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ABSTRACT: Redox flow batteries have the potential to revolutionize our use of

intermittent sustainable energy sources such as solar and wind power by storing the
energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system,
exploiting derivatized fullerenes as both anolyte and catholyte species in a series of
battery cells, including a symmetric, single species system which alleviates the
common problem of membrane crossover. The prototype multielectron system,
utilizing molecular based charge carriers, made from inexpensive, abundant, and
sustainable materials, principally, C and Fe, demonstrates remarkable current and

energy densities and promising long-term cycling stability.

B INTRODUCTION

Redox flow batteries (RFBs) represent an exciting opportunity
to tackle the problem of energy storage, offering the potential
of large scale, affordable, and safe systems. Generally external
energy is utilized to drive the cell reaction in a thermodynami-
cally uphill direction, by generating oxidized species at the
cathode and reduced species at the anode, after which the
species are flowed into a tank and stored until the energy is
required. To release the stored energy the system is discharged
by flowing species back into the cell to react at the electrodes.
The efficiency of this process depends on several factors
including the following: the concentration of reactive species in
the solutions, the formal potential of the redox couples, the
kinetics of the electrochemical processes, and the stability of
the active species. Moreover, it is important to consider the
safety and cost of the active materials if scale-up is going to be
viable." A number of candidate materials have been proposed
and explored as redox species in recent years including
aqueous systems with all-vanadium (VRB), iron—chromium,
polysulfide—bromine redox couples.” Such systems, though
effective, generally suffer from low power- and energy-density
and, in the case of the all-vanadium system, high overall costs
due to the expensive active species.

Recently, a number of novel chemistries have been proposed
that utilize organic redox electrolytes prepared from inex-
pensive precursors. For example, in aqueous solvents
hydroxylated anthraquinones (AQDS),”* hexacyanoferrate,*
viologen and ferrocene,” and redox-active polymers® were
reported. Nonaqueous chemistries employing phenothiazine
derivates,” benzothiadiazole,® 2,5-ditert-butyl-1-methoxy-4-[2-
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methoxyethoxy]benzene as the catholyte with 9-fluorenone” or
N-methylphtalimide'® (NMP) as the anolyte have been
reported with high solubility (>0.3 M) of the redox species.
For recent reviews on chemistries for RFBs, see refs 11—13.
While these systems propose avenues to reach the Advanced
Projects Research Agency-Energy (ARPA-e) defined goal of
$100 kW h™’, none of the reported systems are able to emulate
the biggest advantage of the VRB: Usage of an electrolyte with
a single redox active molecule which remedies irreversible
capacity loss due to crossover through the membrane.

Fullerene derivatives have the capacity to accept multiple
electrons, undergo very fast and stable fullerene cage based
redox processes,'* are reasonably cheap and abundant, as a
result of Cg, being the thermodynamically most stable form of
molecular carbon, and can be made extremely soluble in
organic'® and aqueous'® solvents with appropriate modifica-
tion. It is therefore remarkable that they have never been
explored as candidates for the redox species in RFBs
previously. Fullerene derivatives decorated with suitable
electron-donating groups can form a species with at least
three oxidation states which are separated by more than 1V, so
that one molecule can serve as both anolyte and catholyte and
crossover does not chemically contaminate the electrolytes
(see Figure 1).
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Figure 1. Schematic of the all fullerene RFB setup.

B RESULTS AND DISCUSSION

Herein, we explore the unique concept of an all-fullerene-based
cell, employing an appropriately derivatized fullerene as active
species in both catholyte and anolyte as schematically
demonstrated in Figure 1. We utilize multiple metallocene
moieties appended to the fullerene cage as the catholyte
species, while exploiting the inherent, reversible redox
processes of the fullerene moiety as the anode-active species.
A series of functionalized fullerenes were synthesized
containing a number of appended ferrocene units ranging
from 1 to 4, 1—4, Figure 2 (see Supporting Information (SI)
for full experimental details).

4, 0,

Ix

Figure 2. Functionalized fullerene derivatives 1—4 (n = 1—4).

The fullerene derivatives were observed to be soluble in a
variety of solvents and exhibited remarkably high solubility in
ortho-dichlorobenzene (O-DCB) (cf. solubility of 4 in O-DCB
=300 + 22 mg/mL) with a general trend of higher solubility
upon addition of more ferrocene moieties (see SI). The redox
properties of 1—4 were investigated using cyclic voltammetry
in O-DCB with NBu,BF, as the supporting electrolyte. All
potentials are reported versus Ag"/AgNOj;. Figure 3a shows
two consecutive one-electron waves associated with reduction
and oxidation of the Cgy-cage of 1 at low potentials, U5 =
—0.97 V and U§®? = —1.36 V, and the redox wave for the
attached ferrocene at U = 0.34 V. This indicates that a single
molecule, 1, transfers two electrons at a potential suitable for
an anolyte, and one electron at significantly higher potential. In
a battery, potential differences of AU' = 1.31 V and AU* =
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Figure 3. Cyclic voltammograms of (a) 1 and (b) 2, 3, and 4 in O-
DCB with 0.1 M NBu,BF, as supporting electrolyte.

1.70 V could therefore be established. Employing sampled
current voltammetry (SCV) we determined a rate constant for
the Fc/Fc* redox reaction of at least ky™ = 0.397 cm s™' and a
transfer coefficient of @ = 0.60 (see Figure S7). This is similar
to values of k5 = 1.02 + 0.009 cm s~ and a = 0.60 + 0.05
determined for freely diffusing ferrocene/ferrocenium in
acetonitrile by SCV on microelectrodes.'” The kinetics
observed are orders of magnitude higher than that for other
redox couples employed in RFBs (e.g,, VO**/VO,": ky = 107
cm s_l).18

The standard potentials of the Cg4, reductions are given in
Table S2 and shown in Figure S6. As expected, due to the
saturation of double bonds on the molecule, the potentials for
the Cq, reductions shift to more negative values for higher Fc
adducts.”” Good cycling stability was demonstrated for 4,
which showed no change in its electrochemical response when
cycled 100 times (see Figure S7). Initial battery studies were
performed in a stationary cell optimized for small volumes of
electrolyte. Two carbon felt electrodes were soaked in anolyte
and catholyte solution respectively and separated by a glass
fiber separator. Absorption experiments established that the
absorption of fullerene—ferrocene derivatives on the carbon
felt is negligible (see Table S6). Preliminary tests were
performed to confirm that capacitive processes do not
contribute to the measured capacity of fullerene-based cells
(Figure S10). A cell with 4 mM ferrocene as the catholyte and
2 mM indene-Cg, bis-adduct (ICBA), a commercially available
fullerene, as the anolyte showed a negligible discharge capacity
(Figure S10), indicating that free Fc is not a suitable catholyte,
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despite its application as a redox-shuttle in mediated RFBs.*
This might be due to crossover of the comparatively small Fc
molecule through the separator. The fullerene cage of the
molecule in the anolyte, ICBA, exhibited redox waves like the
Ceo/Cso~ and Cgy~/Cgo>~ waves of 1 (compare Figure S9 and
Figure 3a).

Four cells were constructed using O-DCB and 0.1 M
NBu,BF, to test different fullerene-based cell chemistries.
Figure 4a shows a cell utilizing the Fc/Fc* redox reactions of 2
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Figure 4. Charge and discharge curves for (a) 2/ICBA and (b) 4/
ICBA in O-DCB with 0.1 M NBu,BF,. Capacity retention plots as (c)
discharge capacity versus cycle number and (d) normalized capacity
for the investigated systems.
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as the catholyte and the Cg4 redox reactions of ICBA as the
anolyte. This is referred to as the 2/ICBA cell and, with 1 mM
of two-electron-transferring molecules 2 and ICBA, has a
theoretical capacity, Q™, of 0.038 mA h. This value is almost
reached in discharge cycles 1S at a current of 0.5 mA. The
difference in charging voltage to discharge voltage is high,
implying a low voltage efficiency for the 2/ICBA cell in O-
DCB. However, the average voltage locations match with the
potential positions for the redox reactions shown in Figure 3a,
indicating that Plateau I stems from the peaks constituting
AU' = 1.31 V, and Plateau II from those that make up AU? =
1.70 V. The simple glass fiber separator prevents instantaneous
crossover and is therefore an easy and inexpensive solution,
working solely on size exclusion which is especially suitable for
symmetric systems like 2/2. 100 cycles of charge and discharge
were investigated for 1 mM solutions of the more highly
derivatized fullerene molecules 3 and 4 versus an appropriate
concentration of ICBA to balance the charge of the
functionalized Cgp. These cells are labeled 3/ICBA (Figure
S11) and 4/ICBA respectively, with the curves for the latter
shown in Figure 4b. One more cell, 2/2, with 2 as both as the
anolyte and catholyte showcases the concept of a symmetric
REB chemistry with fullerene derivatives (Figure S12). This
symmetric chemistry has the advantage that any crossover of
redox species through the separator does not lead to a
chemical contamination. Rebalancing can be achieved either by
mixizrég the anolyte and catholyte’ or an added electrolysis
cell.

Charge and discharge cycles for the symmetric 2/2 cell and
the unsymmetrical 3/ICBA and 4/ICBA cells are shown in
Figure 4c. All three systems look similar, with the charge
transferred increasing from 2 to 4. This is expected, as the
concentrations of 2—4 were kept constant at 1 mM; therefore,
additional Fc groups in molecules with higher degrees of
functionalization lead to increased capacity, shown in Figure
4c. Interestingly, the capacity decay for samples 3 and 4 seems
to be faster than that for 2, as shown in Figure 4d which gives
the discharge capacity normalized to the charge of the first
discharge cycle. There are three explanations for the capacity
loss. First, the electrolyte soaks into the dry separator, leading
to a loss in active species within the electrode. Second,
permeation of anolyte into the catholyte half-cell and vice
versa. Third, decomposition of the redox molecules.
Importantly, the shapes of all curves do not change over 100
cycles, and HPLC and mass spectrometry of the solutions after
100 cycles confirm that the molecules remain intact. However,
an additional, unknown species is also observed to be formed
which requires further investigations; see SI for full details.
Most likely, all three mechanisms play a role. We hypothesize
that soaking of the separator leads to the initial capacity loss in
the first few cycles, as the fade is similar for all three cells
(Figure 4d). Subsequent loss could be due to crossover and
decomposition. As crossover is less of an issue for the 2/2 cell,
its higher capacity retention than 3/ICBA and 4/ICBA can be
rationalized.

While the three-electrode measurements and also the
charge—discharge behavior look promising, the low voltage
efficiency shown in Figure 4 is a problem. The cell voltage U
depends on the current I:'

U(I) = AU & IRey + I-Rpyg # IRy B

with potential difference between the two half-cells, AU;
charge transfer resistance for all redox processes, Rcp; mass
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transport resistance, Ry and the sum of all ohmic losses, R .
The plus sign is applicable for the charging process, and the
minus sign, for the discharge. Because Rcr is inversely
proportional to k, and therefore small, and Rpg is small
because in our stationary cell all electrolyte is within the
porous electrode, the overvoltage must stem from Ropy,. Ropm
comprises the resistance of the electrolyte and of the separator.
This can be understood because in this configuration the bulky
tetrabutylammonium cation is required to cross the separator
to balance the charge. Electrochemical impedance spectrosco-
py (ESI) measurements showed a significantly lower Rqy,, for
DMF with 0.1 M LiCl (7 Q) in the stationary cell than for O-
DCB with 0.1 M NBu,BF, (211 Q) or 1.0 M NBu,BF, (42 Q)
as shown in Figure S15. Thus, cells with DMF as solvent and
0.1 M LiCl as electrolyte were tested. To avoid the
contribution of water and oxygen, the cell assembly process
and the preparation of the electrolytes were performed in a
glovebox and an airtight cell was used.

The 4/ICBA cell in DMF with 0.1 M LiCl was cycled 100
times at 1 mA revealing a current 10 times higher than that for
a similar cell in O-DCB (Figure S13b). However, in DMF the
shapes of the charge—discharge curves do not remain stable. As
can be seen in Figure S13a, the higher discharge plateau
gradually vanishes, and the lower plateau is then providing the
capacity. These findings are supported by post-mortem HPLC
and mass spectroscopy studies that found ICBA, but only
traces of 4 after 100 cycles. The exact decomposition
mechanism of 4 is unclear and requires further investigation.
It is unlikely to be due to the retro-Prato reaction,” as we do
not observe formation of lower Fc adducts or unfunctionalized
fullerene. Interestingly the capacity of cell 4/ICBA remains
relatively stable throughout (Figure S13b).

The cell chemistry shown in Figure S13 is able to produce a
discharge current of 10 mA at a concentration of 1 mM. The
electrode material was a GFD felt with surface area 1 cm* and
thickness 4.6 mm. This shows that fullerene-based chemistry
could enable high power RFBs. Current VRBs exhibit a current
density of 0.07 A cm™2.>* Using the measured concentration of
4 (0.12 M), and assuming that the current scales with
concentration, a current density of 1.2 A cm™ could be drawn
from such a cell. Figure S14 shows the rate capability of the 4/
ICBA cell. A comparison of how this and other metrics relate
to other reported RFB chemistries is shown in Table 1.

Being composed entirely of abundant, sustainable elements,
our electrolyte system should face minimal resistance to scale-
up, and thus we estimate bulk chemical costs of $15 and $11
kW h™! for the 4/ICBA and 2/2 electrolytes respectively based
on raw materials.” These costs can be compared directly with
reported values of $7—21 kW h™! for bromine and AQDS
systems and $83 kW h™! for vanadium flow batteries (see SI
for information on cost calculations).” However, clearly such
approximations do not give the full picture and costs such as
the supporting electrolyte, which are currently unworkably
high (cf. NBu,BE, costs ~$12 500 kW h™") and need to be
reduced, by using either cheaper salts or conductive solvents
such as ionic liquid, for nonaqueous RFB systems to be
competitive.”” In summary, we have made a series of highly
soluble redox active fullerene—ferrocene derivatives and fully
characterized their electrochemical behavior revealing multiple
fast and reversible redox processes. We have explored their
potential as multiple charge shuttles for redox flow batteries in
two electrolytes. In O-DCB with 0.1 M NBu,BF, we have
observed high solubility (exceptionally high for fullerene
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Table 1. Performance Metrics of the Presented Chemistries
and Literature Studies

Current density per  Energy density per

Solvent/ OCV concn concn
Cell® electrolyte (V) (mA cm™2 mol ™) (W h mol™! L)
4/ICBA O-DCB/ 1.49 500 80
0.1 M
NBu,BF,
2/2 O-DCB/ 1.64 500 44
0.1 M
NBu,BF,
4/ICBA DME/ 1.49 10 000 80
0.1 M
LiCl
VRB* Water/2 M 126 44 17
H,SO,
AQDS/Br’  Water/IM  0.81 500 22
H,SO,
TEMPO/ Water/1 M 1.1 267 15
VIOL® NaCl
NMP/ DME/1 M 2.3 167 31
benzene LiTESI
deriv.’

“See the SI for an explanation of the values and the performed
calculations.

derivatives), increasing capacity with increasing number of
ferrocene adducts and charge—discharge curves that do not
alter their shape over 100 cycles. However, the conductivity of
the solvent and supporting electrolyte was low, limiting the
charging current to 0.1 mA. We have also demonstrated a
symmetric cell, utilizing 2 as anolyte and catholyte. As
crossover is less detrimental in a symmetric cell than in an
asymmetric cell, this configuration can potentially enable a
membrane-free design.”® A membrane-free design eliminates
the ohmic loss of the membrane, and therefore higher current
densities than with a separator could be achieved.

In DMF with 0.1 M LiC], the stability of the Fc-modified
fullerenes seems to be limited. During 100 charge and
discharge cycles, the shape of the curves changed significantly.
Also, post-mortem analysis could detect mostly the ICBA, but
only traces of Fc-functionalized fullerene. On the other hand,
high current rates up to 10 mA gave reasonable efficiencies. We
can exclude that the Fc-functionalized fullerenes simply
decompose and the Fc is active in solution, as cells with 4
mM Fc in DMF and 0.1 M LiCl showed a negligible discharge
capacity (Figure S10).

B CONCLUSION

The current system demonstrates a novel concept in terms of
redox electrochemistry for RFBs. Two electrolyte systems were
investigated both exhibiting some limitations: stability in DMF
and rate performance in O-DCB. However, intrinsically both
the Fc/Fc" and the C4, redox reactions are facile; the
molecules consist only of the cheapest, most abundant
elements, i.e. C, N, Fe, and functionalization methods have
been developed to enhance fullerene solubility. Therefore, with
further work, fullerene-based cells have the potential to
revolutionize RFBs by simultaneously increasing the current
and energy densities while enabling affordable and sustainable
scale up.
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