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Abstract 
 

It has been known for many years that identifying familiar faces is much easier than 

identifying unfamiliar faces, and that this familiar face advantage persists across a range 

of tasks. However, attempts to understand face familiarity have mostly used a binary 

contrast between ‘familiar’ and ‘unfamiliar’ faces, with no attempt to incorporate the vast 

range of familiarity we all experience.  From family members to casual acquaintances 

and from personal to media exposure, familiarity is a more complex categorisation than is 

usually acknowledged.  Here we model levels of familiarity using a generic statistical 

analysis (PCA combined with LDA) computed over some four thousand naturally 

occurring images that include a large variation in the numbers of images for each known 

person.  Using a strong test of performance with entirely novel, untrained everyday 

images, we show that such a model can simulate widely documented effects of familiarity 

in face recognition and face matching, and offers a natural account of the internal feature 

advantage for familiar faces.  Furthermore, as with human viewers, the benefits of 

familiarity seem to accrue from being able to extract consistent information across 

different photos of the same face.  We argue that face familiarity is best understood as 

reflecting increasingly robust statistical descriptions of idiosyncratic within-person 

variability.  Understanding how faces become familiar appears to rely on both bottom-up 

statistical image descriptions (modelled here with PCA), and top-down processes that 

cohere superficially different images of the same person (modelled here with LDA).     

 

Keywords: Face recognition; familiarity; face matching; face learning 
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1. Introduction 

 

The concept of familiarity is central to our understanding of face recognition. It has 

been known for many years that perception of familiar and unfamiliar faces differs in a 

number of ways (for reviews see Johnston & Edmonds, 2009; Young & Burton, 2017), 

and this point is emphasised in theoretical models (Bruce & Young, 1986; Burton, Bruce 

& Hancock, 1999).  For example, in studies of recognition memory, familiar faces are 

recognised faster and more accurately than unfamiliar faces (Ellis, Shepherd & Davies, 

1979; Klatzky & Forrest, 1984; Yarmey, 1971).  This difference is not in any 

straightforward sense purely a memory effect, because in more recent studies of 

perceptual face matching, participants are again more accurate with familiar (compared to 

unfamiliar) faces, when judging whether two images depict the same person (e.g. Bruce 

et al., 1999, 2001; Burton, Wilson, Cowan & Bruce, 1999; Megreya & Burton, 2006, 

2008).   

 

Despite these differences, our working definition of familiarity has been 

unsophisticated and our understanding of what happens when a face becomes 

increasingly familiar has been limited at best.  Almost all studies compare unfamiliar, 

never previously seen, faces to highly familiar people, often well-known celebrities.  

However, our daily experience tells us that familiarity is not simply a dichotomy.  We all 

know many people with varying levels of familiarity, from members of our family 

encountered every day over long periods, to casual acquaintances perhaps seen 

occasionally on our route to work, or serving us in an infrequently-visited café.  In this 

paper, we aim to capture familiarity in all its diversity. We present a model of face 

recognition which incorporates a large range of familiarity, and explore the consequences 

of increasing familiarity.  

 

One key effect of familiarity is that it leads to generalisable representations for 

recognition. Early memory studies consistently showed that superficial image changes in 

pose, expression or lighting were detrimental to memory for unfamiliar faces, but had 

very little effect on familiar face memory (e.g. Bruce, 1982; Hill & Bruce, 1996; 
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O’Toole, Edelman & Bülthoff, 1998; Patterson & Baddeley, 1977).  This has led to the 

idea that unfamiliar face processing is highly image-bound (Hancock, Bruce & Burton, 

2000; Megreya & Burton, 2006). In consequence, recognition declines as a function of 

differences between study and test photos (Beveridge et al., 2011; Estudillo & 

Bindemann, 2014), since representations of unfamiliar faces are tied to the specific 

images that were encountered. This image-dependence for unfamiliar faces seems to hold 

even after extensive training involving repeated exposure to a small number of different 

views of the same face (Liu, Bhuiyan, Ward & Siu, 2009; Longmore, Liu & Young, 

2008).  In such circumstances, particular training examples themselves become well-

recognised, but show little generalisation to novel examples of the learned faces.  

 

In marked contrast to unfamiliar face recognition, recognition of highly familiar 

faces is very robust.  We can tolerate severe image degradation (Burton et al, 1999; Bruce 

et al, 2001) and considerable image distortion (Hole, George, Eaves & Rasek, 2002) with 

very little effect on our ability to recognise the people we know.  Why might this be?  

One proposal that lies at the heart of the approach we develop here is that our exposure to 

familiar faces has itself been highly diverse, including the very wide variability in the 

appearance of any particular individual that arises under everyday conditions (Jenkins, 

White, van Montfort & Burton, 2001; Burton 2013; Jenkins & Burton, 2011).  To 

illustrate this point, consider Figure 1, comprising five photos of the actor Hugh Jackman. 

These pictures vary due to characteristics of the person (e.g. age, hairstyle, weight), the 

pose and facial expression, the image capture conditions (e.g. lighting, viewpoint) and the 

capture device (e.g. perspective settings, exposure levels).  The images are therefore 

superficially very different in a way that is typical of everyday, ambient images (Burton, 

Jenkins & Schweinberger, 2011).  However, despite this diversity, a viewer familiar with 

the actor can recognise Hugh Jackman easily in all the photos. Our proposal in earlier 

work has been that this is because we have already encountered his face in a wide range 

of conditions, allowing us to have built up a representation of him which includes 

information about the ways in which his face can vary.   
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Figure 1. Unconstrained ambient images of the same person. Depicted variation is due to 

changes in pose, lighting, expression, age, camera settings, and so on. Image attributions 

from left to right: Eva Rinaldi (Own work) [CC BY-SA 2.0], Grant Brummett (Own 

work) [CC BY-SA 3.0], Gage Skidmore (Own work) [CC BY-SA 3.0], Eva Rinaldi 

(Own work) [CC BY-SA 2.0], Eva Rinaldi (Own work) [CC BY-SA 2.0]. 

 

The nature of face representations has, of course, been a long-standing concern.  In 

particular, many researchers have asked how it might be possible to build a representation 

that can be accessed when presented with any recognisable instance of a particular face 

(Bruce & Young, 1986; Eger, Schweinberger, Dolan & Henderson, 2005). Most 

conceptions, until recently, have emphasised what might potentially be common to all 

images of a person. For example, the most widely used idea involves the second-order 

configuration of distances between facial features (Carey & Diamond, 1977), though this 

is now known to run into both empirical and conceptual difficulties (Burton, 

Schweinberger, Jenkins & Kaufmann, 2015; Maurer, Le Grand & Mondloch, 2002). 

Alternatively, it has been pointed out that there might be common texture patterns across 

the face that can be captured through image averaging (Burton, Jenkins, Hancock & 

White, 2005). Such approaches imply, at least implicitly, that familiarisation results in 

higher fidelity representations which can become sufficiently refined to be recruited 

when recognising a novel image of a known person. By focusing on what might be 

common to all views of the same face, research in this tradition thus often treats within-

person variability – the extent to which the same face can look different – as noise.  

Typical experimental approaches in consequence tend to use highly controlled stimuli in 

which images of different people are taken under very similar conditions (lighting, pose, 

expression, camera).   



		 6	

 

The approach used here represents a break from this tradition. We have recently 

followed an important insight of Bruce (1994) and suggested that, rather than being 

irrelevant noise, within-person variability can actually assist in finding information that is 

diagnostic of individual identity (Burton, Kramer, Ritchie & Jenkins, 2016).  This is 

because statistical analysis of multiple images of the same person shows that within-

person variability is, to some extent, idiosyncratic.  So, the ways in which one face varies 

are different from the ways in which another varies.  Under this proposal, it is important 

to sample widely over different, naturally occurring images of someone in order to 

become familiar with that person - because part of familiarisation is learning that 

person’s unique variability.   

 

This proposal that variability is central to creating effective representations of face 

identities is gaining experimental support.  For example, participants learn a face more 

effectively when exposed to greater variation in the images they see (Menon, White & 

Kemp, 2015a; Murphy, Ipser, Gaigg & Cook, 2015; Ritchie & Burton, 2017).  So, while 

traditional approaches to face learning emphasise image-independent factors such as 

duration of exposure (Read, Vokey & Hammersley, 1990; Reynolds & Pezdek, 1992), 

this may not be so critical as the image-dependent type of exposure, and especially the 

range of exposure. Likewise, if people have idiosyncratic facial variability, then we 

would expect any training on a particular face to have rather limited generalisability to 

other faces.  Once again, this is borne out by experiments studying training in face 

recognition. Facial learning can be enhanced by various training regimes, but the benefits 

accrue only to those faces encountered, and do not generalise to others (Dowsett 

Sandford & Burton, 2016; Hussain, Sekuler & Bennett, 2009). 

 

Renewed interest in face learning, as described above, highlights the fact that we 

need a better understanding of familiarity.  Studies manipulating levels of familiarity do 

so, almost exclusively, through a binary categorisation of faces as ‘familiar’ or 

‘unfamiliar’, and tests of learning tend to dichotomise responses as ‘seen’ or ‘unseen’.  

An exception is a series of experiments by Clutterbuck and Johnston (2002, 2004, 2005) 
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who show that pairwise matching – i.e. the ability to match two different images of a face 

– varies relatively smoothly with levels of familiarity.  Nevertheless, for the most part, 

familiarity is treated in the research literature as a discontinuous variable with only two 

states.  

 

In this paper, we take the important step of examining familiarity as a multi-valued 

function.  We present a development of a previously implemented computational model 

(Kramer, Young, Day & Burton, 2017a) using minimal assumptions and standard image 

analysis techniques involving a combination of Principal Components Analysis (PCA) 

and Linear Discriminant Analysis (LDA). Whilst this approach has already been shown 

to simulate the specific property of image invariant familiar face recognition (Kramer et 

al., 2017a), these methods potentially offer a generic approach to exploiting statistical 

regularities in the images. Here, we show that the same approach can be used to simulate 

a range of key properties of face recognition across different levels of familiarity.  

 

Building on earlier research, Kramer et al. (2017a) demonstrated that combining 

PCA with LDA is effective at capturing the human-like property of good recognition of 

novel views of familiar faces when the training involves a substantial number of images 

of each face. To achieve this result, however, Kramer et al. (2017a) used an 

implementation that involved training their model on a fixed number of instances of each 

face. In this sense, their approach was based on a specific combination of circumstances 

in which some faces were uniformly familiar (trained across the same number of images) 

and other faces were completely unfamiliar (untrained). This of course approximates the 

binary way in which familiarity has often been conceptualised in the research literature. 

Here we take the further critical steps necessary to arrive at a more general understanding 

of familiarity, building a model in which some identities are represented by only a single 

photo, whereas others are represented by varying numbers of different photos, creating a 

parallel with the different degrees of familiarity encountered in everyday life. Unlike 

many traditional models based on a single standardised view of each face, we train the 

model to recognise people based on prior exposure to widely varying images of each face 

and evaluate its performance with a strong test involving entirely novel, untrained and 
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highly varied ambient images. The basics of the approach we use are exactly the same as 

those used by Kramer et al. (2017a); only the composition of the training or test image 

sets is changed.  

 

Computer simulation offers the considerable advantage of forcing the theorist to 

make every aspect of a model fully explicit, but it also carries the attendant risk of 

crafting a model that 'works' only under the specific set of circumstances for which it was 

created. The best way to mitigate this risk is to demonstrate that the model can 

encompass phenomena that extend well beyond those from which it was derived (Young 

& Burton, 1999). To show that our extension of Kramer et al.'s (2017a) approach does 

indeed offer general insights into face familiarity we used it to simulate a range of key 

findings from the face recognition literature. We demonstrate not only that our model 

benefits from being trained across more exemplars but also that this increases resistance 

to the effects of image degradation and can account for the finding that increasing 

familiarity particularly enhances recognition based on the face's internal rather than 

external features (Ellis, Shepherd & Davies, 1979; Young, Hay, McWeeny, Flude, & 

Ellis, 1985). As a further demonstration of the model's applicability, we show that it can 

encompass findings from widely used face matching tasks. 

 

Having demonstrated the model's wide applicability, we finish by investigating in 

more detail what lies behind these findings and their implications for understanding the 

nature of face familiarity. We show how LDA reshapes the perceptual space created by 

PCA, and that the benefits of familiarity are largely but not entirely specific to each 

familiar face. Moreover, we examine the importance of supervised learning to this 

process. Our approach involves a combination of an unsupervised 'bottom-up' analysis 

(PCA of the image training set) with supervised 'top-down' learning (via LDA) of the 

characteristics of a set of trained identities. Supervised learning approximates what 

happens in everyday life in that we will usually know who someone is during a social 

encounter. By comparing the resulting PCA and PCA+LDA spaces we investigate how 

far face recognition can be based on the unsupervised image statistics of the perceptual 

input alone (via PCA) and to what extent it benefits from a combination of top-down with 
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bottom-up influences (PCA+LDA). These observations have broad implications for 

understanding the nature of perceptual expertise with faces. 

 

 

2. The model 

 

We begin by implementing a basic model to demonstrate that increasing familiarity 

with a face (as indexed by the number of different photos of the face on which the model 

is trained) differentially enhances the recognition of new (untrained) images of that face. 

Having established this parallel with behavioural demonstrations of image invariance for 

recognition of familiar faces, we turn to investigating whether the same model can 

account for resistance to image degradation in recognising familiar faces, for the internal 

feature advantage for familiar face recognition, and for performance in face matching 

tasks. Finally, we explore in more detail what happens in the model as a face becomes 

increasingly familiar. 

 

2.1. Image sets 

 

In order to model real-world exposure to faces, we collected ambient, everyday 

images. These were similar in nature to the ‘Labeled Faces in the Wild’ database (Huang, 

Ramesh, Berg, & Learned-Miller, 2007), which attempts to incorporate natural variability 

across numerous dimensions, including pose, lighting, expression, age, and camera 

conditions. We used images in which no part of the face was obscured (by clothing, 

glasses, hands, etc.). To facilitate the placement of landmark fiducial points on each 

image, we also limited our image poses to within approximately ±30° from full face. 

Beyond these limits some fiducials would be obscured; for example when one edge of the 

face is no longer seen as the view moves toward profile. Apart from these minimal 

technical requirements, the face images were entirely unconstrained. 

 

Based on these criteria, we collected a large set of 4,154 colour images using 

Google Image search. These images included 335 different identities, where the majority 
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were White but other ethnicities featured, and approximately half were women. Many 

were Hollywood actors, although people from other professions (athletes, politicians, 

etc.) were also represented. The ‘level of familiarity’ was represented by varying the 

number of images of different faces in the set, ranging from a single image (for 161 

identities) up to 159 images for the most ‘highly familiar’ individual.  For the remaining 

identities, the number of images per face varied widely: M = 22.16 images, SD = 26.20. 

In all cases, we simply took the first n images (where n was the number of images 

required) returned by Google Image search that met the pose criteria given above. In this 

way we sought to ensure that as far as possible the images would reflect the variability 

that might be encountered for each face.  

 

Images were cropped to include only the head, rescaled to 190 pixels wide x 285 

pixels high, and represented in RGB colour space using a lossless image format (bitmap). 

 

2.2. General procedure  

 

We used LDA to train our model to group different images of the same person 

together. This technique fits exemplars (here faces) to a space in which intra-class 

differences are minimised, while inter-class differences are maximised, i.e. faces of the 

same person are clustered together.  This is a technique which has been used in many 

previous models of face recognition (e.g. Belhumeur, Hespanha & Kriegman, 1997; Jing, 

Wong & Zhang, 2006; Kramer et al., 2017a) and is sometimes referred to as the 

Fisherface approach because the discriminant function used is due to R.A. Fisher (1936). 

When classifying images, it is common to have fewer sample vectors (images) than 

features (pixels). In such cases, LDA cannot be carried out without first reducing the 

number of feature dimensions. This can be done in a number of ways, including 

morphological analysis of faces to create a reduced-dimensional description (e.g., Chen et 

al., 2000). A more popular approach is first to subject the faces to Principal Components 

Analysis (PCA), resulting in a low-dimensional description of ‘eigenfaces’ representing 

the variability in the image set (e.g., Bekios-Calfa, Buenaposada & Bamela, 2011). In our 

studies, we adopted this PCA-based approach to dimension reduction, as follows.   
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 All images were shape-standardised by morphing them to a template derived from 

the average shape of the entire set (Burton, Miller, Bruce, Hancock & Henderson, 2001; 

Craw, 1995). This standardisation was based on the alignment of 82 fiducial points for 

each image (e.g., corners of eyes, corners of mouth etc.; for technical details, see Burton 

et al., 2016, and for downloadable face processing software, see Kramer, Jenkins, & 

Burton, 2017b). Assignment of these fiducial points was carried out using a standard 

semi-automatic process requiring just five manually-entered landmarks (see Kramer et 

al., 2017b, for details). PCA was then computed on these normalised images. In order to 

reduce the number of dimensions describing the resulting space without significant loss 

of variability, we retained the highest 335 components only. This corresponds to the 

number of identities and is therefore the minimum number of PCs required for the 

subsequent LDA. These principal components explained 95.6% of the variance in the 

image RGB information. The images’ projections on these principal components were 

then entered into an LDA, where each class represented an identity. The result is a 

reshaped space comprising 334 dimensions (the number of identities minus 1). Again, to 

reduce the number of dimensions describing the PCA+LDA space without significant 

loss in performance, we retained the first 143 components, which accounted for 95.0% of 

the ‘discriminability’ from the overall LDA space. 

 

Our face identity training involved applying this PCA+LDA procedure to a large 

set of training images in order to produce a space that could best distinguish the 335 

identities. The actual size of the training set was subject to minor variations when 

essential to address specific questions, as noted below. For example, a small proportion 

of the 4,154 available images was left untrained when these were needed to serve as 

novel test items for familiar face recognition (e.g. in Section 3.1, below). 

 

Although our analysis was based primarily on shape-normalised images, we do not 

wish to imply that face shapes are unimportant in recognition or familiarization. 

Normalised faces still carry considerable information about the shape of the original – for 

example shape-from-shading cues are retained in gradients of intensity within the image.  
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While some previous work has attempted to separate shape from texture (e.g. Andrews et 

al, 2016;  Itz et al., 2017), we remain neutral here about their relative influence, and about 

their relative contribution to the normalized representations we employ.  In order to 

establish whether the normalization process removes useful information, however, we 

also ran the PCA+LDA procedure described above on the shape vectors comprising raw 

fiducial points of the original images and on the shape vectors calculated in terms of 

differences from the average fiducial position. We describe these simulations below.  

 

 

3. Simulations 

 

3.1. Familiarity improves recognition 

 

A basic requirement for a model of familiarity is that recognition is more accurate 

for more familiar faces.  Novel, previously unseen (i.e. untrained) images of well-known 

faces should be better recognised than novel images of less well-known people. To 

examine this, we first sampled one image of each to-be-trained person to act as untrained 

‘test’ images.  This was possible for all the identities represented by at least two images 

(i.e. 174 identities).  We then ran the PCA+LDA procedure, as described above, without 

these test photos (i.e. with 3,980 training images).  Next, we projected each untrained test 

image into the resulting space, and computed its distance from representations of the 

known faces.  This procedure was repeated for 100 iterations, each time randomly 

selecting the image of each identity to be used as the test image. Model accuracy was 

then calculated by averaging responses across all iterations, producing a proportion of 

iterations in which the model was correct. 

 

There are two common ways to judge successful recognition in this type of model.  

One is to measure the distance between the test item and all other images, counting the 

‘nearest neighbour’ image as the model's ‘decision’, with this being correct or incorrect if 

the nearest neighbour is a photo of the same (correct) or a different (incorrect) identity.  

Alternatively, we can calculate a centroid for each known identity – i.e. the mean position 
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of all its exemplars in the PCA+LDA space – and represent the model’s decision as the 

nearest centroid. 

 

We examined both of these metrics because they can be seen as approximating 

instance-based approaches to face recognition in which recognition will be in terms of the 

most similar variant encountered before (the nearest neighbour measure), such as Hay 

(2000), or the more abstractive type of model in which recognition is based on a 

representation that can generalise across many instances (the nearest centroid measure), 

such as Bruce and Young's (1986) concept of 'face recognition units' or Burton et al.'s 

(2005) image averaging approach. Distinguishing between instance-based and abstractive 

accounts has not been easy in terms of behavioural data (e.g. Ellis, Young, Flude & Hay, 

1987; Hay, 2000; Young & Bruce, 2011), and we also found that the nearest neighbour 

and nearest centroid measures generated highly comparable patterns. We therefore chose 

to focus on the nearest centroid measure here for two reasons. First, the nearest centroid 

approach approximates what remains the dominant theoretical perspective (e.g. Bruce & 

Young, 1986). Second, creating a single centroid for each known face avoids the danger 

of inflating the recognition rate at low levels of performance through the possibility of 

random 'hits' resulting from the presence of multiple instances for the more familiar 

faces. While we have chosen a centroid approach to decisions in the model, we do not 

wish to exclude other possibilities, and so in the simulations below we also report 

summary statistics for the nearest neighbour measure when it can be used, to illustrate 

that the pattern is always the same. 

 

Figure 2 shows the relationship between familiarity (i.e. number of training images) 

and the proportion of ‘correct’ identifications of untrained test images, based on the 

nearest centroid measure.  Each data point in Figure 2 represents the average proportion 

of correct decisions across test images for a specific identity. As can be seen, some faces 

are easier to recognise than others, even at low levels of familiarity (i.e. with few training 

images); this corresponds to the well-known phenomenon of facial distinctiveness 

(Valentine, 1991, Valentine & Bruce, 1986). More importantly there is a clear, highly 

significant association between familiarity and recognition rate, such that novel photos of 
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increasingly familiar people are correctly recognised more often than novel photos of less 

familiar people,  rs(172) = .74, p < .0001. For the nearest neighbour measure, rank 

correlation gave a closely comparable value of rs(172) = .72, p < .0001.  

 
 

 

Figure 2. The proportion of correct recognitions of untrained novel face images using the 

‘nearest centroid’ measure increases for more familiar faces (where familiarity is 

represented by the number of training images). Each point represents the average across 

test images for a specific identity (but note that several of these data points are 

overlapping). The fitted curve represents an exponential function. Although some faces 

are easier to recognise than others, even at low levels of familiarity, there is a substantial 

correlation between familiarity and recognition rate (rs = 0.74), such that novel photos of 

increasingly familiar people are correctly recognised more often than novel photos of less 

familiar people. 

 

A pitfall that needs to be avoided in statistical learning studies is that of overfitting, 
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in which the model finds essentially spurious random patterns in the data. To guard 

against overfitting, the data presented in Figure 2 used a strong test of recognition based 

on correct classification of novel (untrained) images of the target faces. As an additional 

precaution, however, we ran simulations in which PCA was carried out as usual but the 

image identities were randomly scrambled at the LDA stage. This gives data of the same 

order, but with no top-down structure, i.e. it attempts to use LDA to cluster together 

random sets of images of different people. If such a model were nevertheless able to learn 

an effective categorization, this would provide evidence against the utility of our 

approach and instead imply that overfitting remains possible despite the precaution of 

using novel test images.  In fact, and reassuringly, this procedure caused performance to 

collapse completely, resulting in mean recognition rates of 0.01 for both centroid and 

nearest neighbour measures. This collapse in performance shows that random patterns in 

the data are of little use in classifying the identities of these highly variable face images. 

 

As noted above, we also evaluated whether familiarity can improve recognition 

based only on the 2D shape information given by the raw positions of the fiducials in 

each image, or by their differences from the average locations. A combined PCA+LDA 

of the locations of the 82 fiducial points in the unstandardised images showed that 

performance was very poor (mean recognition rates of 0.03 for both centroid and nearest 

neighbour measures), and it remained poor when we applied the same technique to shape 

vectors calculated in terms of differences from the average fiducial position (mean 

recognition rates still 0.03 for both centroid and nearest neighbour measures). These poor 

levels of performance do not of course show that 2D shape information is irrelevant, but 

they do show that the information about fiducial locations in each image removed by our 

normalization procedure is of no value over and above the normalized information itself.  

 

 

3.2. Familiarity confers resistance to image degradation  

 

As well as being recognisable across many different views in normal conditions, 

familiar faces can also often be recognised from degraded images such as those created 
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by low resolution video surveillance cameras (Burton et al, 1999; Bruce et al, 2001). To 

operationalise image degradation in our model, we constructed images where a 

proportion of the pixels were replaced by the average RGB pixel values of the entire set, 

as illustrated in Figure 3. This manipulation results in images with the same dimensions 

as the whole set, which can therefore be used to test recognition in exactly the same way.  

However, those pixels that were replaced by the average values become completely 

uninformative for face identity.  

 

 
Figure 3. An illustration of the image degradation manipulation. A shape-standardised 

full-face image is shown at the far left, and the average of all images from the training set 

at the far right. Intermediate images have 25%, 50%, and 75% of their pixels (selected at 

random) replaced with those of the training set average image. Original image attribution: 

Eva Rinaldi (Own work) [CC BY-SA 2.0]. 

 

We tested the model's performance with images degraded by 25%, 50%, and 75%, 

by projecting each test image into the PCA+LDA space in its degraded form and 

measuring recognition based on the nearest centroid and the nearest neighbour. We 

repeated this procedure across 100 iterations, each time randomly selecting the test image 

for each identity. Model accuracy was calculated by averaging responses across all 100 

iterations, producing a proportion of iterations in which the model correctly identified the 

novel test image for each face from its degraded version.  
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Figure 4. Effect of image degradation on recognition of untrained novel images, using 

the nearest centroid measure. Fitted curves represent exponential functions. Performance 

with the undegraded images is included for comparison. Performance following 25% and 

50% degradation remains strongly influenced by the number of training images (our 

proxy for familiarity). At 75% degradation the model's performance is at floor, and 

therefore not visible. 

 

Figure 4 shows the model's performance. To create a measure of variability in 

performance, data are separated into frequency bins reflecting increasing numbers of 

training images (1, 10, 11-20, 21-31, 31-40, 41-50 98-100, 101-110, plus two single 

identities with 115 and 158 images). With 25% image degradation, we found a significant 

relationship between face recognition accuracy and familiarity (nearest centroid, rs = .83; 

nearest neighbour, rs = .77), with well-preserved performance on the more familiar faces 

(i.e. those with the largest number of training images). With 50% degradation, there was 

a clear overall detriment, but still a significant relationship between face recognition 

accuracy and familiarity (nearest centroid, rs = .83; nearest neighbour, rs = .72). At 75% 
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degradation, in which the large majority of pixels carry no identity information, 

performance was at floor. 

 

3.3. Recognition from internal and external features  

 

Increasing familiarity with a face differentially enhances recognition based on its 

internal features such as eyes, nose and mouth, compared with external features such as 

hair and face shape. Although well-replicated in behavioural studies (Clutterbuck & 

Johnston, 2002; Ellis et al., 1979; Young et al., 1985), we are not aware of any previous 

attempts to simulate this pattern of increasing reliance on internal features of familiar 

faces. 

 

To operationalise comparison of internal and external features in our model, we 

constructed images preserving only these aspects, as illustrated in Figure 5. A template 

for the internal feature region of the face was defined using 16 fiducial points to create a 

boundary around the largest area that included the eyes, nose, and mouth, whilst 

remaining within the overall envelope of the face outline. As all the images had been 

shape-normalised, the same template could always be used. This template was then used 

to create images in which either the external or the internal parts were replaced by the 

average RGB pixel values of the entire set.  This manipulation results in images with the 

same dimensions as the whole set, which can therefore be used to test recognition in 

exactly the same way.  However, when the internal features are replaced by the average 

values they become completely uninformative for face identity, and when the external 

features are replaced with average values then they become uninformative. 
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Figure 5. An illustration of the internal and external feature manipulation. A shape-

standardised full-face image (left), its internal features (middle), and its external features 

(right). To create images with the same dimensions as the original shape-standardised 

image, missing regions are completed with uninformative RGB values using the average 

of the entire set of images. Original image attribution: Liam Mendes (Own work) [CC 

BY-SA 2.0]. 

 

Next, we projected each test image into the PCA+LDA space in its internal features 

or external features form and measured recognition. We repeated this procedure across 

100 iterations, each time randomly selecting the test image for each identity. Model 

accuracy was calculated by averaging responses across all 100 iterations, producing a 

proportion of iterations in which the model correctly identified the novel image for each 

face based on its internal or external features. These proportions were then correlated 

with the familiarity of the identities (i.e., the number of images of each identity that went 

into the training set). 
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Figure 6. The proportion of correct recognitions of untrained novel face images from 

internal and external features using the nearest centroid measure. Each point represents 

the average across test images for a specific identity. Familiarity (represented by the 

number of training images) has more effect on recognition from internal than external 

features. Exponential trendlines are displayed for performance based on the internal 

features (solid) and the external features (dashed). 

 

We found significant relationships between face recognition accuracy and 

familiarity for both internal and external features (Figure 6).  However, recognition of 

internal features showed a stronger association with familiarity (nearest centroid, rs = .76; 

nearest neighbour, rs = .77) in comparison with recognition of external features (nearest 

centroid, rs = .30; nearest neighbour, rs = .59). So, while increased familiarity supports 

better recognition in general, this effect is more pronounced for the internal features, and 

seems to account for more of the effect of familiarity on full (unedited) face recognition 

shown in Figure 2. 
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Interestingly, these results are not simply due to the amount of pictorial information 

available from internal versus external features. In fact, in our cropped images, the 

internal features occupy 11,952 pixels, whereas the external features occupy 18,537 

pixels. If all other things were equal, then, internal features could provide less RGB 

information regarding the individual faces than could external features, yet it was the 

internal features that proved most recognisable, especially for the more familiar faces. 

This implies both that the internal features are themselves more informative and that the 

PCA+LDA space has become somewhat tuned towards the use of internal features,  

beyond the raw amount of information available. 

 

3.4. Face matching  

 

3.4.1 Unfamiliar face matching 

So far, we have shown that our basic model, derived from a substantial training set 

of highly varied naturalistic ambient images, demonstrates a graded familiarity effect in 

its ability to correctly 'recognise' (i.e. classify) untrained novel exemplars, and that this 

applies particularly to classification based on internal facial features. To test the model's 

applicability further, we sought to determine whether it could also fit known findings 

from perceptual matching tasks, where familiarity is known to exert a strong influence, 

with relatively poor performance in unfamiliar face matching and excellent performance 

with familiar faces (Bruce et al., 1999, 2001; Burton et al., 1999; Megreya & Burton, 

2006, 2008). 

 

Before turning to the role of familiarity in face matching, though, we sought first to 

check that the model was able to simulate performance for unfamiliar face matching. To 

achieve this, we used stimuli from a widely adopted standard human test of unfamiliar 

face matching; the Glasgow Face Matching Test (GFMT; Burton, White, & McNeill, 

2010). Ability to simulate this test of unfamiliar face matching forms a starting point 

from which any enhancement of performance with more familiar faces can be evaluated. 

 

The full (long) version of the GFMT (Burton et al., 2010) comprises 168 pairs of 
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faces, half of which match and half of which do not. Examples of images used to create 

the GFMT are shown in Figure 7.  Participants simply indicate whether the face identities 

match or mismatch on each trial. The difficulty of the task stems from the fact that many 

image properties are unconstrained, making it hard for participants to know which image 

differences are relevant and which are irrelevant to the unfamiliar face identities. In the 

standardised version of the GFMT the images are presented in greyscale, but because of 

the way we implemented the current PCA+LDA model we used the original colour 

images for our simulation here. While using colour vs. greyscale images will undoubtedly 

have some effect, the role of colour in human perception of identity is limited (Kemp, 

Pike, White & Musselman, 1996). 

 

 
Figure 7. Two example pairs of images used to create trials in the Glasgow Face 

Matching Test (Burton et al., 2010). The top row shows two images of different 

identities, while the bottom row illustrates a ‘same identity’ image pair. Note that all 

faces in the GFMT are unfamiliar and that all test items involve pairs of photographs with 

substantial superficial differences.  

 

To evaluate the model's performance with the GFMT images, we created a 
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PCA+LDA space through training all 4,154 images in our stimulus set and then projected 

the pairs of images from each GFMT trial into this PCA+LDA space.  Note that all faces 

from the GFMT are unfamiliar here – none have been used in the training set.  

 

 
Figure 8. Performance for same identity trials and different identity trials from the 

Glasgow Face Matching Test (Burton et al., 2010). Each data point represents the 

Euclidean distance in PCA+LDA space between the pair of images forming each trial. 

Summary statistics (M and SD) are also displayed for each trial type. 

 

The simplest way to represent the model's performance is in terms of the Euclidean 

separation between pairs of images in PCA+LDA space. This is shown in Figure 8, 

where the between-image distances are lower on average for same identity than for 

different identity pairs of unfamiliar face images, t(166) = 10.05, p < .001, Cohen’s d = 

1.55. So the model is capable of separating 'same' from 'different' identity pairs to some 

degree, though there is clear overlap in the distributions.  
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The overlapping distributions mimic what is seen in human performance on the 

GFMT, which is often far from perfect. With a behavioural measure of this type, in which 

every pair of images is physically different to some degree, human participants have to 

adopt their own criterion for how different the images of each face must be in order to 

assign them to 'same' or 'different' response categories. As Figure 8 shows, overall 

performance will vary according to how this criterion is set, and of course one of the key 

purposes of the GFMT is to measure individual differences that will in part reflect this 

criterion setting. In this respect, we note that calculating the distance between pairs of 

GFMT images and setting the ‘match decision’ threshold value to give comparable levels 

of performance across match and mismatch trials (as is observed on average with human 

viewers) produced performance levels of 82% and 77% accuracy for ‘same’ and 

‘different’ face pairs by the model, compared to mean human performance of 92% and 

88%, respectively (Burton et al., 2010). Although our computer model was trained on 

ambient images of many international celebrities, and has never been exposed to images 

of the type shown in Figure 7, it can achieve levels of matching performance within the 

range of human participants on these images. 

 

As human participants show substantial individual differences on the GFMT, 

however, a better way to evaluate the model's performance may be in terms of whether it 

tends to make mistakes on the same item pairs that human observers find difficult. We 

found significant correlations in the expected directions involving the model distance 

between the image pairs and overall human performance for same trials, rs(82) = -0.23, p 

= .039, and for different trials, rs(82) = 0.28, p = .009. 

 

3.4.2 Face matching as a function of familiarity 

Having established how to apply our model to unfamiliar face matching, we 

investigated how an increase in familiarity affects face matching – that is, correctly 

perceiving that two novel instances of a face are the same person. It is well-established 

that face matching is easier for familiar than unfamiliar faces (Bruce et al, 2001; Johnston 

& Edmonds, 2009; Megreya & Burton, 2006) and so this is a key requirement for a 

model of familiarity.  Moreover, in addition to the basic familiar/unfamiliar dichotomy, 
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there is already evidence that matching performance is predicted by degree of familiarity 

(Clutterbuck & Johnston, 2002, 2004, 2005).  This makes matching a good candidate for 

simulation in our model.  

 

To simulate unfamiliar face matching, we had measured the distances between 

pairs of images of faces that had not been explicitly represented in our model's 

PCA+LDA space. This is in line with the idea that unfamiliar face matching will rely 

heavily on image similarity (Hancock et al, 2000; Megreya & Burton, 2006).  In contrast, 

familiar face matching need not rely much on image similarity – if two images are both 

recognised as Jennifer Lawrence, then they can be matched easily, regardless of their 

image similarity, on the basis of a more conceptual match. To simulate the impact of this 

conceptual matching, we investigated how the model dealt with pairs of novel images of 

a trained identity at different levels of familiarity. 

  

In this simulation, we manipulated the level of familiarity of a specific face in the 

context of the larger model, with all its complexity and variability.  To do this, we 

constructed variants of the model which differed only in terms of the number of items 

‘known’ (i.e. the number of training images) for one particular individual – all the 

training images for the remaining 334 people remained the same in each model variant. 

We took the identity for whom we had the largest number of images (159 for Jennifer 

Lawrence) in our initial set and then varied the number of images of the actress included 

in the model's training set (from 0 to 151), measuring how this affected matching 

performance across pairs of novel images of Jennifer Lawrence's face.  

 

For a single model iteration, we chose a random set of 151 training images plus two 

test images, from the 159 available for this identity. We constructed models containing 

the 334 other identities and incremental steps of ten training set images of Jennifer 

Lawrence by using 0 images or 1 image to create a baseline, and then images 1-11, 1-21, 

1-31 etc. To test how familiarity (as represented by increasing the number of training 

images) affected face matching performance, we projected two novel test images of 

Jennifer Lawrence into the PCA+LDA space derived for each incremental model.  For 
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these two novel images, we then calculated three principal measures: 1) the distance from 

each image to Lawrence’s centroid (the distance to JL centroid measure), 2) the distance 

from each image to the nearest non-Lawrence centroid (the distance to nearest non-JL 

centroid measure), and 3) the distance between the pair of test images themselves 

(distance between novel images measure). 

 

This process was repeated for 20 iterations, each time randomly selecting which 

images of Lawrence to use as training and novel images. We averaged across iterations 

and present the data in Figure 9. A comparable procedure using the nearest neighbour 

measure produced the same pattern. 
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Figure 9. Performance with two novel images of Jennifer Lawrence's face as familiarity 

with Jennifer Lawrence (represented by the number of training images) increases. The 

mean Euclidean distance in PCA+LDA space (across 20 iterations) between the novel 

images and Lawrence’s centroid, between the novel images and the nearest non-

Lawrence centroid, and the distance between the two novel images themselves. 

 

Figure 9 makes clear that the possibility of conceptual matching increases as 

familiarity increases, as evidenced by the increasing separation between the distance to 

JL centroid and distance to nearest non-JL centroid measures. Interestingly, it also shows 

that the centroids for faces other than JL's become more distant from the JL centroid as 

familiarity increases, reflecting the reshaping of the overall space produced by LDA. The 

Spearman correlation between familiarity (number of training images) and distance to the 

nearest non-JL centroid (averaged over the 20 iterations) is rs(14) = .95, p < .001. 
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Less obviously, the distance between the pairs of novel images of Jennifer 

Lawrence also reduces slightly as familiarity increases (i.e. there is a small downward 

slope to the 'distance between novel images'). The Spearman correlation between 

familiarity (number of training images) and distance between the two novel images 

(averaged over the 20 iterations) is rs(15) = -.96, p < .001. This seems to reflect a more 

local reshaping of the region of PCA+LDA space that represents JL's face as familiarity 

with her increases. This observation led us to look further at the underlying mechanisms 

and the extent to which they might operate in an identity-specific manner. 

 

3.5. Underlying mechanisms 

 

Our simulations have shown a clear advantage for increasingly familiar faces when 

tested using face recognition and face matching. This is consistent with key findings 

across decades of face research and offers insights into the nature of face familiarity. In 

this final empirical section, we examine underlying mechanisms in more detail. 

 

In a previous study, we established that the combined use of LDA with PCA offers 

much better performance for recognising novel images of familiar identities than a PCA-

based system alone (Kramer et al., 2017a). We suggested that a combination of LDA 

with PCA is particularly useful because each face has its own idiosyncratic forms of 

variability that need to be learnt as it becomes familiar (cf. Burton et al., 2016).  This 

idiosyncratic variability limits the usefulness of generic methods such as PCA that 

represent only the variability of the entire set of training images without taking the 

idiosyncrasies of particular faces into account. Here, we put this suggestion to a formal 

test. 

 

As already noted, Figure 9 shows that the between-pair distances of novel images 

of Jennifer Lawrence decreases slightly as the number of training images increases. That 

is, as the model becomes more familiar with Jennifer Lawrence's face, novel instances of 

her become closer together in PCA+LDA space. Although a far more gradual process 

than the familiarity benefits seen with face recognition (where we see a steep increase in 
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recognition accuracy as familiarity increases), this clustering of novel images illustrates 

how the underlying space in the model changes across familiarity.  It is noteworthy that 

we should observe such a clear relationship, because the relative contribution of the 

Jennifer Lawrence images to the whole model is very small as training images are added; 

all the other 334 known people and 3,995 images remain unchanged as novel images of 

Jennifer Lawrence are added. The fact that the region of the PCA+LDA space that 

represents Jennifer Lawrence's face should change in this way underscores the key point 

that the variability in images of her face must be to some extent idiosyncratic and 

therefore needs to be represented separately from the other 3,995 images in the set 

(Burton et al., 2016). 

 

To demonstrate more formally how the combination of PCA with LDA reshapes 

the space corresponding to each familiar identity, we used the face of Ryan Reynolds, for 

whom there are 104 images in our initial database. We removed 4 randomly selected 

images and then randomly split the remaining images into sets of 80 training images and 

20 test images. The 80 training images of Ryan Reynolds were then included alongside 

all of the remaining 4,050 images of all other identities at the PCA stage. At the 

subsequent LDA stage, however, the 80 images of Ryan Reynolds were either left in (the 

trained identity condition) or left out (the untrained identity condition). We then 

calculated all pairwise distances between the 20 novel images of Reynolds after 

projecting these into the PCA+LDA space, and compared the mean of those distances 

across the trained identity and untrained identity conditions. This procedure was repeated 

across 20 iterations involving different random samples of 80 and 20 images from the 

Ryan Reynolds set. 
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Figure 10. The mean pairwise Euclidean distances between 20 novel images of Ryan 

Reynolds, averaged across 20 iterations. In the trained identity condition, 80 training 

images of Reynolds were included in the full PCA+LDA process. In contrast, in the 

untrained identity condition, the 80 training images were included at the PCA stage but 

then removed before LDA was carried out. Error bars depict the standard error of the 

mean. 

 

Results are presented in Figure 10, which shows that the distance between novel 

images of Ryan Reynolds is reduced by training with other images of him using the 

PCA+LDA procedure (the trained identity condition), in comparison to when images of 

Reynolds were included only in the PCA stage (the untrained identity condition). Note 

that the data in Figure 10 involve entirely novel images that were not used in the PCA or 

LDA stages, but that exactly the same sets of novel images are tested across the trained 

identity and untrained identity conditions. The difference between these conditions is 

therefore entirely attributable to the consequences of training (or not training) the identity 

using a different set of images at the LDA stage. Clearly, then, identity training with 
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LDA has the effect of reshaping the underlying PCA-based space in a way that brings 

any instances of the trained face into closer proximity to each other. 

 

The benefit accruing to familiar face recognition from LDA, as an example 

clustering algorithm, is therefore clearly established relative to the unsupervised 

statistical analysis offered by PCA alone. However, our approach also allows us to go 

further and ask whether the representations of previously unseen faces derive any benefit 

from being projected into a space based on familiarity with known faces. The issue is 

important because many researchers claim that we are generic experts at perceiving face 

identity (Carey, 1992), whereas the view put forward here is that this characterisation in 

terms of face identity expertise is correct only for familiar faces (cf. Young & Burton, 

2017). In effect, we have been demonstrating through our simulations based on image 

statistics that someone can become a Jennifer Lawrence face expert or a Ryan Reynolds 

face expert without actually testing whether these forms of expertise might also to some 

extent enhance the perception and recognition of other, unfamiliar faces. 

 

We therefore sought to address the issue of whether the reshaping of PCA space 

that results from applying LDA is entirely person-specific? If the reshaping is completely 

idiosyncratic to each known face, there will be no accrued benefit from learning several 

different face identities through LDA on ability to represent the identities of unfamiliar 

faces in PCA+LDA space, whereas if the reshaping is only partly idiosyncratic then we 

might expect some improvement in the ability to represent unfamiliar face identities as 

more familiar faces are known. 

 

To test whether learning familiar face identities can enhance representations of 

unfamiliar face identities, we examined the similarity between pairs of images of the 

same unfamiliar face when measured within a purely PCA-based space, or when 

measured within a PCA+LDA space built to recognise other faces. Do we gain something 

from tackling unfamiliar face matching within a reshaped space derived through 

optimising the recognition of familiar identities?  
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To answer this question, we collected two images for each of 40 new identities 

using Google Image search, following the same guidelines described earlier. Half of these 

celebrities were women, and all were White. None of these identities appeared in our 

training set. In order to determine whether our identity-derived space produced benefits 

for unfamiliar face matching, we projected the 80 new images into our model’s 

PCA+LDA-trained space. For comparison, we also projected these images into the space 

derived from carrying out only the PCA stage of our model. In both cases, the training set 

was identical, but for the PCA-alone model, identity information was not used in order to 

derive dimensions that best discriminated between face images. 

 

Using the 80 novel images, we simulated 40 ‘same’ trials with the two images of 

each identity. As a measure of the model’s performance, we calculated the Euclidean 

distances in PCA space and in PCA+LDA space between these pairs of images. In order 

to generate 40 ‘different’ trials, we paired one image for each identity with a foil chosen 

from the other images in this set. We took care to match the two faces on basic 

descriptors like sex, hair colour, the presence of stubble, and age, acknowledging the 

limitations inherent in such a small sample of faces. For each of these trials, we again 

calculated the Euclidean distances in PCA space and in PCA+LDA space between the 

two images. 
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Figure 11. Mean Euclidean distances between ‘same’ and ‘different’ identity pairs of 

novel images of unfamiliar faces in PCA-space (image similarity only) and PCA+LDA-

spaces (image similarity plus identity training for familiar faces).  Error bars show 95% 

confidence intervals. There is a clear benefit to determining that different images of 

unfamiliar faces represent the same identity in the PCA+LDA space, despite it having 

been trained on other faces. 

 

Figure 11 illustrates these ‘same’ and ‘different’ identity distances when the images 

are projected into PCA-based and PCA+LDA spaces. We find that there is no statistically 

significant difference between the two types of trial for the PCA-alone model, t(78) = 

1.02, p = .313, Cohen’s d = 0.23. In contrast, the PCA+LDA model successfully 

discriminates between ‘same’ and ‘different’ identity image pairs, t(78) = 4.90, p < .001, 

Cohen’s d = 1.10. 

 

This result is an important one. Using the same training image set, we can derive 

dimensions that best capture the variance in the images’ pixel values (PCA) or we can 
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calculate dimensions that are optimal for identity discrimination (PCA+LDA). This latter 

case appears to result in a reshaped space well suited to discriminating the identities of 

novel images of both familiar (trained) faces and, to some extent, of unfamiliar 

(untrained) faces. Even though the faces used here never appeared in the training set, we 

find that the PCA+LDA space provides some support for establishing similarity in 

identity beyond superficial image similarity that extends to completely new faces. 

 

 

4. Discussion 

 

We set out to test the idea that familiarity can be thought of as involving bottom-up 

low level image descriptions, together with a top-down mechanism for cohering 

superficially variable images of the same person. Using a combination of PCA and LDA, 

we successfully reproduced key findings in the literature regarding how people perform 

in face recognition and face matching tasks. Crucially, we were able to show familiarity 

advantages for entirely untrained images with a model based only on the optimal 

separation of identities in PCA+LDA space. The benefits of increasing familiarity - as 

defined by the number of different training images used for a given face - accrued in 

terms of better recognition of novel exemplars of the trained faces, better face matching, 

better resistance to the effects of image degradation, and better recognition from internal 

than external features. 

 

The combination of bottom-up image description, with top-down clustering, has been 

used in previous models (e.g. Bekios-Calfa et al, 2011).  In our own previous work 

(Kramer et al, 2017a) we have used this approach to classify sex and race from familiar 

and unfamiliar faces. However, previous models, including our own, treated familiarity 

as a bivalent variable, in which ‘familiar’ faces were uniformly familiar. For the reasons 

described above, that is an incomplete approach to understanding familiarity which is 

self-evidently graded, i.e. we know some faces better than others.  Here we show that the 

same general approach used in understanding other aspects of face perception, can also 

be used to begin to understand the much more complex nature of familiarity itself.  
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The contrast between familiar and unfamiliar faces is often linked, either explicitly 

or by implication, to the idea of qualitative differences between the processing of familiar 

and unfamiliar faces (Bruce & Young, 1986; Burton, Bruce & Hancock, 1999; Hancock 

et al., 2000; Megreya & Burton, 2006). For example, the perception of faces that have 

never been encountered before is so image-dependent that participants experience little 

difficulty in being taught the incorrect information that two different images of the same 

face belong to different people (Longmore et al., 2008). Yet at the other extreme, the 

recognition of highly familiar faces is so fluent that we can find it hard to see how 

different two images of a familiar person actually are (Jenkins et al., 2011) and relatively 

difficult to remember the details of specific images that have been seen (Armann, Jenkins 

& Burton, 2016). Our results show how despite familiarity lying along a graded 

continuum it remains reasonable to look upon the extremes of familiarity as involving 

differences that are to all intents and purposes so large as to appear qualitative in nature, 

but they also show how there can be gradations in performance between these extremes. 

 

Given the highly unconstrained nature of the images used in the simulations above, 

sampled from internet search and with no control of low-level image properties, the 

performance we report is surprisingly good, as well as having human-like properties. Of 

course, we do not wish to claim that the human brain explicitly uses PCA or LDA.  

Instead, the model presented here demonstrates that a clustering algorithm, cohering 

together multiple instances of the same person, can use simple intensity (pixel) level 

statistical structure to deliver apparently high-level information in the form of face 

recognition.  The model provides an existence proof of this, without commitment to 

specific implementation.  

 

None the less, one might ask how far learning faces from photographs is truly 

representative of natural face learning? At the present state of knowledge we cannot be 

completely certain, but some points stand out. First, although photographs are entirely 

static, recognition of static images is so good that any idiosyncratic patterns of facial 

movement convey no measurable benefit under normal circumstances; substantial image 
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degradation is needed before any effects of facial movement become apparent (Lander, 

Christie & Bruce, 1999; O'Toole, Roark & Abdi, 2002). Second, while faces learnt from 

single photographs show remarkably poor generalisation (Bruce, 1982; Longmore et al., 

2008), it is none the less clear that faces can be learnt from multiple variable photographs 

of the same face in ways that show properties comparable to natural recognition (S. 

Andrews et al., 2015; Dowsett et al., 2016). Moreover, the degree of variability in 

exposure to such multiple images is predictive of how well this learning can generalise to 

new exemplars (Ritchie & Burton, 2017). Both phenomena fit with the observation that 

variability in the views of faces to which we are exposed is typical of our everyday lives. 

On balance, then, the available evidence suggests that there is nothing special (or 

unrepresentative) about learning faces from photos. 

 

In common with other graphical approaches, we began by standardising the 

positions of key fiducial positions in each image (Beymer, 1995 Craw, 1995; Vetter & 

Troje, 1995). Behavioural studies show that such stimuli remain easily recognisable to 

human observers (Burton et al., 2005; T. Andrews et al., 2016). The analyses were then 

conducted entirely on pixel-based surface colour and brightness values. These surface 

properties involve a combination of the surface reflectances of different parts of the face 

(known as its albedo map in the computer science literature), prevailing illumination 

conditions (such as direction of lighting) and camera characteristics. In any given image, 

there will be an unspecified mix of these different factors. Importantly, our model did not 

make any attempt explicitly to represent shape information concerning the second-order 

configuration of features, three-dimensional information about head shape, knowledge of 

how expressions can alter the face, and other visual properties often thought to be 

involved in face recognition. Indeed, with these highly variable everyday images we 

found that 2D shape information from the fiducial locations alone was of limited value in 

comparison to the surface properties of the shape-normalised images. This does not mean 

that shape is irrelevant; there is evidence that human observers can be sensitive to shape 

properties (O'Toole, Vetter & Blanz, 1999; T. Andrews et al., 2016). In this respect we 

note that some shape information will still be available in the standardised images via 

patterns of shape from shading, texture changes due to opening or closing the mouth and 
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eyes, and so on (cf. Sormaz, Young & Andrews, 2016). Whether or not this is the 

underlying cause, the simulations show that learning from covariation of surface 

information within and between identities is sufficient to underpin human-like 

performance.  

 

Our simulation exploring the importance of internal versus external facial features 

proved consistent with the behavioural evidence that people rely to a greater extent on the 

internal features for more familiar faces (Clutterbuck & Johnston, 2002; Ellis et al., 1979; 

Young et al., 1985). While we found that in general novel images of more familiar 

identities were better recognised when projected into the PCA+LDA space, this 

relationship between familiarity and accurate recognition was stronger for internal 

features than external features. 

 

This ability to simulate the importance of the internal features for familiar face  

recognition directly addresses an important debate concerning the origins of this finding, 

which has been interpreted in two very different ways. The interpretation originally 

offered by Ellis et al. (1979)  was that the internal facial features receive most attention in 

social encounters because of their critical role in social signals such as gaze and facial 

expression. They therefore become differentially represented for familiar faces because 

these are the features that have been most looked at (Ellis et al., 1979). In contrast, an 

alternative interpretation offered by Young et al. (1985) was that while external features, 

and especially the hair, can often dominate any particular photo of an unfamiliar person, 

this is not a very diagnostic feature of identity, because it is easily changeable.  

Therefore, over increasing exposure, people may come to rely on aspects of the face 

which change less across encounters (Young, 1984; Young et al., 1985; Bonner, Burton, 

& Bruce, 2003; Osborne & Stevenage, 2008). In fact, by presenting only the internal 

features, researchers have been able to improve unfamiliar face learning (Longmore, Liu, 

& Young, 2015) and matching accuracy in some conditions (Kemp, Caon, Howard, & 

Brooks, 2016).  
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These interpretations of the internal feature advantage for familiar faces differ in 

the emphasis they place on properties that are intrinsic to how images of faces themselves 

vary in the everyday world (the 'image-based' interpretation favoured by Young et al., 

1985) or on the way these facial images are analysed by human perceivers (the more 

'social' interpretation suggested by Ellis et al., 1979). Our data were consistent with the 

key prediction of the image-based account, that differential salience of the internal 

features will accrue to familiar faces simply on the basis of the nature of everyday image 

variability. Young et al. (1985) had in fact suggested that it might be possible to tease 

apart image-based and more social explanations "by studying how the differential 

salience of the internal features is established as faces become increasingly familiar" 

(Young et al., 1985, p.745). Whilst PCA+LDA is clearly not intended as a full model of 

brain processes involved in face recognition, it does offer an effective way of finding the 

information sufficient to support recognition.  

 

From a more general perspective, our simulations show how increasing familiarity 

with a face leads to better performance. This needs to be considered with respect to 

previous suggestions that averaged images can capture the essential invariant 

characteristics of a specific face identity by eliminating identity-irrelevant variability 

between images (Burton et al., 2005; Jenkins & Burton, 2008). We do not wish to deny 

the value of that observation, but it is important to appreciate that this is not how the 

present approach works. Instead, rather than seeking to average away image variability, 

what we do here is to make use of it. What LDA achieves is to maximise between-

identity distances (the separation between images of different faces) while minimising the 

within-identity distances (by clustering images of the same face close together). Faces 

that include more images in the training set will therefore have a greater influence on the 

resulting dimensions, but averages are never calculated by the model (though our 

centroid measure of its performance involves an averaged location in the representational 

space). 

 

We think that LDA may be particularly useful in this respect because each face has 

its own idiosyncratic forms of variability across different image views (cf. Burton et al., 
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2016). As we noted, whereas many researchers claim that we are generic experts at 

perceiving face identity (Carey, 1992), the view put forward here is that this 

characterisation is mainly correct for familiar faces (Young & Burton, 2017). Figures 9 

and 10 show how training the identity of a familiar face with LDA reshapes the 

underlying PCA-based space in a way that brings entirely novel instances of the trained 

face into closer proximity to each other than they would be from their image descriptions 

alone. This observation emphasises the importance of supervised learning to finding 

identity-specific variability. An approach based purely on an unsupervised analysis of the 

image statistics of the perceptual input alone (i.e. PCA of the image training set) does not 

do so well (Figure 11). This is consistent with studies of human face learning, in which 

expectations about identity (e.g. how many individuals to expect in a set of faces) has a 

marked influence on the perception of identity (Andrews et al, 2015; Menon, White & 

Kemp, 2015b).   

 

Taking the question of underlying mechanisms a step further, however, we were 

also able to demonstrate that LDA reshapes the underlying PCA-based space in a way 

that confers some benefit to representing the identities of entirely unfamiliar (untrained) 

faces (see Figure 11). This result speaks to a long-standing problem in face research – the 

extent to which general processes operate when recognising faces. At one extreme, 

images of unfamiliar faces have been held to be unable to recruit privileged or special 

processing available to familiar faces (Megreya & Burton, 2006; see also Hancock et al., 

2000).  From the simulations presented here, this now seems too strong a claim, though it 

remains the case that models of face processing which ignore pervasive differences 

between familiar and unfamiliar faces are inadequate (Young & Burton, 2017).  In the 

PCA+LDA approach, we seem to have a useful integration. Familiar faces shape 

similarity space in a way which benefits them optimally, but which also provides some 

benefit to unfamiliar face processing. Hence although our primary expertise in face 

recognition is for the identities of familiar faces, this has consequences for recognition of 

unfamiliar faces too. 

 

The fact that LDA reshapes the underlying PCA-based space has profound 
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implications for the widely-used face space metaphor. Face space is conceived as a set of 

hypothetical multidimensional linear vectors that represent the differences between faces 

(Valentine, 1991, 2001). Face space models then try to represent each face identity as a 

discrete point in this multidimensional space, noting that some faces will be closer 

together or further apart from each other. Although the dimensions of face space remain 

unspecified, the underlying assumption of linearity has strong parallels with PCA 

approaches and has been shown to approximate cell responses in the monkey brain 

(Chang & Tsao, 2017). However, our demonstrations here show that a completely linear 

space based on image properties alone does not cope well with the problem of within-

person variability and that LDA can be used to reshape the space into something more 

useful. If we use a pretentious analogy, the presence of a highly familiar face distorts 

space in a way that resembles a large mass distorting the space around it in Einstein's 

theory of relativity. A related point concerning distortions of a hypothetical face space 

created by familiar attractors had been suggested by Tanaka et al. (1998). 

 

In sum, our aim here was to present a model of how face familiarity might be 

conceptualised. We have presented simulations that show our model performs 

realistically on face recognition and matching tasks, with increasingly familiar faces 

being better matched and recognised, showing resistance to degradation, and increasing 

dependence on their internal features. To our knowledge, we are the first to model 

varying degrees of face familiarity in a single system, and to explore how well such a 

system can encompass established results from a range of key findings based on data for 

human participants. We hope to have taken the first steps towards providing a working 

account of the mechanisms that exploit face variability to achieve familiarity. 
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