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Abstract

Aim To  investigate  the  feasibility  of  decellularizing  the  entire  dental  pulp  using  a  mild  treatment

protocol to develop a decellularized biological extracellular matrix scaffold for use in regenerative

endodontic procedures.

Methodology Decellularized human dental pulps were assessed using histological and

immunohistochemical methods, scanning electron microscope and DNA quantification assay.

Cytotoxicity assays to determine decellularized scaffold biocompatibility were also performed.

Decellularized scaffolds were seeded with human dental pulp stem cells and cell viability assessed

using Live/Dead® stain. Quantitative data were analysed statistically using Student’s t-test and one-

way analysis of variance to compare mean values between groups depending on group numbers.

Results Assessment of decellularized tissues revealed an acellular matrix with preservation of native

tissue histoarchitecture and composition. Decellularized tissues showed no evidence of cytotoxicity,

with  cell  growth  in  direct  contact  with  the  scaffold  and  no  reduction  in  cellular  activity  following

extract incubation. Furthermore, the scaffold was able to support human dental pulp stem cell viability

and attachment following recellularization.

Conclusions Promising results were observed in developing a decellularized biological scaffold

derived from the dental pulp with the perseveration of extracellular structural components which are

required for tissue-specific regeneration.
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Introduction

Dental tissue regeneration has recently emerged as an exciting new concept in managing immature

nonvital pulp (European Society of Endodontology 2016) with several published protocols showing

variable outcomes (Nicoloso et  al. 2017).  These protocols share common steps involving chemical

disinfection, utilization of stem cells of the apical papilla and scaffold creation through induction of a

blood clot (Galler 2016).

Reviews of the regenerative endodontic procedures, also known as revitalization procedures, have

concluded that, although they show promise, the outcomes remain unpredictable (Wigler et al. 2013,

Moreno-Hidalgo et al. 2014, Nazzal and Duggal 2017).  Despite continuation of root development

reported in some studies it is unclear whether such development is the result of stem cell repopulation,

revascularization, regeneration or merely maturogenesis (Galler et al. 2011).

Regeneration  of  a  pulp  structure  is  unlikely  to  be  successful  unless  the  basic  principles  of  tissue

engineering are implemented within any regenerative endodontic procedure.  Such protocols should

be aimed at promoting and guiding the development of the desired structures using appropriate stem

cells, scaffolds and signalling molecules (Langer and Vacanti 1993).

Various scaffolds have been tested in an attempt to regenerate the pulp-dentine complex, with limited

success (Galler et al. 2011).  Recently, the use of biological scaffolds composed of an acellular

extracellular matrix (ECM) derived through tissue decellularization has been advocated (Gilbert et al.

2006, Crapo et al. 2011, Song and Ott 2011).  Decellularization is defined as the efficient removal of

all cellular and nuclear contents without negatively affecting ECM composition (Gilbert et  al. 2006,

Badylak et al. 2009).

Preservation of this nanostructured environment and network mesh of fibrous and adhesive proteins

provide cell anchorage and regulates future cellular activities (Martinez et al. 2000, Galler et al. 2011)

The natural tissue matrix is considered as the ideal scaffold for tissue regeneration (Badylak 2002)

and  the  creation  of  an  acellular  scaffold  that  is  able  to  attract  and  support  local  resident  cells  is  a

possible direction for pulp-dentine tissue engineering (Galler et al. 2011).



Within the dental field attempts to decellularize porcine tooth buds (Traphagen et al. 2012, Zhang et

al. 2017), pulp tissues obtained from miniature swine teeth (Chen et al. 2015) and human  pulp tissues

within root slices (Song et al. 2017) have been recently reported. Chenet al. (2015) and Songet al.

(2017) reported successful decellularization of dental tissues utilising 1% sodium dodecyl sulphate

(SDS) and 1% Triton X-100.  Despite these results, the use of decellularization protocols with lower

concentrations of toxic detergents is advantageous for future tissue regeneration.

Therefore, the aim of this work was to assess the feasibility of decellularizing the whole dental pulp

using a single cycle of lower concentrations of SDS (0.03%) to develop a decellularized biological

ECM scaffold for use in regenerative endodontic procedures.

Materials and methods

All chemicals, reagents, cell culture medium and supplements were purchased from Sigma-Aldrich

(Poole, UK) and cell culture plastics were obtained from Corning® (Amsterdam, the Netherlands)

unless stated otherwise.

Tissue procurement

Written informed patient consent and ethical approval were obtained from Skeletal Research Tissue

Bank;reference number 101013/MME/113 (School of Dentistry, University of Leeds, Leeds, UK).

Clinically sound human premolars (donor’s age 11-30 years) were collected within 48 h following

extraction, and pulp tissues were aseptically retrieved and stored in 0.1 M phosphate-buffered saline

(PBS; Lonza, Slough, UK) at -80 °C.

Decellularization

Pulp tissues were thawed at room temperature and washed thrice in PBS (Lonza) containing aprotinin

(10 KIU mL-1).  Decellularization protocol used was previously described by Wilshawet al. (2006).

In brief, pulp tissues were incubated in a hypotonic Tris-buffer (10 mM Tris), pH 8.0 containing

protease inhibitors [0.1% ethylene-diamine-tetra-acetic acid (EDTA) and aprotinin (10 KIU mL-1)]

overnight  at  4  °C.   Samples  were  then  placed  in  0.03%  SDS  for  24  h  at  room  temperature  with



constant  shaking.   Tissues  were  washed  thrice  in  Tris-buffered  saline  and  incubated  in  a  reaction

buffer [Tris-hydrochloric acid (50 mM), pH 7.5 with magnesium chloride (10 mM) and bovine serum

albumin (50 µgmL-1)] containing DNase (50 U mL-1) and RNase (1 U mL-1) for 3 h at 37 °C.  Finally,

tissues were disinfected with 0.1% peracetic acid for 3 h and washed thrice in Tris-buffered saline.

Histology and immunohistochemistry analysis

Control (untreated) and study (decellularized) tissues (n = 4/group) were fixed in

10% neutral-buffered formalin (Cellpath, Wales, UK) for 24 h. The fixed tissues were embedded in

2%  agar,  dehydrated  using  an  automated  tissue  processor  (ASP200;  Leica  Biosystems,  Newcastle

Upon Tyne, UK) and embedded in paraffin wax.  Paraffin-embedded blocks were serial sectioned at 4

ȝm thickness.

Tissue sections were stained with hematoxylin and eosin (H&E; Thermo Fisher Scientific,

Loughborough, UK) to evaluate tissue histoarchitecture and 4ƍ,6-diamidino-2-phenylindole (DAPI;

Vector  Labs,  Peterborough,  UK)  to  assess  nucleic  acids.   Alcian  blue  (TCS  Biosciences  Ltd,

Buckingham, UK) and picrosirius red (Polysciences Inc, Warrington, USA) stains were used to

visualise acidic polysaccharides and collagen fibres, respectively.

Immunohistochemistry slides were initially subjected to antigen retrieval methods. Antigen retrieval

for mouse anticollagen type I and anticollagen type III antibodies were performed by heat retrieval for

2 minutes under full pressure using automated electrical pressure cook (MenaPath, Winnersh-

Wokingham, UK)  using Tris-EDTA buffer solution (pH 9.0) or citric acid buffer solution (pH 6.0),

respectively, whilst antigen retrieval for both rabbit antilaminin and mouse antifibronectin antibodies

were performed using bond enzyme pre-treatment kit (Leica Biosystems, Newcastle Upon Tyne, UK)

by incubating slides for 15 min at 37 °C.

Slides were then incubated for 1 h at room temperature with the following primary antibodies and

isotype controls including monoclonal mouse antibodies anticollagen type I (ab90395, 1 : 100;

Abcam, Cambridge, UK), anticollagen type III (ab6310, 1 : 200; Abcam), antifibronectin (ab6328, 1 :

50; Abcam), anti-human leukocyte antigen (M0775, 1 : 250; Dako, Glostrup, Denmark) and



polyclonal rabbit antilaminin (NB300-144, 1 : 400; NovusBio, Oxon, UK). Isotype-specific control

antibodies IgG (ab199507, Abcam), IgG1 (ab91353, Abcam) and IgG1 Kappa (M9269, Sigma-

Aldrich) were used as negative controls, under the same conditions with omission of primary

antibodies.   Immunolabelling  was  performed  using  ImmPRESS  excel  peroxidase  (Vector  Labs)  or

rabbit polymer horseradish peroxidase (MenaPath) staining kits for all mouse and rabbit antibodies,

respectively.  Brown chromogen peroxidase substrate 3’diaminobenzidine (DAB) (Vector Labs) was

used for antibodies detection and counterstained with hematoxylin.

All sections were examined using a light microscope (AxioVision Rel. 4.8 software; Carl Zeiss)

except DAPI-stained sections using a fluorescence microscope (AxioVision Rel. 4.7 software; Carl

Zeiss).  To further assess collagen structure, picrosirius red-stained sections were also viewed using a

polarized microscope (Zen software; Carl Zeiss).

Scanning electron microscope

Control and study tissues (n = 2/group)  were fixed in 2.5% glutaraldehyde overnight at 4 °C, and

dehydrated in ascending ethanol concentrations.  Tissues were then exposed to 50% and 100%

hexamethyldisilazne solution and left for evaporation overnight.  Samples were then mounted on

aluminium stubs, gold sputter coated and viewed under scanning electron microscope (SEM; Hitachi

S-3400N, High-Technologies Ltd).

DNA quantification assay

Total DNA was extracted from the control and study tissues (n = 4/group) using the DNeasy Blood

and  Tissue  Kit  (Qiagen,  Manchester,  UK)  following  manufacture’s  protocol.   DNA  was  quantified

using a NanoDrop™ 1000 spectrophotometer at 260/280 nm (Thermo Fisher Scientific).

Tissue cytotoxicity

Cell culture



Mouse fibroblasts L929 cell line (Oral biology department, University of Leeds, UK) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (Lonza),

L-Glutamine (2 mmol L-1) and 1% Penicillin-Streptomycin solution.at 37 °C in 5% CO2 and air.

Medium was changed every three days and cells passaged at 80% confluency.

Human dental pulp stem cells (DPSCs) (Oral biology department, University of Leeds) were obtained

with informed patient consent and full ethical approval for human stem cells usage (reference number

101013/MME/113).  DPSCs were cultured in Alpha-modified minimum essential medium (Į-MEM)

(Lonza) supplemented with 10% foetal bovine serum (Lonza), L-Glutamine (2 mmol L-1)  and  1%

Penicillin-Streptomycin solution.at 37 °C in 5% CO2and air.  Medium was changed every three days

and cells passaged at 80% confluency.

Contact cytotoxicity assay

Decellularized tissues (n = 4) were secured to the centre of six-well culture plates using collagen type

I gel (Gibco™, Fisher Scientific). Collagen gel and cyanoacrylate glue and were used as negative and

positive controls, respectively.  L929 cell lines at a density of 2 x 105 cells mL-1 (4 x 105 cells) were

cultured  in  each  well  for  48  h.   The  cells  were  washed  with  PBS,  fixed  with  10%  neutral-buffered

formalin (Cellpath) and stained with Giemsa solution (VWR International, Leicestershire, UK) for 5

min. The plates were washed with water and left to air dry.  Changes in cell growth and morphology

were visualised using an Olympus IX 7 inverted light microscope (Cell^B software).

Extract cytotoxicity assay

Decellularized tissues (n = 4) were cut and incubated in DMEM with agitation for 72 h at 37 °C. The

extract supernatant was collected and stored at -20 °C until future usage.  L929 cell lines at a density

of 5 x 104 cells mL-1 (1 x 104 cells) were seeded on 96-well plates and incubated for 24 h. DMEM and

40% dimethyl sulfoxide (DMSO) were used as negative and positive control, respectively.  Test

extract or controls were added to the appropriate wells and incubated for a further 24 h.  Cell viability

(relative cellular adenosine triphosphate (ATP) content) was determined using the ATPLite™ assay

(PerkinElmer, Inc. Seer Green, UK) following manufacture’s protocol.



Cell viability assay

Decellularized  human  scaffolds  (n  =  3)  were  recellularized  using  DPSCs.   DPSCs  (Passage  5)  at  a

density of 5.5 x 104 cells  mL-1 (1  x  104 cells) were dynamically seeded using an in-house rotating

bioreactor for 24 h.  The seeded scaffolds were placed in individual 12-well tissue culture plates

containing 2 mL of fresh complete Į-MEM and statically cultured for an additional 7 and 14 days.

Cell viability was assessed, at both time points, using a commercial Live/Dead® stain following

manufacture’s protocol (Molecular Probes, Paisley, UK).  Stained scaffolds were then washed in PBS

and viewed under confocal Leica microscope (SP2 PLUS; Leica Microsystems, Milton Keynes, UK).

Statistical analysis

Student’s t-test and one-way analysis of variance (ANOVA) were used to compare mean values

between groups depending on group numbers.  All data was analysed using GraphPad Prism

(Version 6), and a p< 0.05 was considered significant.

Results

Efficiency of tissue decellularization

4ƍ,6-diamidino-2-phenylindole staining revealed a high cellular content in the control tissues (Fig. 1a).

In  contrast,  the  decellularized  tissues  showed  absence  of  any  visible  nuclear  material  (Fig.  1b).

Quantification of residual DNA in decellularized tissues removed an average of 98% (dry weight) of

native DNA (Fig. 1c). Furthermore the decellularization protocol resulted in complete removal of

human leukocyte antigen (major histocompatibility class II) [Fig. 1(d,e)].



Figure 1: Efficiency of dental pulp decellularization. (a and b) Representative images of DAPI fluorescent stain
(a, control and b, decellularized). The images show lack of nuclear material following decellularization. Nuclei
stained blue. Scale bar = 50 µm.  (c) Bar graph showing results of DNA quantification assay of control and
decellularized human pulpal tissues. Y-axis DNA content ng mg-1. Data represents mean values (n = 4) ± 95%
confidence intervals. The mean DNA measurements in the decellularized tissues contained 19.56 ± 1.280
ng.mg-1 in comparison to 1182 ± 56.24  ng mg-1 in the control tissues (t-test, ****p < 0.0001).  (d and e)
Representative images of immunohistochemical stained dental pulp tissues labelled with human leukocyte
antigen (major histocompatibility class II) (d, control and e, decellularized). The images revealed complete
antigen removal following decellularization. Major histocompatibility class II cells stained brown (black arrow).
Scale bar = 50 µm. DAPI, 4`,6-diamidino-2-phenylindole.

Tissue structure preservation

H&E staining of the control tissues revealed a highly cellular structure surrounded by loose ECM.

Normal pulpal histoarchitecture, with distinct zones (cell free zone, cell rich zone and pulp core), was

clearly evident (Fig. 2a). Following decellularization, an acellular loose ECM was evident with

preservation of the pulpal histoarchitecture (Fig. 2b).

Picrosirius red staining resulted in a rich porous network of collagen fibres in the control tissues (Fig.

2c). Although the tissue became less dense, decellularization maintained the collagen structure of the

dental pulp (Fig. 2d). Under the polarized microscope, abundant collagen bundles, fibres and fibrils



were evident in the control tissues (Fig. 2e). Following decellularization a porous collagen network of

various fibre bundles seemed to be preserved (Fig. 2f).

Alcian blue staining revealed an intense staining of acidic polysaccharides in the control tissues (Fig.

2g). The decellularized protocol used resulted in preservation of the acidic polysaccharides contents in

the pulp matrix (Fig. 2h).

The decellularized tissues analysed using SEM (Fig. 2J) appeared to be denuded of some components

(likely cells) compared to the control (Fig. 2I). Despite the above alteration, no visible change in fibre

density or orientation was observed, as the fibre mesh remained dense and irregular.



Figure 2: Structure preservation analysis. (a - h) Representative images of histological-stained
dental pulp tissues showing H&E (a, control and b, decellularized), picrosirus red (c, control and d,
decellularized), picrosirus red under polarized microscope (e, control and f, decellularized) and alcian
blue (g, control and h, decellularized) staining.  The images revealed preservation of ECM structure
following decellularization. Nuclei material (black arrow). Scale bar = 50 µm, except c - f scale
bar = 100 µm. (i and j) Scanning electron microscope images of the dental pulp tissues (i, control and
j, decellularized). The images revealed preservation of a dense and irregular fibre mesh following
decellularization. Scale bar = 10 µm. ECM, extracellular matrix.



Tissue composition

The immunolabelling of collagen type I and III showed a strong intense staining of a rich network of

collagen fibres in the control tissues [Fig. 3(a,c)]. Following decellularization the distribution and

quality of the collagen structure was largely retained [Fig. 3(b,d)].

In the control tissues, fibronectin labelling appeared as a fibrous plexus throughout the matrix with

dense concentration around blood vessels, while laminin labelling was seen mostly around the blood

vessels [Fig. 3(e,g)]. Although the immunolabelling of fibronectin and laminin following

decellularization was less intense, the pattern of staining and distribution were not altered [Fig.

3(f,h)].



Figure 3: Tissue composition analysis. Representative images of immunohistochemical-stained dental pulp
tissues labelled with anticollagen type I (a, control and b, decellularized), anticollagen type III (c, control and d,
decellularized), antifibronectin (e, control and f, decellularized), antilaminin (g, control and h, decellularized).
The images revealed preservation of structural components following decellularization. Scale bar = 50 µm.



Tissue cytotoxicity

Cytotoxicity assays

Microscope analysis of contact cytotoxicity assay following 48 h culture resulted in no cytotoxicity

with no difference in cell growth and morphology between decellularized tissues and negative

controls (collagen gel) [Fig. 4 (a,b)]. In contrast, positive controls (cyanoacrylate glue) caused marked

cytotoxicity with cell lysis and zones of no cell growth (Fig. 4c).  Extracts of decellularized tissues

showed no statistical significance difference in cellular ATP content compared with negative controls

(DMEM). Statistical significance was seen in the positive controls (DMSO) with an almost complete

loss of cellular ATP content (p < 0.05, ANOVA) (Fig. 4d).

Cell viability assay

The viability of human DPSCs seeded on the decellularized scaffold was assessed following 7 and 14

days culture. Multiple level constructed (Z-stack) confocal images of Live/Dead® stain demonstrated

that  most  areas  of  the  decellularized  pulp  scaffolds  were  populated  with  viable  cells  exhibiting  an

elongated morphology and scarcely cells were dead[Fig. 4 (e,f)].  Therefore the recellularized

scaffolds were able to support growth and proliferation of DPSCs in culture.



Figure 4: Cytotoxicity analysis. (a - c) Contact cytotoxicity assay cultured with L929 cell line for 48 h and
stained with Giemsa stain. (c) Decellularized human pulp tissues resulted in no cytotoxicity with cell growth
surrounding and in contact with pulp tissues. (b) Collagen gel (negative control) resulted in no cytotoxicity. (c)
Cyanoacrylate glue (positive control) resulted in cell lysis and necrosis. Cell growth and proliferation (white
arrow), cell death (black arrow). Scale bar = 200 µm. (d)Bar graph showingresults of extract cytotoxicity assay
measuring the relative cellular ATP content of L929 cells incubated in decellularized tissue extracts, DMEM
(negative control) and DMSO (positive control) following 24 hour culture.  Y-axis relative cellular ATP
measurements. Data represents mean values (n = 4) ± 95% confidence intervals. Data analysis revealed no
significance difference between decellularized extracts and DMEM (ANOVA, p> 0.05) and statistical
significance in comparison to DMSO (ANOVA, ****p < 0.0001). (e and f) Cell viability assessment of
decellularized human scaffolds seeded with human DPSCs and stained using Live/Dead® stain.  Z-stack images
revealed large areas of staining with calcein-AM (green, live cells) and minimal areas of staining with ethidium
homodimer (red, dead cells) on the scaffolds following (e) 7 days and (f) 14 days culture. Scaffolds were
observed under laser confocal microscope. Live cells (green arrow) and dead cells (red arrow). Scale
bar = 300 µm. DMEM, Dulbecco’s modified Eagle’s medium; DMSO, dimethyl sulfoxide.



Discussion

The widespread interest in regenerative endodontic procedures, also known as revitalization, has been

followed by a period of consideration of the evidence regarding its outcome. Recently published

systematic review and meta-analysis have shown that current published evidence is unable to provide

definitive conclusions on the predictability of this technique (Tong et al. 2017). Indeed prospective

studies have failed to predictably demonstrate any significant hard tissue gain in the root canal system

(Nazzal and Duggal 2017). One of the reasons seems to be that the current techniques do not always

follow the “gold standard” criteria for the bioengineering of the pulp–dentine complex, with one of

the crucial factors being the selection of an appropriate scaffold for successful tissue regeneration

(Murray et al. 2007). The development of a decellularized scaffold with complete elimination of

donor cells and antigens while preserving ECM structure could provide an excellent platform for

tissue regeneration (Badylak 2007).  These nonimmunogenic and biocompatible scaffolds conserve

native intact structures thereby providing specific microenvironment for cell population and tissue

regeneration (Badylak 2007). The decellularized scaffolds could be easily adapted for root canal

delivery and used in regenerative endodontics, possibly providing a more controlled regeneration

environment for stem cells to differentiate into odontoblasts rather than cementoblasts and/or

osteoblasts (Wang et al. 2010, Shimizu et al. 2013, Becerra et al. 2014).  It  is  conceivable  that  this

approach would provide a more suitable environment for regeneration rather than revitalization with

better success rates in terms of continuation of root development and thickening of dentinal walls.

Recently, decellularization of the pulp, using human tooth slices, which were essentially pulp-dentine

disks 1.5 mm in thickness, has been reported (Song et al. 2017).  In contrast the present study reports

decellularization of the whole pulp retrieved from extracted teeth. Songet al. (2017)  evaluated three

different protocols for decellularization, the most effective protocol being the one which incorporated

3 cycles of 1% SDS and 1 cycle of 1% Triton X-100. Similar detergents were also used by Chenet al.

(2015).  While Triton X-100 (non-ionic detergent) is reported to be more effective in cell removal

from thin tissues, some disruption of the ultrastructure and removal of GAGs has been reported

(Gilbert et al. 2006, Crapo et al. 2011). SDS (an ionic detergent) is also considered an effective



detergent for cellular and nuclear membrane solubilization; however, concerns regarding the potential

toxicity and tissue damage have been reported with the use of 1% SDS on porcine aortic valve

(Bodnar et al. 1986).  Reducing the concentration of SDS to a 10-fold lower strength (0.1% SDS) was

reported to be successful to decellularise human pericardial matrix (Mirsadraee et al. 2006).

However, increasing the number of SDS cycles has been shown to cause a reduction in

glycosaminoglycans content of the porcine cartilage bone matrix (Kheir et al. 2011).

To overcome the limitations arising when using the above chemicals we deemed it appropriate to

evaluate the ability of a previously described decellularization protocol (Wilshaw et  al. 2006) that

combines  a  single  cycle  of  freeze-thaw,  0.03%  SDS  in  hypotonic  buffer  for  24  h,  and  nuclease

enzymatic treatment.

The DNA removal efficiency (approximately 98% of DNA content) in this study was comparable to

that reported by Songet al. (2017)  in spite of using a single cycle of SDS at 33 times lower

concentration and without the use of Triton X-100.  The sufficient removal of cellular materials is an

important step for future clinical usage as remaining materials could act as foreign body triggering a

host immune reaction (Wilshaw et al. 2012). The approximate 20 ng mg-1 residual DNA in this study

is less than the benchmark criteria for the maximum amount (50 ng mg-1) of DNA content in

sufficiently decellularised tissues (Crapoet al. 2011).

Dental pulp ECM is described as a loose connective tissue matrix, composed of collagen fibres and

adhesive proteins which contribute towards various cellular interactions and tissue survival (Linde

1985, Goldberg and Smith 2004). In this respect, the decellularization protocol used in this study

resulted in preservation of acidic polysaccharides, fibronectin and laminin distribution with minimal

alterations in tissue structure and morphology.

Despite the reduction in irregular network fibre density, the collagen pattern distribution was

preserved. Gilbertet al. (2006) reported that collagen is resistant to ionic detergents.  Therefore the

collagen structure alteration observed is likely due to the use of vehiculating aqueous solutions during

Decellularization that could induce swelling and histoarchitectural changes (Oliveira et al. 2013).



Initial cytotoxicity assessment was evaluated using L929 mouse fibroblast cell line for reproducibility

and accuracy as mentioned by British standard (British Standard Institute 2009).In vitro cytotoxicity

assays  were  performed  to  determine  the  effect  of  chemical  residuals  in  the  decellularized  tissue  on

future cell growth and proliferation. The results indicated a non-toxic tissue, which is linked to the

low concentration of SDS and extensive vigorous washing cycles used in this protocol (Wilshaw et al.

2006).  Furthermore, the ability of the scaffold to support DPSCs growth and attachment was assessed

for future clinical translation. DPSCs were widely dispersed throughout the recellularized scaffold and

maintained their viability during the course of the experiment (2 weeks).

Conclusion

It is possible to develop a decellularized biocompatible biological scaffold containing the native ECM

structural components required for tissue-specific regeneration. This is the first study to have

successfully decellularized the entire human dental pulp, and not merely tooth slices with small

amounts  of  pulp  tissue.  This  is  a  promising  step  forward  in  providing  the  cells  with  the  correct

environment to support pulp-dentine complex regeneration.  Further assessment of scaffold cell

survival and differentiation is needed before clinical translation.
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