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Abstract

During machining, the use of variable helix tools can potentially improve the system’s stability to regenerative chatter. However,

this configuration of tool has a distributed time delay, which makes the stability analysis more complex. The analysis is further

exacerbated by the time-periodic coefficients that occur during milling. The present contribution demonstrates how the Fourier

transform and harmonic transfer function approach can be used to analyse the system stability. This provides new insight into the

stability of these tools, based on a mathematically elegant approach that makes extensive use of the shift theorem.
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1. Introduction

Regenerative chatter is a well-known and problematic form of instability that involves delayed dynamics. For

standard milling tools, the stability analysis requires consideration of a time-periodic system with a single delay

term. For variable pitch tools, multiple delay terms can arise, but variable helix tools are unique in that they lead

to a distributed delay1. Previous work by the author2 has shown how this distributed delay can be considered by

use of the shift theorem and the Laplace transform. This approach has also been used to investigate the so-called

short regenerative effect3, which can also lead to distributed delays. The advantage of the approach is that it enables a

visual interpretation of the system stability, by describing the distributed delays as a filter in the frequency domain. The

approach is also computationally efficient. The present contribution demonstrates that the approach can be extended

to properly consider the time-periodic nature of milling. Although the resulting computations can be cumbersome,

the mathematical formulation relies only on fundamental properties - shift theorems - of the Fourier (or Laplace)

transform, thus making the approach an elegant alternative that can provide more insight into the stability of this

configuration of tool.

In the well known (e.g. 4) model of regenerative chatter, cutting forces are assumed to be proportional to the in-

stantaneous chip thickness. Rotation of the cutting tool leads to time-periodic direction coefficients, which map the
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radial and tangential cutting forces into the global coordinates of the tool and workpiece. These forces then induce

vibrations of the tool and/or workpiece, which consequently leads to relative vibration and a change in the instan-

taneous chip thickness. Classical stability models5 assume time-averaged (or zero-frequency) direction coefficients,

which are equivalent to taking the first term of a Fourier series expansion. More recent work6 has considered multiple

terms in this Fourier series. This leads to a stability analysis which is equivalent to the Harmonic Transfer Function

concepts that are described in some control engineering literature7,8. The present study combines this approach with

the author’s previous work2 on variable helix tools. Here, it transpires that careful formulation of the Fourier series

expansion of the time-periodic coefficients is needed. Consequently, the manuscript focuses on this aspect of the

analytical formulation. Numerical validation is then described by comparing the result with previous studies.

2. Theory

Consider a tool with K teeth, where the pitch angle between each tooth is able to vary linearly along the axial depth

of the tool. An example (with two teeth) is illustrated in Fig. 1. The function describing the angle for tooth k is:

φk(a) = φk0
+ βka. (1)

Here, φk0
is the tooth angle at the end of the tool, and βk is the gradient of the pitch with respect to axial location a.

So for a tooth of helix angle γ, and radius r,

βk =
tan γ

r
.

Note that βk is typically negative (as depicted in Fig. 1) in order to assist with chip evacuation. The spindle speed

of the tool is Ω rad/s, and so at time t, the reference rotation of the tool is θ0(t) = Ωt radians. The function describing

the position of tooth k is therefore:

θk(a, t) = θ0(t) + φk(a) mod 2π (2)

which is periodic with fundamental period 2π radians. The function defining the pitch angle difference experienced

by tooth k is:
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Fig. 1. Schematic representation of a variable helix tool with two teeth, showing the tooth positions at time t = 0. (a) tool angles versus axial depth

a; (b) cross-sectional view at axial location a.
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Δφk
(a) = φl(a) − φk(a) mod 2π (3)

where

l = 1 + (k mod K).

Since the spindle speed is Ω, the corresponding time delay between successive tooth passes is given by the func-

tions:

τk(a) =
Δφk

(a)

Ω
(4)

Assuming vibrations only occur in the x direction, then the cutting force for each tooth depends on the tooth’s

instantaneous angle θk(a, t), and the chip thickness hk(a, t):

hk(a, t) = g(θk(a, t)) sin(θk(a, t)) (x(t) − x(t − τk(a))) (5)

Here, g is a unit step function that defines when the tooth is engaged in the workpiece (as illustrated by the example

in Fig. 1):

g(φ) =

⎧⎪⎪⎨⎪⎪⎩
1 φst < (φ mod 2π) ≤ φex,

0 otherwise
(6)

For an infinitesimal element at axial location a along the cutter axis, the tangential cutting force is:

ftk (a, t) = Kthk(a, t) (7)

and the radial cutting force is:

frk
(a, t) = KrKthk(a, t) (8)

where Kt and Kr are empirical cutting force coefficients. The cutting force in the x direction is then

fxk
(a, t) = − ftk (a, t) cos(θk(a, t)) − frk

(a, t) sin(θk(a, t)). (9)

Next, define the cutting force direction function α as

α(φ) = g(φ) (−Kt sin(φ)(Kr sin(φ) + cos(φ))) (10)

from which the total cutting force becomes:

fx(t) =

K∑
k=1

b∫

a=0

α(Ωt + φk0
+ βka) (x(t) − x(t − τk(a))) da (11)

where b is the maximum depth of cut experienced by the tool. Noting that α(Ωt + φk0
+ βka) is periodic allows a

Fourier series expansion with respect to time. This gives:

α(Ωt + φk0
+ βka) =

∞∑
n=−∞

e jnφk(a)A(n)e jnΩt (12)

where

A(n) =
1

2π

φex∫
φst

α(θ)e− jnθdθ (13)

Here, a key difference emerges compared to classical stability analysis5, namely the ‘phase changing’ term e jnφk(a)

that is a function of the depth of cut a. Note that to keep the terms involving a separated, the phase changing term
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has been excluded from the function A(n) and included directly in Eq. (12). Substituting the Fourier series expansion

from Eq. (12) into Eq. (11) and applying the Fourier transform gives:

Fx( jω) =

∞∫

t=0

e− jωt

K∑
k=1

b∫

a=0

∞∑
n=−∞

e jnφk(a)A(n)e jntΩ (x(t) − x(t − τk(a))) da dt. (14)

Note that there is no inter-dependency between any of the limits of integration or summation, which allows rear-

rangement as follows.

Fx( jω) =

∞∑
n=−∞

A(n)

K∑
k=1

b∫

a=0

e jnφk(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∫

t=0

e− jωte jntΩx(t)dt −

∞∫

t=0

e− jωte jntΩx(t − τk(a))dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ da (15)

The terms in square brackets can now be simplified by application of the first and second shift theorems:

Fx( jω) =

∞∑
n=−∞

A(n)

K∑
k=1

b∫

a=0

e jnφk(a)
[
X( jω − jnΩ) − e−τk(a)( jω− jnΩ)X( jω − jnΩ)

]
da (16)

Here, the frequency response X( jω − jnΩ) is independent of a or k, giving:

Fx( jω) =

∞∑
n=−∞

X( jω − jnΩ)A(n)

K∑
k=1

b∫

a=0

e jnφk(a)
[
1 − e−τk(a)( jω− jnΩ)

]
da (17)

Assuming that the structural dynamics G( jω) are linear time invariant gives:

X( jω) = G( jω)

∞∑
n=−∞

X( jω − jnΩ)A(n)

K∑
k=1

b∫

a=0

e jnφk(a)
[
1 − e−τk(a)( jω− jnΩ)

]
da (18)

This defines a closed-loop relationship between the vibration in the frequency domain, X( jω), and itself, modulated

by harmonics due to A(n). Consequently the vibration at any one frequency ω involves components from all of the

harmonics n. Rewriting with ω = ω + pΩ gives a general expression for the frequency response at any harmonic:

X( jω + jpΩ) = G( jω + jpΩ)

∞∑
n=−∞

X( jω − jnΩ + jpΩ)A(n)

K∑
k=1

b∫

a=0

e jnφk(a)
[
1 − e−τk(a)( jω− jnΩ+ jpΩ)

]
da (19)

Let q = p − n so that n = p − q giving

X( jω + jpΩ) = G( jω + jpΩ)

∞∑
p−q=−∞

X( jω + jqΩ)A(p − q)

K∑
k=1

b∫

a=0

e j(p−q)φk (a)
[
1 − e−τk(a)( jω+ jqΩ)

]
da (20)

Defining matrix terms with rows p and columns q, p = −∞, . . . ,∞; q = −∞, . . . ,∞, and reverting to the format

n = p − q for compactness:

x̂p( jω) = X( jω + jpΩ) (21)

ĝp,p( jω) = G( jω + jpΩ) (22)

ĥp,q( jω) = A(n)

K∑
k=1

b∫

a=0

e jnφk(a)
[
1 − e−τk(a)( jω+ jqΩ)

]
da (23)
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x̂p( jω) = ĝp,p( jω)

∞∑
q=−∞

ĥp,q( jω)x̂q( jω) (24)

which allows a matrix format where

X̂( jω) = ĜH( jω)X̂( jω). (25)

The integration term in Eq. (23) is straightforward to evaluate, because the exponents are linear functions of a.

3. Stability

Eq. (25) describes a multi-input-multi-output (MIMO) system, with a positive feedback loop defined by the doubly-

infinite transfer function ĜH( jω). According to the Generalised Nyquist Stability Criterion9, the system is stable if

det(I − ĜH( jω)) (where I is the identity matrix) is non-zero and does not encircle the origin in a clockwise sense. This

seems intractible because ĜH( jω) is a doubly-infinite matrix, however, further simplification is possible by exploiting

the periodicity of ĜH( jω), and the high frequency behaviour of G( jω).

To explore the periodicity of Eq. (24), consider the case where ω1 = ω + rΩ. It can be shown that:

ĝp,p( jω + jrΩ) = ĝp+r,p+r( jω) (26)

ĥp,q( jω + jrΩ) = ĥp+r,q+r( jω) (27)

Consequently, each time the frequency ω increases by Ω, the elements of the harmonic transfer function ĜH( jω)

are offset diagonally by one row and one column.

Meanwhile, it is reasonable to assume that the structural dynamics, described by G( jω), will end towards zero at

high frequencies. If the maximum frequency considered is ωmax, then ĝp,p( jω) = G( jω + jpΩ) will be zero unless

− ωmax < ω + pΩ < ωmax (28)

which leads to a range of admissible values of p, beyond which ĜH( jω) becomes zero:

−ωmax − ω

Ω
< p <

ωmax − ω

Ω
(29)

From Eq. (26) and Eq. (27) it can be seen that the range of ω need only be [−Ω/2,Ω/2], before the harmonic

transfer function is duplicated and offset diagonally. Consequently the maximum frequency to be computed gives rise

to a maximum required value for p:

−
ωmax

Ω
−

1

2
< p <

ωmax

Ω
+

1

2
(30)

Finally, because other rows will have zero harmonic transfer functions, the number of columns in ĝ and ĥ can be

similarly truncated.

4. Validation

In order to validate the new analytical formulation, results are compared to those obtained using the semi-discretisation

method10. The semi-discretisation approach is an established technique for the stability analysis of delay differen-

tial equations11 that involves eigenvalue analysis of a semi-discretised system model. For conciseness, the scenario

depicted in Table 1 and Figure 8 of previous a publication2 is reconsidered. The results are shown in Fig. 2. It can

be seen that there is very close agreement between the newly proposed method and the semi-discretisation approach.

The significance of the phase shifting term in Eq. (12) is also demonstrated by the erroneous result shown in cyan.
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Fig. 2. Comparison with previous work (Fig 8, 2). semi-discretisation method 2,10; present study, neglecting the phase-changing

term in Eq. (12); × unstable regions including the phase-changing term.

In terms of compuational efficiency, the new approach is typically slightly faster than the semi-discretisation

method. However, although each determinant analysis involves a lower order matrix, the determinant must be re-

computed for every frequency in the numerical frequency response functions and so the speed is application-specific.

Nevertheless it should be noted that the new method has guaranteed convergence which means that no numerical

convergence study is required. In comparison of the new approach (or the semi-discretisation method) with the zero

order solution2, the latter does not involve determinant or eigenvalues and so it can be orders of magnitude faster.

5. Conclusions

This contribution has demonstrated how the Fourier series and Fourier transform can be used directly to investigate

the stability of variable helix milling tools. The approach agrees with alternative methods, but offers the advantage

of providing an alternative and elegant mathematical formulation that relies only on the fundamental properties of

the Fourier transform. Further work is needed to investigate the promising aspects of the approach, in particular the

potential for guaranteed convergence, and the insight into potential designs of tool.
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