
This is a repository copy of Impact of Memory Frequency Scaling on User-centric
Smartphone Workloads.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/125334/

Version: Accepted Version

Proceedings Paper:
Mendis, Hashan Roshantha, Chen, Wei-Ming, Soares Indrusiak, Leandro orcid.org/0000-
0002-9938-2920 et al. (2 more authors) (2018) Impact of Memory Frequency Scaling on
User-centric Smartphone Workloads. In: Proceedings of the 33rd ACM/SIGAPP
Symposium on Applied Computing (SAC 2018).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Impact of Memory Frequency Scaling on User-centric
Smartphone Workloads

Hashan R. Mendis1, Wei-Ming Chen2, Leandro Soares Indrusiak1, Tei-Wei Kuo2, Pi-Chen Hsiu3

1Real-time Systems Group, University of York, UK
2Dept. of Computer Science and Information Engineering, National Taiwan University, Taiwan

3Research Center for Information Technology Innovation, Academia Sinica, Taiwan
hrm506@york.ac.uk, d04922006@csie.ntu.edu.tw, lsi@cs.york.ac.uk, ktw@csie.ntu.edu.tw,

pchsiu@citi.sinica.edu.tw

ABSTRACT

Improving battery life in mobile phones has become a top
concern with the increase in memory and computing require-
ments of applications with tough quality-of-service needs.
Many energy-efficient mobile solutions vary the CPU and
GPU voltage/frequency to save power consumption. How-
ever, energy-aware control over the memory bus connecting
the various on-chip subsystems has had much less interest.
This measurement-based study first analyse the CPU, GPU
and memory cost (i.e. product of utilisation and frequency)
of user-centric smartphone workloads. The impact of mem-
ory frequency scaling on power consumption and quality-
of-service is also measured. We also present a preliminary
analysis into the frequency levels selected by the different
default governors of the CPU/GPU/memory components.
We show that an interdependency exists between the CPU
and memory governors and that it may cause unnecessary
increase in power consumption, due to interference with the
CPU frequency governor. The observations made in this
measurement-based study can also reveal some design in-
sights to system designers.

1 Introduction

As smartphone applications become enriched with newer
features and smoother user-experience, their computing and
memory requirements also increase, leading to higher power
consumption. Therefore, energy-efficient personal comput-
ing without significant impact to user experience, has be-
come the top-most research concern. From a hardware per-
spective, modern smartphone system-on-chips (SoCs) can
contain multiple dedicated IPs and a heterogeneous power-
efficient multi-core mobile processor (e.g. ARM big.LITTLE
processor [1]). From a software perspective, OS driven power
saving techniques such as Dynamic voltage and frequency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

ACM SAC ’18 April 9-13, 2018, Pau, France

©2017 ACM. ISBN XXX-XXXX-XX-XXX/XX/XX. . . $xx.xx

DOI: XX.XXX/XXX X

scaling (DVFS) are commonly used, where the operating fre-
quency of compute cores is scaled based on a performance
metric such as system load.

The communication between on-chip IP components takes
place via one or more internal buses and shared main mem-
ory. Hence, the energy consumed by the memory subsystem
and bus fabric can also be significant, yet it has been given
limited attention. As smartphones are increasingly used for
media-rich, high-memory throughput applications, memory
bus related power consumption can outweigh the CPU and
GPU [4]. Therefore, several recent work have started focus-
ing on memory and bus power saving techniques (e.g. [3] [6]).

This work investigates power consumption, on-chip resource
usage characteristics and quality-of-service (QoS) related to
memory bus frequency scaling, specifically for user-centric
smartphone workloads. The overall contributions made in
this paper are as follows:

• We characterise several common smartphone macro-
workloads in terms of CPU, GPU and memory bus
usage and show how different application workloads
can result in varying resource usage.

• We investigate the effect on CPU and GPU usage by
changing the memory bus frequency.

• We analyse the interplay between CPU and memory
bus frequency scaling and give examples of how unnec-
essary energy dissipation can occur.

• From our observations, useful design suggestions are
drawn, which can help system designers to efficiently
balance power consumption and QoS.

2 Related work

2.1 Smartphone workload characterisation
In [5], it is shown that in certain micro-workloads that have
a high memory footprint, RAM power consumption can ex-
ceed CPU power by a small margin. Their subsequent work
shows the MIF (memory interface) and INT (internal) bus
power consumption can use more energy than the RAM,
CPU or GPU in idle states as well as in interactive scenar-
ios (e.g. gaming) [4]. Pandiyan and Wu [18], show that
28-40% of total mobile system power consumption can be
due to data movement across the memory hierarchy, espe-
cially in the case of applications with high cache miss rates
(e.g. HD video playback).

Initial studies by Gutierrez et al. [9], show that standard
micro-benchmarks such as SPEC2000 do not accurately re-
flect the resource usage of user-centric interactive smart-
phone applications. Gao et al. [8] observe that offloading
applications with high thread/data-level parallelism onto
GPUs or accelerators can offer better energy efficiency. The
speed of user interaction (e.g. scrolling speed on a web
browser) can also impact the amount of CPU/GPU usage
and respective memory bandwidth used by the application;
as well as cause significant fluctuations in power consump-
tion [20].

2.2 Smartphone power management

The Linux ondemand CPU frequency governor is a popu-
lar kernel-level entity that increases the clock frequency to
the maximum when the CPU load is above a pre-defined
threshold and decreases the frequency gradually when the
CPU load is below a lower threshold [17]. However, load-
dependent frequency governors often raise the frequency hi-
gher than required by the target QoS, thus wasting power
consumption [12].

Co-operative, runtime CPU and GPU frequency scaling has
been shown to reduce power consumption by 58% (at the
desired QoS level), over the default ondemand governor, for
mobile 3D games [19]. Similarly, Chen et al. [7] identify
CPU-bound and GPU-bound phases of a mobile 3D game to
set the CPU-GPU frequencies according to the game phase
and user interactivity. They are able to outperform previ-
ous work [19], for highly interactive 3D games with frequent
phase switching. The work in [19] has also been extended
to incorporate off-chip memory access time and access rate
(with a fixed memory frequency) into the performance-cost
model [11].

Decreasing the memory frequency essentially increases the
amount of time the CPU has to wait for memory fetches
and thereby increases the CPU utilisation and decreases the
GPU utilisation [19]. Therefore, there is a risk that the over-
all system power can still increase if the combined power
reduction of the GPU and memory is not sufficient to out-
weigh the power increase of the CPU. Our study aims to
investigate if this CPU-GPU-memory relationship can also
be seen for non-3D-gaming workloads.

Memory-aware DVFS has been explored by Chaudhary et
al. [6], where they use DMA and processor hardware perfor-
mance counters (HPC), to predict the required bus band-
width of the system and improve bandwidth utilisation. Na-
chiappan et al. [16] explore several greedy workload-aware
multi-component (CPU/memory/other IPs) frequency se-
lection policies that use application slack as a metric. Be-
gum et al. [3] demonstrate that relaxing the bounds on
performance-energy trade-off can lead to lower CPU/memory
frequency tuning overhead and obtaining optimal multi-co-
mponent frquencies is complex due to their interplay. In
their most recent work, runtime predictive algorithms are
used to tune the CPU and DRAM frequencies to stay be-
low an inefficiency (wasted energy) budget [2]. However,
note that unlike our study, several of the work discussed
above (e.g. [6], [3], [2]) use non-interactive workloads. Fur-
thermore, they do not investigate the interplay between the
CPU and memory bus frequency governors.

3 Problem formulation

As outlined in Section 2, the memory controller and memory
bus power consumption can be a significant contributor to
the overall system power, especially in memory-bound ap-
plications. Newer mobile chipsets and kernel drivers are now
equipped with functionality to control the memory bus fre-
quency. Even though energy-efficient CPU-GPU frequency
governing has been extensively explored, the impact of mem-
ory bus frequency scaling has not been investigated in de-
tail. Whilst work such as in [19] and [11] find memory DVFS
unattractive for saving power due to excessive CPU stalling,
recent work in [2] and [6] demonstrates the benefits of con-
trolling the memory frequency. Therefore, this study aims
to answer the following research questions:

• Does reducing the memory frequency help to reduce
the power consumption of mobile macro-workloads ?
If so, is there a performance/QoS penalty ?

• Is there a relationship between the CPU and memory
frequencies ?

4 Experimental design

4.1 Experimental platform

All measurements were conducted on a Samsung Galaxy S4
(i9500, Android 4.2.2) device with an Exynos 5410 chipset
(8-core/2-clusters: 4x1.6GHz Cortex-A15 & 4x1.2GHz Cor-
tex-A7). It has 2GB RAM (dual-channel 800 MHz LPDDR3
- 12.8 GB/s), a PowerVR SGX544 MP3 GPU (532MHz max
GPU clock) and a 1080p WQXGA display (brightness fixed
at 33%) . Dedicated image signal processors (ISP) and hard-
ware video codec IPs are also included in the SoC.

The Monsoon power monitor device [15] was used to mea-
sure total device power consumption, with a 5KHz sampling
rate. An android native program (written in C) was devel-
oped to collect periodic runtime CPU/GPU/memory per-
formance statistics at 200ms intervals. Monitoring overhead
was less than 1% of the total system load. USB-charging in-
terferes with power measurement, therefore Wifi-based an-
droid device bridge (ADB) connection was used to control
the device. Internet traffic and unnecessary background
services were disabled. The RepetiTouch application was
used to record/re-play touch events to reliably reproduce the
workload against different treatments. Runtime framerate
was captured using the dumpsys system command (periodi-
cally called only once per second), as measured by Surface-

Flinger service.

4.1.1 Measuring CPU/GPU utilisation and frequency

The ondemand [17] CPU governor is used for all primary
experiments; 17 distinct CPU frequency levels are available.
The proc/stat file system was read to calculate per core
and total CPU utilisation (i.e. busy time/total time). A
vendor-specific GPU frequency governor is enabled, which
uses the GPU utilisation to select an appropriate frequency
from 5 different levels. The runtime GPU utilisation and
frequency is read from the sysfs interface.

4.1.2 Measuring and controlling the memory bus

The Exynos 5410 chipset has two memory bus groups and
associated voltage regulators and vendor-specific drivers to

control the MIF/INT bus frequencies. The MIF bus regu-
lator controls the power to the bus connected to the main
memory interfaces. The INT bus regulator provides power
to the buses connected to the various internal IPs (e.g. signal
processors, hardware accelerators, display controller etc.).
The drivers use PPMUs (Platform Performance Monitor-
ing Units) to monitor system load/usage. The behaviour of
the default memory bus governor is similar to the conserva-
tive governor where it increases/decreases the bus frequency
based on the utilisation. The max/min frequency can be ad-
justed at runtime (Listing 1), to fix the bus frequency at a
specific level. There are 4 MIF bus frequency levels (max.
800MHz, min. 100MHz) and 11 INT bus frequency levels
(max. 800MHz, min. 50MHz) provided. A user-space in-
terface provided by the vendor, can be used to read the bus
bandwidth and utilisation as shown in Listing 1. In 2011,
Samsung introduced the above device frequency governing
functionality into the mainline Linux kernel [10].

Listing 1: Exynos5410 memory bus frequency control and
monitoring

✯ Enable ke rne l compi la t ion f l a g s :
CONFIG SAMSUNG NOCPMONITOR=y
CONFIG SAMSUNG BWMONITOR=y
✯ Enable and view bus bandwidth monitor :
echo 1 2 > / sys / dev i c e s / plat form/exynos5−

→֒ busfreq−i n t / dev f r eq /exynos5−busfreq−i n t /
→֒ bw monitor

cat / sys / ke rne l /debug/bw monitor
✯ Set MIF/INT frequency :
echo 800000 > / sys / dev i c e s / plat form/exynos5−

→֒ busfreq −[mif / i n t] / dev f req /exynos5−
→֒ busfreq −[mif / i n t] / max freq

echo 800000 > / sys / dev i c e s / plat form/exynos5−
→֒ busfreq −[mif / i n t] / dev f req /exynos5−
→֒ busfreq −[mif / i n t] / min f req

4.2 Workloads
We primarily measure user-centricmacro-workloads as shown
in Table 1, that represent popular real-world smartphone
use-cases and applications (e.g. web browsing, typing on
the instant messaging application, scrolling on newsfeed or
social media timeline etc.) [8] [20]. Several background work-
loads (e.g. ffmpeg0, music0, ftp0) are also chosen to analyse
common non-GPU/non-interactive workloads.

The CPU and GPU share the system memory bandwidth.
Therefore, we also use micro-workloads in this work (Ta-
ble 1-bottom), to primarily investigate the CPU-memory
frequency scaling interplay without interference from the
GPU or other on-chip hardware components. These micro-
workloads do not use the GPU and been designed to inde-
pendently stress the CPU/memory subsystems [13]. Note
also that the micro-workloads have different runtimes, with
micro2 and micro0 having the shortest and longest execu-
tion time respectively.

4.3 Scenarios
The macro-workloads are run at different MIF/INT bus fre-
quency levels; however, certain SoC components require a
minimumMIF/INT frequency level for stable operation (e.g.
display: MIF>200MHz, camera ISPs: MIF>=800MHz, INT
>= 600MHz). For brevity, the MIF/INT frequencies are de-
noted as a frequency pair (e.g {800MHz, 800MHz}). Each

macro-workload was tested under at least 3 distinct MIF/INT
frequency levels as well as under the default MIF/INT fre-
quency governor. In all macro-workloads, the CPU and
GPU frequency governors were set to ondemand [17] and
the vendor-specific implementation respectively.

The micro-workloads, were tested under the frequency set-
tings as shown in Table 2, to inspect the CPU frequency
scaling as the MIF/INT frequencies are changed. In rand-
MIF and randINT the MIF/INT frequencies are indepen-
dently varied (randomly selected from 800/400/200 MHz)
every 0.5 seconds and in randMem they are jointly varied.

4.4 Metrics
For the macro-workloads, we measure the power consump-
tion, the QoS (frame rate) of foreground applications and la-
tency of background applications. QoS metric such as frame
rate and latency gives us an indication of responsiveness. We
intend to analyse the impact on power, QoS and latency by
varying the MIF/INT bus frequencies.

System-level statistics such as memory bus saturation, bus
bandwidth, dynamic CPU/GPU/MIF/INT frequency level
and CPU/GPU utilisation are gathered. Memory bus sat-
uration (i.e. utilisation) and CPU/GPU utilisation is cal-
culated as the ratio of the busy clock cycles over the total
clock cycles in a sampling period. The CPU utilisation met-
ric represents the average utilisation across all CPU cores.
There exists an interdependency between the CPU/GPU
utilisation and the respective frequencies assigned by the
frequency governors. Pathania et al. [19] introduces a uni-
fied CPU/GPU cost metric (cost = frequency × utilisation),
to understand the overall work done by the CPU/GPU.
We measure and calculate the CPU and GPU cost similar
to [19], as well as the memory cost = memory util.×MIF-
freq.×INT-freq.

For the micro-workloads we measure system-level perfor-
mance metrics similar to the macro-workloads. We also
measure the mean and sum of all CPU frequencies and the
number of CPU frequency transitions, over the workload
runtime. The sampling rate of measurements was increased
(50ms interval) to improve accuracy.

5 Measurement study observations

5.1 Macro-workload resource usage
The IP-level memory bandwidth is shown in Fig.1a. CPU/GPU
related bus saturation (utilisation) spikes during browser-
scrolling interactivity (chrome0). For interactive workloads,
graphics (gfx) and display controller (disp) requires higher
average memory bus bandwidth than the CPU. In Fig.1b
we can see that the other IPs (e.g. MFC - hardware me-
dia codecs, ISP - hardware signal processors) can also sig-
nificantly contribute to the total memory bandwidth, for
applications such as video recording (camera1). Due to
space-constraints, only two macro-workloads are presented
in Fig.1. Other macro/micro workload system performance
measurements are made available online [14].

The resource usage for all macro-workloads using the default
frequency governors are shown in Fig.2. ffmpeg0, game0 and
camera1 have the highest average CPU, GPU and memory
usage respectively. The measurements indicate that non-
interactive tasks (e.g. background/idle/suspended-state tas-
ks and vlcplayer0) have lower GPU/memory usage variation.

Table 1: Experimental workloads - macro and micro

User-centric smartphone macro-benchmarks
idle0 Device in suspended state - No apps running, display off
idle1 Device in idle state - No apps running, display on
launcher0 Swipe left (7 times) on default home screens containing widgets and icons
ffmpeg0 Software decoding of 720p video, without video output using ffmpeg (7500 frames), display off
vlcplayer0 Video playback 720p/25fps (hardware decoding), 1 min
line0 LINE App. Instant messaging (normal typing speed)
line1 LINE App. Instant messaging (very slow typing followed by very fast typing speed)
line2 LINE App. Instant messaging (open photo album, select image and send to contact)
facebook0 Facebook Mobile app - Swipe up/down on timeline
facebook1 Facebook Mobile app - Open photo album, swipe left/right
camera0 Default Camera app. Tap to focus, take picture
camera1 Default Camera app. Record video 1080p/30fps 1 min
music0 Background (display off) audio playback using vlcplayer (44.1KHz, 128kbps), 1 min
ftp0 Background (display off) FTP download (20MB x 10). Rep. of downloading automatic software updates.
chrome0 Chrome mobile browser - bbc.com/news : swipe up/down
game0 3D game - Asphalt 8 car racing (game loading + 1 min gameplay)

Micro-benchmarks (multi-threaded) taken from [13]
micro0 Serial and random memory read/write tests at increasing data sizes and increasing thread counts.
micro1 Designed to read data from RAM in bursts
micro2 The android port of Dhrystone integer benchmark (each thread executing copies of the same program)
micro3 Floating point add, multiply arithmetic operations (2, 32 operations per input word size)

0 10 20 30 40

time (s)

0

5

10

15

20

25

30

35

40

45

B
u
s
 s

a
tu

ra
ti

o
n
 %

chrome0--MIF-800000:INT-800000

mfc0
mfc1

isp0
isp1

gen
fsys

gfx-mem0
gfx-mem1

cpu-mem0
cpu-mem1

disp1

Browser scrolling

(a)

0 10 20 30 40 50 60
time (s)

0

5

10

15

20

25

30

Bu
s

sa
tu

ra
tio

n
%

camera1--MIF-800000:INT-800000

mfc0
mfc1

isp0
isp1

gen
fsys

gfx-mem0
gfx-mem1

cpu-mem0
cpu-mem1

disp1

(b)

Figure 1: Example of bus saturation/utilisation profile for two application workloads (a) Web browsing (chrome0) (b) Video
recording (camera1). disp=Display Controller, gfx=Graphics, mfc=Hardware media codecs, isp=Hardware signal processors

Table 2: Micro-workload CPU, MIF/INT frequency settings
(OD:ondemand, RND: random)

Name CPU
(GHz)

MIF (MHz) INT (MHz)

default OD def. governor def. governor
fixedAll 1.4 400 160
400-600 OD 400 160
800-800 OD 800 800
randMIF OD RND(800,400,200) 160
randINT OD 800 RND(800,400,200)
randMem OD RND(800,400,200) RND(800,400,200)

Note that non-gaming activities such as instant-messaging
(line2) or web-browsing (chrome0) can have high GPU util-
isation as well. Similarly, non-gaming workloads (e.g. face-
book1 and chrome0) can have higher peak memory costs
than the 3D applications. Applications such as camera1, can
show relatively higher memory usage than CPU/GPU usage,
due to dedicated IPs generating memory traffic. Memory

utilisation patterns for the same application can also vary
depending on the use-case (e.g. facebook0 and facebook1),
due to the behaviour of the default memory governor.

At very high peak utilisation levels (e.g. chrome0 and face-
book1), memory bus contention and congestion occurs, re-
sulting in memory transactions being buffered/dropped; this
in turn can negatively impact user-experience. On certain
workloads, we observed the memory bus frequency conserva-
tively increased to the maximum, even though at that level
the peak utilisation is low (e.g. vlcplayer0). However, due
to the limited number of frequency levels, under-utilisation
is unavoidable.

5.2 Impact of memory bus frequency on re-
source utilisation

Fig.3 shows the CPU and GPU cost with respect to different
MIF/INT bus frequency levels. Overall, the general trend
is that for interactive applications (e.g. Facebook, LINE in-
stant messaging, Chrome web browsing), as the MIF/INT

0

20

40

60

80

100 idle0 idle1 launcher0 ffmpeg0 vlcplayer0 music0 camera0 camera1

0

20

40

60

80

100 line0 line1 line2 facebook0 facebook1 chrome0 ftp0 game0

cpu_util
cpu_cost

gpu_util
gpu_cost

mem_util
mem_cost

Figure 2: Macro-workload - CPU/GPU/memory utilisation and cost (MIF:default, INT:default)

bus frequency is decreased, the CPU/GPU cost is increased.
This is mainly due to CPU/GPU governors increasing their
frequency level to overcome the higher utilisation levels due
to stalling (waiting for data to arrive). In our 3D game
measurements (i.e. game0) the GPU cost does not change
significantly as the MIF frequency is decreased by half, even
though the CPU cost increases. This indicates that per-
haps certain resource management algorithms which differ-
entiate between CPU-GPU bound phases (e.g. [7]), can ex-
ploit memory frequency reduction appropriately to further
reduce power consumption. Note that certain applications
such as camera0 and camera1 have sub-IP specific minimum
MIF/INT frequency levels required to operate.

In lightweight background applications (e.g. ftp0, idle0,
idle1), a similar trend to interactive/foreground applications
is not seen. In music0, we can only see a significant CPU
cost increase only for the lowest MIF/INT frequency level.
In several workloads a sharp rise in CPU and GPU cost is
seen between MIF values 400 and 200 MHz, which indicates
that system performance is more susceptible to MIF fre-
quency changes than INT frequency changes. ffmpeg0 shows
a high CPU cost for the default case. This is mainly because
the default CPU governor stays mostly above 1GHz and in-
cidentally the MIF frequency governor fluctuates between
800MHz and 200MHz.

5.3 Impact of memory bus frequency on power
consumption and Quality-of-Service

The power consumption for each macro-workload scenario is
shown in Fig.4. The power distributions correlate well with
the CPU cost distributions (Fig.2). For example, launcher0
has a long tail power distribution because of swiping related
CPU frequency spikes. High power consumption can be due
to very high CPU usage (ffmpeg0) or combined high levels of
memory and GPU costs camera0, game0. Background/non-
interactive tasks have the lowest power consumption and
variation due to low resource usage.

As shown in Fig.5 and Fig.6, the total system power con-

de
fau
lt

80
0-8

00

80
0-7

00

80
0-6

00

80
0-2

00

40
0-4

00

40
0-5

0

20
0-2

00

20
0-5

0

10
0-5

0
0

10

20

30

40

50

60
cpu_cost

de
fau
lt

80
0-8

00

80
0-7

00

80
0-6

00

80
0-2

00

40
0-4

00

40
0-5

0

20
0-2

00

20
0-5

0

10
0-5

0
0

20

40

60

80

100
gpu_cost

idle0
idle1
launcher0
ffmpeg0

vlcplayer0
music0
camera0
camera1

line0
line1
line2
facebook0

facebook1
chrome0
ftp0
game0

Figure 3: Macro-workload - CPU/GPU/Mem. cost with
respect to MIF/INT bus frequency change

sumption and the QoS varies when the memory bus fre-
quency is changed. In these visualisations, the bar plots are
sorted and overlaid on top of each other. For example in
Fig.5, in the idle0 scenario, 800-800 has the highest nor-
malised power level and 100-50 has the lowest.

In line0, up to 40% power consumption difference between
high-low memory frequencies can be seen; indicating that
memory frequency scaling does impact power consumption.
MIF bus frequency changes cause larger power consumption
differences than INT bus frequency changes. The lowest
MIF/INT frequencies can adversely affect both the power
consumption (e.g. line0, line1 and line2) and QoS levels,
due to corresponding CPU/GPU utilisation increase.

The default memory governor can at times be conservative,
leading to unnecessarily high memory frequencies and power
consumption. For the background/non-interactive applica-
tions, up to 5% mean power reduction can be obtained with

Figure 4: Macro-workload power consumption distribution
(MIF:default, INT:default)

idl
e0

idl
e1

lau
nc

he
r0

ffm
pe

g0

vlc
pla

ye
r0

ca
mera

0

ca
mera

1

mus
ic0 lin

e0
lin

e1
lin

e2

fac
eb

oo
k0

fac
eb

oo
k1

ch
rom

e0 ftp
0

ga
me0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
is

ed
 p

ow
er

 c
on

su
m

pt
io

n

default-default
800-800

800-700
800-600

800-200
400-400

400-50
200-200

200-50
100-50

Figure 5: Macro-workload normalised mean power consump-
tion, for all tested MIF/INT frequencies. Normalised within
each scenario

minimal increase in application response-time, when using
a fixed lower memory bus frequency setting over the de-
fault governor. Similarly, foreground applications such as
vlcplayer0 and game0 showed 10-20% power reduction over
the default governor at a QoS reduction of approx. 5%. For
chrome0, the MIF/INT frequency at (400MHz, 200MHz)
has comparable power consumption to the default case, but
gave a 30% QoS improvement. These results indicate that
the relationship between memory bus frequency, power con-
sumption and QoS are not always linear.

lau
nc

he
r0

ffm
pe

g0

vlc
pla

ye
r0

ca
mera

0

ca
mera

1

mus
ic0 lin

e0
lin

e1
lin

e2

fac
eb

oo
k0

fac
eb

oo
k1

ch
rom

e0 ftp
0

ga
me0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
is

ed
 Q

oS

default-default
800-800

800-700
800-600

800-200
400-400

400-50
200-200

200-50
100-50

Figure 6: Macro-workload normalised mean QoS levels, for
all tested MIF/INT frequencies. Normalised within each
scenario

(a) (b)

Figure 7: Example illustration of CPU frequency interfer-
ence due to memory frequency scaling (x-axis denotes time)

5.4 Example of CPU and memory bus freque-
ncy governor inter-dependency

The example illustrations shown in Fig.7, are used to de-
scribe how memory frequency scaling can affect the decisions
of the CPU governor. We assume the governors are not syn-
chronised and unaware of each others decisions. Fig.7(a)
first illustrates a case where CPU frequency is increased un-
necessarily and Fig.7(b) illustrates an instance where a po-
tential CPU frequency reduction opportunity was missed.

In - Fig.7(a), the memory utilisation goes low to 30 at t = 5.0
(t denotes time). At t = 5.25, the memory governor lowers
the memory frequency to level 1, leading to a decrease in
memory cost and a rise in CPU utilisation (due to processor
stalling). At t = 5.50 the CPU governor samples the CPU
utilisation and increases the CPU frequency to address the
utilisation increase. In this situation, we assume the CPU
load does not change significantly and if the memory fre-
quency transition did not occur, the CPU frequency would
not have changed.

The second scenario - Fig.7(b) is similar to the first, ex-
cept in this instance, it is assumed that the CPU utilisation
also goes low at the same instant (t = 5.0), and if the mem-
ory frequency governor did not interfere, the CPU frequency
would have gone low to level 2 (between t = 5.5 − 7.5).
Here, the system could have saved power by dropping the
CPU frequency, but the CPU governors’ decision was again
interfered by the memory frequency transition.

5.5 Micro-workload analysis
The micro-workloads (Table 1) and treatments shown in Ta-
ble 2 were used to further explore the memory bus and CPU
frequency scaling dependency. As shown in Fig.8, micro2
has a large variation in CPU utilisation and micro0 and mi-
cro1 have the highest and largest variation in memory bus
utilisation. micro0 is mostly memory-bound, whilst the in-

0

20

40

60

80

100
micro0 micro1 micro2 micro3

cpu_util
cpu_cost

gpu_util
gpu_cost

mem_util
mem_cost

Figure 8: Micro-workload CPU/memory utilisation and cost
(fixedAll test case)

verse is true for micro3. None of the micro-workloads have
GPU load.

In the micro-workload experiment, we measure the number
of CPU frequency transitions and the sum of all frequencies
sampled, for each of the treatments (Table 2). If the metrics
significantly differ between the different test cases, then it
indicates that the MIF/INT frequency scaling has affected
the decision of the CPU frequency scaling governor.

Fig.9a shows the number of CPU frequency transitions of
the micro-workloads. We observe that depending on the
treatment, the CPU frequency transitions can vary, which
indicates that the memory frequency transitions have in-
deed interfered with the decisions of the CPU frequency
governor. In all cases, the default treatment is different to
the other treatments. For example, in micro0, where ran-
domly changing the memory frequency (i.e. rand*), resulted
in over 25-30% less CPU transitions than the default case.
Non-uniform CPU/memory utilisations can result in lower
number of CPU frequency transitions than the default treat-
ment (e.g. randMIF). In micro1, randINT produces slightly
higher CPU frequency transitions than randMIF, which in-
dicates that under certain workloads, the INT bus frequency
can affect the CPU frequency governor more than the MIF
bus frequency.

The summation of all CPU frequencies for the workload run-
time is displayed in Fig.9b. We can see that high number
of CPU frequency transitions do not necessarily result in a
higher total CPU frequency (e.g. micro0), and vice-versa.
In the case of randINT, lower number of transitions can re-
sult in higher total CPU frequency than default (in micro0
and micro3). Fixing the memory bus frequency to the high-
est level can often reduce the total CPU frequency (e.g. 800-
800 treatment). Furthermore, in all cases except micro3,
randomly scaling the MIF bus frequency (i.e. randMIF) can
result in lower total CPU frequency than the default mem-
ory frequency governor; this indicates inefficiencies with the
default frequency governor.

6 Summary of key observations and system

design suggestions
We now summarise the key observations made during the
measurement-based study and present several resource man-
agement design suggestions drawn from the observations. It
is hoped these suggestions would be beneficial for system
designers to alleviate unnecessary energy dissipation.

• Usage-scenarios and QoS targets should be integrated
to CPU frequency governor heuristics, to efficiently

micro0 micro1 micro2 micro3
0

50

100

150

200

#
 o

f C
PU

-fr
eq

 tr
an

si
tio

ns

default
400-160

800-800
randMIF

randINT
randMem

(a)

micro0 micro1 micro2 micro3
0.0

0.5

1.0

1.5

To
ta

l C
PU

-fr
eq

 (H
z)

1e9

default
400-160

800-800
randMIF

randINT
randMem

(b)

Figure 9: Micro-workload tests (a) Number of total CPU
frequency transitions (b) Summation of CPU frequency over
test runtime

balance power consumption and quality of experience.
Governors that solely focus on utilisation, can unneces-
sarily increase the frequency, even for non-performance
critical, although CPU-bound, background applications
(e.g. ffmpeg0).

• Lower memory bus frequencies can be exploited under
background applications, as well as during idle/sus-
pended states to save power consumption. Certain
foreground applications such as video playback and
photography can also benefit from lower memory bus
frequencies with minimal impact to QoS.

• Workload prediction algorithms (e.g. [19] [11]) should
also consider the memory bus traffic and resource con-
tention generated by dedicated hardware IPs (e.g. sig-
nal processing IPs). For example, certain high mem-
ory bandwidth applications can have relatively lower
CPU/GPU usage (e.g. camera recording).

• Symmetrically scaling different system-on-chip inter-
nal bus frequencies (e.g. MIF, INT) should be avoided,
as their load and performance/power-saving impact
can also be different. The ability to finely tune differ-
ent bus frequencies can also increase the bus frequency
governor’s flexibility.

• Certain foreground application QoS issues can be ad-
dressed by setting the memory frequency at the high-
est, to handle bursty memory traffic (e.g. web browser
scrolling, swiping through images). Furthermore, dy-
namic governor sampling periods (based on rate of
memory transactions), can balance accuracy and mon-
itoring overhead.

• In-depth statistical analysis of the workload and CPU/-
GPU/memory frequency governors can assist load pre-
diction heuristics. For example the impact on memory
frequency scaling on CPU frequency scaling can differ
based on the uniformity of the memory bus utilisation.

• Due to the lack of co-operation and synchronisation
between the CPU and memory bus frequency gover-
nors, the memory bus frequency transitions can in-
terfere the CPU frequency governor’s decisions (Sec-
tion 5.4). Therefore, a cooperative/holistic frequency
governing framework, which can assign an appropriate
frequency setting for all the different components/re-
sources on the SoC is required. E.g. ensure that de-

creasing memory bus frequency does not change the
CPU frequency. Such an interconnected governor sho-
uld take into account the performance/QoS require-
ments, state of computing resources and also the com-
munication subsystems (i.e. bus, memory controllers
etc.) when making a frequency selection. A unified
governor can have more control and flexibility on the
performance of the different on-chip resources to avoid
unnecessary power consumption.

7 Conclusion and future work
This work presented on-chip resource usage and power con-
sumption measurements of popular user-centric smartphone
workloads. In particular, we analysed the impact of memory
frequency scaling on power consumption and its interplay
with the CPU and GPU. We presented the CPU, GPU and
memory cost of user-centric macro-workloads under default
system settings. Our measurements indicated that under
certain application types (e.g. idle states, background appli-
cations, hardware-accelerated video playback, 3D gaming)
fixing the memory bus frequency at lower frequencies can
provide higher power savings (5-20%) with marginal QoS
degradation, compared to the default memory frequency
governor. We illustrated two cases where the memory bus
frequency governor interferes with the CPU frequency gov-
ernor, to either unnecessarily increase power consumption
or fail to save power. Micro-workloads were used to fur-
ther demonstrate the CPU frequency governor inconsisten-
cies caused by the memory frequency interference. Lastly,
we presented several system design suggestions related to
CPU/GPU/memory bus resource management drawn from
our observations. As future work, we are working towards
implementing an interconnected CPU-GPU-memory bus fre-
quency governing framework which can help further reduce
the power consumption of smartphones.

Acknowledgement
This work was funded by the HiPEAC 2016 collaboration
grant (The FP7 HiPEAC Network of Excellence)

8 References

[1] ARM. big.LITTLE technology.
https://developer.arm.com/technologies/big-little,
2013.

[2] R. Begum, M. Hempstead, G. P. Srinivasa, and
G. Challen. Algorithms for CPU and DRAM DVFS
under inefficiency constraints. In Int. Conf. on Comp.
Design (ICCS), page 161âĂŞ168, 2016.

[3] R. Begum, D. Werner, M. Hempstead, G. Prasad, and
G. Challen. Energy-performance trade-offs on
energy-constrained devices with multi-component
DVFS. In Int. Symp. on Workload Characterization
(IISWC), pages 34–43, 2015.

[4] A. Carroll and G. Heiser. The systems hacker’s guide
to the galaxy energy usage in a modern smartphone.
In Asia-Pacific Workshop on Systems (APSYS), pages
5–12, 2013.

[5] A. Carroll, G. Heiser, et al. An analysis of power
consumption in a smartphone. In USENIX, pages
1–14, 2010.

[6] N. Chaudhary, T. Pallavi, et al. Bus bandwidth
monitoring, prediction and control. In Conf. on
Advances in Comp., Comm. and Informatics
(ICACCI), pages 1152–1158, 2015.

[7] W.-M. Chen, S.-W. Cheng, P.-C. Hsiu, and T.-W.
Kuo. A user-centric CPU-GPU governing framework
for 3D games on mobile devices. In IEEE/ACM Conf.
on Computer-Aided Design (ICCAD), pages 224–231,
2015.

[8] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski,
T. Mudge, and C. J. Wu. A study of mobile device
utilization. In Symp. on Perf. Analysis of Sys. and
Software (ISPASS), pages 225–234, 2015.

[9] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch,
T. Mudge, A. Saidi, C. Emmons, and N. Paver.
Full-system analysis and characterization of interactive
smartphone applications. In Int. Symp. on Workload
Characterization (IISWC), pages 81–90, 2011.

[10] M. Ham. Introduce devfreq: generic DVFS framework
with device-specific opps.
https://lwn.net/Articles/445044/, May 2011.

[11] C. Y. Hsieh, J. G. Park, N. Dutt, and S. S. Lim.
Memory-aware cooperative CPU-GPU DVFS governor
for mobile games. In IEEE Symp. on Embedded Sys.
For Real-time Multimedia (ESTIMedia), pages 1–8,
2015.

[12] E. Le Sueur and G. Heiser. Dynamic voltage and
frequency scaling: The laws of diminishing returns. In
Int. conf. on Power aware Comp. and Sys., pages 1–5,
2010.

[13] R. Longbottom. Android benchmarks by Roy
Longbottom. http://www.roylongbottom.org.uk/
android%20benchmarks.htm, 2017.

[14] H. Mendis. System performance measurement data.
https://goo.gl/mQBrGS.

[15] Monsoon. Power monitor. https:
//www.msoon.com/LabEquipment/PowerMonitor/,
2017.

[16] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and
C. R. Das. Domain knowledge based energy
management in handhelds. In Int. Symp. on High Perf
Comp. Arch. (HPCA), pages 150–160, 2015.

[17] V. Pallipadi and A. Starikovskiy. The ondemand
governor. In Linux Symposium, pages 215–230, 2006.

[18] D. Pandiyan and C. J. Wu. Quantifying the energy
cost of data movement for emerging smart phone
workloads on mobile platforms. In Int. Symp. on
Workload Characterization (IISWC), pages 171–180,
2014.

[19] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra.
Integrated CPU-GPU power management for 3D
mobile games. In Design Automation Conf. (DAC),
pages 1–6, 2014.

[20] S. Patil, Y. Kim, K. Korgaonkar, I. Awwal, and T. S.

Rosing. Characterization of userâĂŹs behavior
variations for design of replayable mobile workloads.
In Mobile Comp, Apps., and Services Conf., pages
51–70, 2015.

