543 

ĂƌĞ ŝŶ ĂŐƌĞĞŵĞŶƚ ǁŝƚŚ ƚŚĞ ďĞŶƚŚŝĐ ɷ18O isotope stack (Zachos et al., 2008), global changes in biome 544 

distribution through the Neogene (Pound et al., 2012a; Salzmann et al., 2013), reconstructed marine 545 

and terrestrial temperatures (Utescher et al., 2015; Herbert et al., 2016), and the isotopic divergence 546 

of coccolithophores (Bolton et al., 2012; Bolton and Stoll, 2013). Such diverse and widespread 547 

evidence for a large-scale driver of global climate points to an overarching role of atmospheric CO2. 548 

5.2 The Early Miocene (23.03ʹ15.97 Ma) 549 

Immediately prior to the Miocene, the Mi-1 event (23.13 Ma, Abels et al., 2005) in the benthic 550 

oxygen isotope record shows a shift to cooler bottom waters and/or increased ice accumulation on 551 

Antarctica (Zachos et al., 2001; Billups and Schrag, 2002; Wilson et al., 2013; Beddow et al., 2016; 552 
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Liebrand et al., 2017). Recent high-resolution research has clearly demonstrated that there is much 553 

more detail in the benthic oxygen isotope records than can be described using the traditional 554 

Mi oxygen isotope glaciations/zones (Miller et al., 1991; Liebrand et al., 2017; Paul A. Wilson, 555 

personal communication 2017). However this contribution is a global review, and we retain the Mi 556 

terminology because the aim here is to compare intercontinental changes in CWS dinoflagellate 557 

cysts with broad-scale perturbations in Neogene palaeoclimates. We do not propose correlations to 558 

specific oxygen isotope stratigraphies. 559 

Whilst evidence for ice sheets in the Northern Hemisphere is uncertain, sea-ice was present in the 560 

Arctic (Larsen et al., 1994; Moran et al., 2006, DeConto et al., 2008). Ice accumulation at one or 561 

potentialy both poles indicates a relatively cool climate, however, the mean CWS percentage of 2% 562 

for the Aquitanian and 3% for the Burdigalian is more indicative of globally warmer oceans (Figure 563 

4a, b). With the exception of occurrences off the Antarctic Peninsula, the CWS of the Aquitanian and 564 

Burdigalian are not at the high latitudes and can be compared to the occurrence of CWS in the 565 

modern Mediterranean Sea (Zonneveld et al., 2013b). The low numbers of CWS during the Early 566 

Miocene indicates that the latitudinal temperature gradient was considerably flatter than at present 567 

(Figure 7a, b). This was previously suggested by Nikolaev et al. (1998) from a compilation of 568 

foraminifera and oxygen isotope data. The Early Miocene was not an interval of sustained warmth; 569 

alkenone data from the Paratethys Sea shows a 2ʹ3 °C cooling between 18.4 and 17.8 Ma (Grunert 570 

et al., 2014). The Early Miocene is characterised by a 2.4 Ma eccentricity-paced benthic oxygen 571 

isotope record with distinct intervals of glacial-interglacial cycles operated on a 110 ky periodicity 572 

(Liebrand et al., 2017). These rapid climate and cryosphere changes are not detected in the present 573 

study due to low dating resolution in many dinoflagellate cyst studies (Figure 9). 574 

5.3 The Mid Miocene (15.97ʹ11.62 Ma) 575 

The Mid Miocene is both an interval of sustained global warmth (MMCO; 17-14.5 Ma) and one of 576 

step-like global cooling at Mi-3a, Mi-3b, Mi-4 and Mi-5 (ca. 14-11.6 Ma; Savin et al., 1975; Shackleton 577 
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and Kennett, 1975; Zachos et al., 2001; Böhme, 2003; You et al., 2009; Quaijtaal et al., 2014). This 578 

general pattern of a warm Langhian and a cooling Serravallian is recorded in the percentage of CWS 579 

in each stage but higher-resolution changes in temperature are not visible due to the time slab 580 

approach of the current study (Figure 6a, bͿ͘ TŽǁĂƌĚƐ ƚŚĞ ĞŶĚ ŽĨ ƚŚĞ EĂƌůǇ MŝŽĐĞŶĞ͕ ďĞŶƚŚŝĐ ɷ18O 581 

values rapidly decreased, suggesting a reduction in continental ice and a global warming event 582 

(Zachos et al., 2001; 2008). The warming event culminated in the MMCO and resulted in the tropical 583 

climate zone having a much greater latitudinal extent, abundant precipitation and decreased 584 

seasonality (Böhme, 2003; Bojar et al., 2004; Kroh, 2007; Pound et al., 2012a). Even though mean 585 

global temperatures in the MMCO were more than 3°C higher than today (Pagani et al., 1999; 586 

Kürschner et al., 2008; You et al., 2009; Foster et al., 2012), evidence for this relatively short 587 

duration of warming is not obvious in this study, likely due to a lack of temporally high-resolution 588 

data in the TOPIS database. 589 

In addition to increased temporal resolution, improved reporting of abundance data would help to 590 

identify events such as the MMCO using TOPIS. For example, Warny et al. (2009) detected the 591 

MMCO in Antarctica by a 2000-fold abundance increase of just two species. These authors 592 

associated the peak in productivity with increased meltwater runoff from the elevated temperatures 593 

of the MMCO (Warny et al., 2009). This demonstrates how routine reporting of abundance data in 594 

the literature would enhance our ability to understand Neogene climate trends. 595 

What is evident from the database, is that a cooling trend occurred between the Langhian and the 596 

Serravallian, which resulted in a slight increase in the percentage of CWS (Figure 6a, b). Whilst this 597 

small change is apparent, it is not as characteristic as the step-like cooling demonstrated by benthic 598 

ɷ18O values during the Serravallian (Figure 6c; Quaijtaal et al., 2014). Instead, the Serravallian 599 

consistently has higher percentages of CWS than preceding stages, indicating that dinoflagellate 600 

cysts did respond to the cooling, but not uniformly in the surface waters at all latitudes. This may 601 

relate to the asymmetrical nature of the cooling; the latitudinal temperature gradient steepened 602 
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first in the Southern Hemisphere during the Serravallian in response to the expansion of Antarctic ice 603 

sheets (Pound et al., 2012a). Whilst the Northern Hemisphere (in the North Atlantic region at least) 604 

maintained a shallower gradient, possibly in response to the onset of the warm Gulf Stream ocean 605 

current (Denk et al., 2013). 606 

Although ƚŚĞ ďĞŶƚŚŝĐ ɷ18O values significantly increased in the Serravallian, and less in the Tortonian, 607 

the dinoflagellate cyst record (Figure 6a-c) demonstrates the opposite. Thus, a more significant 608 

cooling is indicated in the Tortonian as opposed to the Serravallian. This suggests either a time-609 

averaged response of dinoflagellate cysts to the step-like cooling of the Serravallian, or that the 610 

surface waters cooled at a different rate to the deep waters. Global biome reconstructions also 611 

demonstrate that the cooling was more pronounced between the Serravallian and the Tortonian, 612 

than the Langhian and the Serravallian (Pound et al., 2012a). This may reflect a growth of ice sheets 613 

during the Serravallian, whereby ƚŚĞ ŝŶĐƌĞĂƐĞ ŝŶ ĚĞĞƉ ǁĂƚĞƌ ɷ18O values records a combination of 614 

cooling and ice accumulation (Badger et al., 2013; Knorr and Lohmann, 2014), whereas the Late 615 

Miocene did not have any additional permanent ice, but underwent continued global cooling 616 

(Herbert et al., 2016). In addition, vegetation records (Pound et al., 2012a) demonstrate that the 617 

Southern Hemisphere cooled prior to the Northern Hemisphere, and as the majority of the records 618 

used in this study are from the Northern Hemisphere, this could be a further explanation for the 619 

delayed response of the dinoflagellate cysts to the signĂů ƉƌŽĚƵĐĞĚ ďǇ ƚŚĞ ďĞŶƚŚŝĐ ɷ18O values 620 

(Zachos et al., 2001; 2008). 621 

During the Langhian the Central American Seaway (CAS) shoaled, potentially preventing deep water 622 

exchange from around 15 Ma (Montes et al., 2015). Unfortunately there are currently no 623 

dinoflagellate cyst records in TOPIS for the Caribbean during the Mid Miocene (Figure 4). However, 624 

this shoaling or closure would have modified ocean circulation, and modelling results have shown 625 

that this warms the Northern Hemisphere (Brierley and Federov, 2016; Lunt et al., 2008). This is 626 

consistent with the low numbers of CWS dinoflagellate cysts in the high latitudes of the Northern 627 
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Hemisphere (Figure 4). The closure of the CAS during the Langhian would have promoted heat 628 

transport into the North Atlantic. It would also have tempered the global cooling of the post-MMCO 629 

climate as seen in Northern Hemisphere floras (Denk et al., 2013) and strengthened the 630 

asymmetrical latitudinal temperature gradient (Pound et al., 2012a). 631 

5.4 The Late Miocene (11.62ʹ5.33 Ma) 632 

The Late Miocene, though still significantly warmer than the present, was considerably cooler than 633 

the Mid Miocene (Pound et al., 2012a; Utescher et al., 2015) and the Tortonian in particular (11.62ʹ634 

7.25 Ma) was characterised by warmer and more humid conditions than today (Bruch et al., 2006; 635 

Pound et al., 2011). This is reflected in the increased percentage of, and wider biogeographical 636 

distribution of, CWS dinoflagellate cysts (Figures 4, 5). Mean annual temperatures were between 14 637 

and 16 °C in northwest Europe (Donders et al., 2009; Pound et al., 2012b; Pound and Riding, 2016). 638 

Furthermore, the Cenozoic global cooling trend, which resumed at the end of the MMCO, continued 639 

;)ĂĐŚŽƐ Ğƚ Ăů͕͘ ϮϬϬϭͿ͘ HŽǁĞǀĞƌ͕ ďĞŶƚŚŝĐ ɷ18O values demonstrated that the cooling was more gradual 640 

for the Tortonian compared to the Serravallian, assuming that there was no additional ice sheet 641 

growth (Figure 6c; Zachos et al., 2008). This cooling affected the presence of cold water 642 

dinoflagellate cysts, and the mean percentage of CWS reached 10% in the Tortonian (Figure 6b). 643 

The dinoflagellate cyst record is consistent with global vegetation records that show a cooler, more 644 

seasonal, biome distribution in the Northern Hemisphere in the Tortonian, than during the 645 

Serravallian (Pound et al., 2012a). Furthermore, pollen-based temperature reconstructions from 646 

New Zealand demonstrate Southern Hemisphere cooling immediately after the MMCO (Prebble et 647 

al., 2017). The percentage of CWS in the Tortonian in the mid to high latitudes increased, while the 648 

percentage in the low latitudes remained similar to the values for the Early and Mid Miocene 649 

(Figures 7a-e). The Tortonian was also the earliest stage to have all dinoflagellate cysts with known 650 

temperature tolerances being CWS at 75ʹ80° N. This indicates substantial high latitude cooling by 651 

this time during the Neogene, which is consistent with proxies for extensive seasonal sea ice in the 652 
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Arctic during the Tortonian (Stein et al., 2016). The increase in the percentage of CWS in the higher 653 

latitudes compared with the low latitudes reflects that tropical regions during the Miocene remained 654 

at similar temperatures, whereas the high latitudes cooled (Nikolaev et al., 1998; Williams et al., 655 

2005; Steppuhn et al., 2006; Herbert et al., 2016). This effect caused the latitudinal temperature 656 

gradient to steepen throughout the Late Miocene and Pliocene in the Northern Hemisphere 657 

(Nikolaev et al., 1998; Crowley, 2000; Fauquette et al., 2007; Pound et al., 2012a). This temperature 658 

decrease in the high latitudes was described by Nikolaev et al. (1998), who demonstrated a 4ʹ6 °C 659 

increase in the latitudinal temperature gradient between 10 and 5 Ma. Cooling of the mid to high 660 

latitude surface waters during the Late Miocene is also reflected in the alkenone sea surface 661 

temperature reconstructions (Herbert et al., 2016) 662 

Global temperatures continued to cool through the Messinian (Pound et al., 2012a; Utescher et al., 663 

2015; Herbert et al., 2016; Stein et al., 2016). However, the benthic oxygen isotope record does not 664 

show a clear signal towards colder bottom water temperatures in conjunction with the evidence for 665 

surface cooling (Zachos et al., 2008). Widespread alkenone data suggest that the Messinian included 666 

some of the largest cooling in sea surface temperatures of the Late Miocene, and a temperature 667 

minimum is recorded in the Arctic at around 6.5 Ma (Herbert et al., 2016; Stein et al., 2016). Despite 668 

this, the geographical distribution and percentages of CWS dinoflagellate cysts are similar to the 669 

Tortonian (Figures 4, 7). This may be an artefact of the time-slab approach, or the current available 670 

data on global dinoflagellate cysts. Much of the information on Messinian dinoflagellate cysts comes 671 

from the North Atlantic, which by the Late Miocene was under the influence of the Gulf Stream 672 

current (Denk et al., 2013). Many of the records also lack the necessary age control and resolution to 673 

identify short-lived cooling events witnessed in other records (Herbert et al., 2016; Stein et al., 674 

2016). The globally distributed alkenone based sea surface temperature reconstructions suggest 675 

near modern temperatures between 7 and 5.4 Ma (Herbert et al., 2016). This time interval is also 676 

one of a stable climate state, with potentially higher ice volumes and a greater threshold for 677 

deglaciation (Drury et al., 2016). However, near modern temperatures during the Messinian are not 678 
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consistent with Arctic surface water temperatures, dinoflagellate cysts, faunal distributions or global 679 

vegetation records (Donders et al., 2009; Pound et al., 2012a; Utescher et al., 2015; Azpelicueta and 680 

Cione, 2016; Stein et al., 2016; Prebble et al., 2017). 681 

The presence of CWS dinoflagellate cysts in the Late Miocene of offshore South Africa (Figure 4) has 682 

been used as an indicator for the presence of the cold Benguela Current (“ŝĞƐƐĞƌ͕ ϭϵϴϬ͖ DŝĞƐƚĞƌͲ683 

Haass et al., 1990; Robert et al., 2005; Heinrich et al., 2011; Hoetzel et al., 2017). The slightly 684 

reduced number of cold water dinoflagellate cysts in the Mediterranean during the Messinian, when 685 

compared to the Tortonian, is in agreement with alkenone data that shows warmer Messinian Sea 686 

Surface Temperatures (SSTs) than in the latest Tortonian (Tzarnova et al., 2015). The temporal 687 

resolution of the dataset does not allow any response to the Messinian Salinity Crisis to be detected 688 

(Flecker et al., 2015), especially since the global-scale climate effects would have been limited in 689 

magnitude and extent, and transient (Ivanovic et al., 2014). 690 

5.5 The Pliocene (5.33ʹ2.58 Ma) 691 

In the Pliocene, the trends towards cooler climates continued and was interrupted by brief warm 692 

intervals (Haywood et al., 2013; 2016; Salzmann et al., 2013). Despite being cooler than the 693 

Miocene, the Pliocene was still significantly warmer than today (Haywood et al., 2013; Salzmann et 694 

al., 2013; Pound et al., 2015; Dowsett et al., 2016; Panitz et al., 2016) with a shallower Northern 695 

Hemisphere latitudinal gradient of CWS-dominated dinoflagellate cyst assemblages compared to the 696 

modern (Figure 7). The percentage of CWS increased most markedly in the high latitudes, from 45° N 697 

northwards (Figure 7e, f), thereby further steepening the latitudinal temperature gradient. Nikolaev 698 

et al. (1998) found that the latitudinal gradient increased by 4ʹ5 °C during the Piacenzian, and 699 

Fedorov et al. (2013) demonstrated a 4ʹ7 °C cooling of the mid to high latitudes of the North 700 

Atlantic and Pacific oceans. This cooling of the higher latitudes compared to the lower latitudes is a 701 

characteristic observed using a variety of proxies (Nikolaev et al., 1998; Brierley and Fedorov, 2010; 702 
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Pound et al., 2012a; Federov et al., 2013; Herbert et al., 2016), and was associated with the 703 

development of ice in the high latitudes (Dolan et al., 2011; Dowsett et al., 2016). 704 

Short-lived glaciations were infrequent in the Zanclean, but became more common in the Piacenzian 705 

as the global climate continued to cool (Lisiecki and Raymo, 2005; Miller et al., 2005; 2012). A 706 

generally warmer Zanclean, and a cooler Piacenzian, is consistent with the average percentage of 707 

CWS dinoflagellate cysts in the Zanclean (16%) and the Piacenzian (23%; Figure 4), and is consistent 708 

with global alkenone records (Herbert et al., 2016). However, short-lived glaciations are not 709 

currently detectable in the TOPIS database due to the limitations of sampling resolution. The East 710 

and West Antarctic ice sheets were both well established by this time (Naish and Wilson, 2009; 711 

Dolan et al., 2011). Although the Southern Hemisphere lacks widespread dinoflagellate cyst records 712 

for the Piacenzian, the two data points proximal to the Antarctic Peninsula contain 100% CWS 713 

dinoflagellate cysts (Figure 4). Ice sheets in the Northern Hemisphere were significantly smaller, 714 

compared to the modern, or absent, which is consistent with WWS dinoflagellate cysts still being 715 

present in the high latitudes of the North Atlantic (Figure 4; Dolan et al., 2011; De Schepper et al., 716 

2014; Panitz et al., 2016). Global climate started to significantly deteriorate (cooled) in the 717 

Piacenzian, leading to the intensification of the Northern Hemisphere glaciation around 2.75 Ma 718 

(Ravelo et al., 2004; Mudelsee and Raymo, 2005; De Schepper et al., 2014; Panitz et al., 2016). 719 

The CAS continued to constrict during the Pliocene before finally closing around the Plioceneʹ720 

Pleistocene boundary (Coates and Stallard, 2013; Osbourne et al., 2014). Neodymium isotopes show 721 

the exchange of waters until 2.5 Ma, but deep water exchanges had ceased by 7 Ma (Coates and 722 

“ƚĂůůĂƌĚ͕ ϮϬϭϯ͖ OƐďŽƵƌŶĞ Ğƚ Ăů͕͘ ϮϬϭϰͿ͘ IŶƚĞƌŚĞŵŝƐƉŚĞƌŝĐ ĨŽƌĂŵŝŶŝĨĞƌĂ ďĂƐĞĚ MŐͬCĂ ĂŶĚ ɷ18O suggest 723 

that this continued constriction lead to greater heat transport in the Zanclean into the Northern 724 

Hemisphere, but reduced heat transport during the Piacenzian (Bailey et al., 2013; Karas et al., 725 

2017). These results are consistent with the latitudinal distribution of CWS dinoflagellate cysts in the 726 

Zanclean and Piacenzian (Figures 4, 7). 727 
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6. Conclusions 728 

Global datasets compiling previously published data are becoming more common and are 729 

increasingly used for evaluating environmental and climatic changes over longer time scales and 730 

over large regions (Salzmann et al., 2008; Masure and Vrielynck, 2009; Pound et al., 2012a; Masure 731 

et al., 2013; Woods et al., 2014). In our global compilation of Neogene dinoflagellate cyst data, we 732 

observed an increase in the mean percentage of CWS from the Early Miocene to Late Pliocene. An 733 

increase in the percentage of CWS, relative to the total number of species present with known 734 

temperature preferences, is qualitative evidence for decreasing SSTs. Our results agree very well 735 

with the gradual global climate cooling over the Neogene and increasing continental ice volume 736 

(Figure 6c; Zachos et al., 2001; 2008; Billups and Schrag, 2002; Ravelo et al., 2004; Shevenell et al., 737 

2004; McKay et al., 2012; Miao et al., 2012; Pound et al., 2012a; Lear et al., 2015, Herbert et al., 738 

2016). Our global compilation also allowed distinction between large scale climatic changes and local 739 

anomalies; for example, determining if the cooling trend had a global latitudinal and/or longitudinal 740 

gradient in the Miocene, Pliocene and modern surface ocean. From this study, the following 741 

conclusions can be drawn in relation to the research questions outlined in the introduction: 742 

Can dinoflagellate cysts be used to determine global cooling in the Neogene? 743 

- Dinoflagellate cysts are increasingly being used in palaeoclimate studies and this work 744 

corroborates their usefulness as a qualitative and relative temperature indicator over long 745 

timescales. Dinoflagellate cysts with known temperature preferences can be used to 746 

determine cooling on a global scale and the general cooling trend shown in this study 747 

broadly agrees with the global climate evolution in the Neogene (Figure 6c; Zachos et al., 748 

2008). Our approach is validated by successful reconstructions of the modern sea surface 749 

temperature distribution on a global scale (Figure 4i, j).  750 

Was the cooling during the Neogene uniform at all latitudes? 751 
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- Increases in the CWS percentage occurred most prominently in the mid to high latitudes, 752 

and less in the lower latitudes throughout the Neogene. This suggests that the mid to high 753 

latitudes underwent more cooling than the lower latitudes, at least in the Northern 754 

Hemisphere (Figure 7). The lower latitudinal temperature gradient during the Early and Mid 755 

Miocene, implied by smaller percentages of CWS in all latitudinal bins, agrees with terrestrial 756 

reconstructions from Pound et al. (2012a). These authors described a steepening of the 757 

latitudinal temperature gradient, as the high latitudes cooled more than the lower latitudes.  758 

Was the rate of cooling uniform across the whole Neogene? 759 

- Neogene climate cooling did not always occur at a steady rate and the most significant 760 

cooling occurred in the Pliocene, between the Zanclean and the Piacenzian (Figure 6a, b). 761 

There was a further decrease in temperature between the Piacenzian and the modern 762 

(Zonneveld et al., 2013b). The faster cooling rate from the Pliocene to the modern is 763 

consistent ǁŝƚŚ ƚŚĞ ďĞŶƚŚŝĐ ɷ18O curve of Zachos et al. (2008). 764 

Further progress in the global application of dinoflagellate cysts would be made with the collection 765 

of more primary data. In particular, targeting the Indian and Pacific oceans and the Southern 766 

Hemisphere throughout the entire Neogene would substantially improve our knowledge of 767 

dinoflagellate biogeography. This would enable further comparison of temperature changes 768 

between the Northern and Southern Hemispheres, and permit analysis of the evolution of latitudinal 769 

temperature gradients. It would also be useful to obtain more data with a higher temporal 770 

resolution to analyse shorter events, such as the MMCO, rather than solely the long term trends. It is 771 

equally important to add further quantitative records to the TOPIS database to facilitate the 772 

detection of more refined temperature changes. However, this study unequivocally demonstrates 773 

that it is possible to use dinoflagellate cysts to determine large-scale climate changes through the 774 

Neogene. 775 

 776 
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 785 

Figure captions 786 

Figure 1: Example screen shot from the Microsoft Access database; Tertiary Oceanic Parameters Information System 787 

(TOPIS) showing the three key forms: Main, Layer and Flora. 788 

Figure 2: Distribution of all the Neogene records used in this study; the sites are plotted at their modern latitude and 789 

longitude, and references are provided in supplementary information B. 790 

Figure 3: Age ranges of the Neogene dinoflagellate cyst species with known temperature preferences used in this study. 791 

Dashed lines represent ages when species are known to have lived, but are not present in the datasets used in this 792 

study. References pertaining to temperature preferences are provided in the Supplementary data A. 793 

Figure 4: Distribution of dinoflagellate cyst records in (a) Aquitanian, (b) Burdigalian, (c) Langhian, (d) Serravallian, (e) 794 

Tortonian, (f) Messinian, (g) Zanclean, (h) Piacenzian and the (i) modern (from Zonneveld et al., 2013b). (j) Mean annual 795 

ƐĞĂ ƐƵƌĨĂĐĞ ƚĞŵƉĞƌĂƚƵƌĞ ŽďƐĞƌǀĞĚ ďĞƚǁĞĞŶ ϮϬϬϵ ĂŶĚ ϮϬϭϯ ;ĨƌŽŵ NASA͛Ɛ OĐĞĂŶ CŽůŽƌ ĚĂƚĂďĂƐĞ͗ 796 

http://oceancolor.gsfc.nasa.gov; NASA Ocean Biology OB.DAAC; 2014). For a-i, records are plotted at their palaeo- 797 

latitude and -longitudes. Size of the points represents the number of Cold Water Species (CWS) present in each record. 798 

The colour of the points represents the percentage of CWS relative to the total number of species with known 799 

temperature preferences present in each record. Darker shades represent higher percentages of CWS. Small red circles 800 

represent records that only contain Warm Water Species. 801 
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Figure 5: Dinoflagellate cyst data for the entire Neogene is divided into latitudinal bins spanning five degrees. There are 802 

consistently more data for the Northern Hemisphere than the Southern Hemisphere. For each record, the percentage of 803 

CWS was calculated relative to the number of species with known temperature preferences. The percentage of CWS is 804 

displayed and is represented by the horizontal thickness of the line. The shading of the lines represents the number of 805 

records present within each latitudinal bin. Dashed red lines represent records with no CWS. Figure 5a represents all 806 

records and Figure 5b contains only those records with no CWS present. Arrows indicate the two main periods of 807 

cooling. To help explore uncertainties, the number of records found within each latitudinal bin is represented by the 808 

shading. The darker the shading, the more data are present, and therefore the more reliable the signal is likely to be. 809 

Figure 6: Mean percentages of Cold Water Species (CWS) of dinoflagellate cysts for each stage for (a) all records, (b) only 810 

records from the Northern Hemisphere and using only the latitudinal bins (in the Northern Hemisphere) where data are 811 

ĂǀĂŝůĂďůĞ ĨŽƌ Ăůů ƐƚĂŐĞƐ͘ ;ĐͿ BĞŶƚŚŝĐ ɷ18O compilation (Zachos et al., 2001; 2008) demonstrating cooling through the 812 

Neogene to present for comparison with the mean percentage of CWS. 813 

Figure 7: The mean percentage of Cold Water Species (CWS) of dinoflagellate cysts relative to the total number of 814 

species present with known temperature preferences for each five degree latitudinal bin. (a) Aquitanian, (b) Burdigalian, 815 

(c) Langhian, (d) Serravallian, (e) Tortonian, (f) Messinian, (g) Zanclean, (h) Piacenzian and (i) the modern. For the 816 

modern, results were replotted without data from the Gulf of St. Lawrence (grey dotted), a densely sampled region, to 817 

investigate sampling bias. This grey dotted line is included in all stages for comparison. Error bars represent the standard 818 

deviation. 819 

Figure 8: The number of dinoflagellate cyst species with warm or cold water preferences for each stage (red and blue 820 

lines; plotted on the left axis) and the percentage of Cold Water Species (CWS) that make up the total number of species 821 

with known temperature preferences for each stage (black line; plotted on the right axis). The data were obtained by 822 

counting the number of species in each stage from the range chart in Figure 3. 823 

Figure 9: The average age range of dinoflagellate cyst records for each stage. Generally, temporal resolution of the data 824 

is higher in shorter stages because much of the data are dated to within a stage. 825 

 826 

Supplementary data A: A list of the species with known temperature preferences used in this study 827 

and the references from which the information came. 828 
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Supplementary data B: A list of the localities used in this study and the publications from which the 829 

information came. 830 

 831 
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