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Abstract 

The alkali metal trihalides MX3 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) are 

systematically studied using coupled-cluster methods. Benchmarks using CCSD(T) against diatomic 

experimental results suggest satisfactory performance for the weighted core-valence basis sets (new 

basis sets for K, Rb, and Cs) selected for predicting reliable structures and harmonic vibrational 

frequencies. An isomer search using the B3LYP functional yields a planar, yet asymmetric T-shaped 

Cs structure as the global minimum for all MX3 species. Much higher level CCSD(T) computations 

show a moderate to strong distortion of the X3¯ anion by the M+ cation in the respective equilibrium 

geometries. Most obviously, for LiCl3 the two Cl-Cl distances are separated by 0.786 Å. Even for 

CsI3, the structure least distorted from the M+X3¯ model, the two I-I distances differ by 0.243 Å. It 

does not take much energy to distort the parent anions along an antisymmetric stretch, so this is no 

surprise. The normal modes of vibration of the MX3 molecules are in better agreement with matrix 

isolation experiments than previous calculations. And these normal modes are revealing -- instead of 

the well-established antisymmetric and symmetric stretches of the “free” X3¯ anions, relatively 

localized and mutually-perturbed X-X and M-X stretches are calculated. The suggestion emerges 

that the MX3 system may be alternatively described as an MX-X2 complex, rather than the M+X3¯ 

ion pair. This perspective is supported by bonding analyses showing low electron densities at the 

bond critical points and natural bond orders between the MX and X2 moieties. The thermochemistry 

of fragmentations of MX3 to MX + X2 vs. M+ + X3¯ also supports the alternative viewpoint of the 

bonding in this class of molecules. 

 

  

Page 2 of 47

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



3 
 

Introduction 

There are only limited reports on the fundamental properties of alkali metal trihalides, MX3 (M 

= Li, Na, K, Rb, Cs and X = F, Cl, Br, I). Among these, the four experimental papers by Ault, 

Andrews, and coworkers, of these halides in a noble gas matrix at low temperatures are particularly 

important.1-4  

Previous theoretical studies of MX3 virtually all focused on the X3¯ properties and assumed the 

validity of an M+X3¯ ion pair model (M = Li, Na, K, Rb, and Cs).1-4 The X3¯ anions have been 

considered as more or less “isolated”, but perturbed by the M+ cations. A recent theoretical study of 

the isolated halogen clusters X3¯ by Dixon and coworkers5 is relevant to this situation. Early in the 

course of the present research we realized that Dixon’s computed harmonic vibrational frequencies 

(X-X-X symmetric and antisymmetric stretches) for the “free” Cl3¯ do not show satisfactory 

agreement with the IR/Raman frequencies of MCl3 (M = Li, Na, K, Rb, and Cs) from the argon 

matrix experiments performed by Ault and Andrews.3 Specifically, we note significant differences 

(up to 114 cm-1, ~30%) between the theoretical X3¯ and experimental MX3 vibrational frequencies. It 

is thus uncertain if quantitative comparisons can be made between MX3 and X3¯. This leads to the 

question: is the perturbation due to an alkali cation strong enough to substantially change the 

electronic structures of the X3¯ and lead to significant modifications of these anions, in terms of 

structures, vibrational frequencies, and bonding?  

The structures and frequencies of some MX3 species in the solid state are known,6, 7 providing 

indications that the X3¯ moiety could be substantially altered by the presence of M+. Instead of the 

well-established symmetric and antisymmetric stretches3, 5 for the “free” X3¯ anions, new modes with 

significant metal displacements may be involved in the MX3 vibrations. Moreover, large red-shifts (7 
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– 11%, about 20 – 60 cm-1, see Table S1 in the SI) from gas phase to argon matrices are highlighted 

by Jacox8 for the ground state vibrational fundamentals of diatomic alkali metal halides (MX, M = Li, 

Na, K, Rb, Cs and X = F, Cl, Br, I). Similar red-shifts can be also observed for the small MCl species 

involved in the experimental Ault and Andrews study of MCl3 in argon (see Table S1 in SI).3 If such 

red-shifts carry over to the MX3 species, it would impose challenges to achieving good agreement for 

the vibrational frequencies between gas-phase theoretical computations5 and the argon matrix 

experiments.1-4 And the solid state compounds are bound to differ as well. 

The solid state and noble gas matrix perturbations we just mentioned are indicative of a more 

general truth: Even if we limit ourselves to an MX3 stoichiometry, with M an alkali metal, the 

richness of experimental chemistry provides us with a good number of realizations of this formula. 

These include M+ and X3¯ noninteracting in the gas phase, MX3 molecules in a collisionless 

molecular beam, MX3 in a noble gas matrix, in solvents of varying polarity, in solids, at surfaces and 

interfaces. This is hardly an exhaustive list of chemical and physical settings. Each situation will 

have a different (slightly, significantly) vibrational spectrum for MX3. And an associated temperature. 

The studies we present here are, strictly speaking, for isolated MX3 molecules, at T!0 K. 

For the purpose of comparison, let us review the studies of “free” trihalide anions (X3¯, X = F, Cl, 

Br, and I). These have been widely explored by both experiment and theory, in the gas phase,9, 10 

solution,11, 12 and solid state.13, 14 Those species have been well characterized by IR and Raman 

spectra,3, 6, 15-17 and some gas phase thermochemistry of the X3¯ species has been reported.9, 10, 18, 19 In 

regard to previous theoretical research, a significant focus has been the interpretation of X3¯ 

electronic structure and bonding. Basically, all X3¯ species have been described as either (1) a 

4-electron 3-center (4e-3c)20-24 hypervalent bonding system using the Rundle–Pimentel model,25, 26 
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or (2) a donor-acceptor interacting system between two closed-shell fragments X2 and X¯, (bonding 

types I and II in Scheme 1). Insights from molecular orbital (MO) theory are particular relevant in 

this regard.20, 21 Hiberty and coworkers22, 23 employed valence-bond theory to propose another 

three-electron bonding type (bonding type III in Scheme 1) as an important contributor to the 

electronic structure of F3¯. This special bonding character of F3¯ has been used to discuss its 

exceptional multireference27 and symmetry-breaking28 challenges, as well as its peculiar preference 

of the energetically disfavored dissociation channel into F2¯ and F• at high collision energies.18  

 

 
Scheme 1. General bonding types proposed for the 4-electron 3-center hypervalent X3¯ (bonding 
types I and II for Cl3¯, Br3¯, and I3¯; types I, II, and III for F3¯) systems.  

 

Direct theoretical studies of MX3 species have been generally limited to the fluoride 

systems.29-31 The structures, vibrational frequencies, and dissociation energies of MF3 (M = Na, K, 

Rb, and Cs) were systematically studied by Tozer and Sosa29 as early as 1997 using Hartree-Fock, 

MP2, QCISD, BLYP, and B3LYP methods. The results were found to be heavily dependent on the 

identity of the metals, as well as the theoretical methods applied. The method-dependence emerged 

in locating the true minima and corresponding vibrational frequencies, with only the B3LYP 

functional predicting the metal-dependent minima (Na: Cs isomer; K, Rb, and Cs: C2v isomer, see 

Figure 1) inferred from the IR/Raman spectra by Andrews and coworkers.32, 33 The C2v isomers for 

KF3 and CsF3 were more recently (2015) studied using CCSD(T)/def2-TZVPP computations by 

Riedel and coworkers.31 The MF3 (M = Li, Na, and K) species were also studied in 2015 using the 

CCSD(T)/6-311+G(3df) method by Getmanskii et al.30  
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Minima for all three isomers sketched in Figure 1 were located for all three fluoride species, 

except that the asymmetric T-shaped minimum was not found for KF3. The global minima for LiF3 

and NaF3 were found to be the asymmetric and symmetric T-shaped structures, respectively. 

However, a tiny 0.16 kcal mol-1 (ZPVE corrected) energy difference between the two T-shaped NaF3 

structures introduces additional uncertainties. The general preference of the C2v global minimum for 

MF3 could originate from the special electronic structure of F3¯ discussed above (see Scheme 1). 

Since the heavier X3¯ anions do not possess this unique F3¯ electronic structure, it is unclear if such 

structural preferences also occur for other alkali metal trihalides, MX3 (X = Cl, Br, and I).  

 

 

Figure 1. Structures of MF3 (M = Li, Na, K, Rb, and Cs) reported in the literature.29-31  

 

There are limited theoretical and experimental results for the heavier halides MX3 (X = Cl, Br, 

and I), and it would be beneficial to probe the latter species with rigorous computations. The present 

study does this, and aims to offer some answers to the following questions:  

(1) Why is the agreement between theoretical5 X3¯ and experimental3 MX3 vibrational 

frequencies relatively unsatisfactory?  

(2) Could the metal-dependent global minima found29, 30 for MF3 also occur for MCl3, MBr3, and 
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MI3?  

(3) What are the differences between X3¯ and MX3 in terms of structures, vibrational modes and 

frequencies, bonding characters, and thermochemistry?  

(4) Finally, the title question, not anticipated, but one that arose quite naturally as we progressed: 

should the alkali metal trihalides be described as ion pairs between M+ and X3¯ or as complexes 

between MX and X2?  

 

Theoretical Methods 

An isomer search for the MX3 global minima was conducted by optimizing various prospective 

structures using the B3LYP3 functional34-36 implemented in MOLPRO 2010.1.37, 38 This particular 

version of the B3LYP functional utilizes the standard VWN3 local correlation energy parameters.34 

For these computations, the SCF energies and densities were both converged to 10-10, and the RMS 

force was converged to 10-8 Hartree Bohr-1. Stationary points obtained from these optimizations were 

classified by their harmonic vibrational frequencies, obtained via finite differences of analytic energy 

gradients. The following standard correlation consistent valence basis sets (AVTZ for simplicity) 

were used in the DFT computations:  

Li, Na: cc-pVTZ39  

K, Rb, Cs: cc-pVTZ-PP40 

Cl: aug-cc-pVTZ41 

Br, I: aug-cc-pVTZ-PP42 

The equilibrium geometries, harmonic vibrational frequencies, and dissociation energies (D0) of 

MX3 global minima were subsequently obtained (with new and different core-correlated basis sets) 
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using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)],43-46 

as implemented in CFOUR 2.0.47, 48 The restricted Hartree-Fock (RHF) method was used throughout, 

as all the species of interest are closed-shell. For all CCSD(T) computations, the SCF densities, CC 

amplitudes, and Lambda coefficients are converged to 10-10. The RMS force of the geometries was 

converged to 10-8 Hartree Bohr-1. The gradients were obtained via analytic first derivatives of the 

CCSD(T) energy, and the frequencies were obtained by finite differences of these gradients. Listed 

below is a new group of weighted core-valence basis sets (AWCVTZ for simplicity) that was used 

for the CCSD(T) computations:  

Li, Na: cc-pwCVTZ39 

K, Rb, Cs: cc-pwCVTZ-PP40 

Cl: aug-cc-pwCVTZ41, 49 

Br, I: aug-cc-pwCVTZ-PP50, 51 

These are correlation consistent (cc), polarized (p), weighted core-valence (wCV), triple-zeta 

(TZ) basis sets. Each halogen atom (Cl, Br, I) basis set is augmented with additional diffuse basis 

functions to describe potential anionic character. All electrons of the Li, Na, and Cl atoms were 

correlated in the CCSD(T) computations. For K, Rb, Cs, Br, and I, deep inner electrons were treated 

by effective core potentials (described below). This method was chosen because the traditional 

frozen-core approximation yielded several errors in the optimized structures and harmonic 

vibrational frequencies for certain species (e.g. KCl3). These issues appear to stem from systems 

having correlated and uncorrelated molecular orbitals with nearly degenerate energies. Further 

wavefunction diagnostics provided in the SI demonstrate that our chosen single-reference CCSD(T) 

methods should be reliable. All energy and property computations were performed using the 
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CCSD(T)/AWCVTZ structures.  

For both the B3LYP and CCSD(T) computations, we employ the multi-electron fit, fully 

relativistic Köln/Stuttgart effective core-potentials (ECPs) to model the inner core electrons of the 

atoms below the 3rd-row [ECP10MDF (K and Br): 10 electrons (1s
22s

22p
6); ECP28MDF (Rb and I): 

28 electrons (1s
22s

22p
63s

23p
63d

10); and ECP46MDF (Cs): 46 electrons 

(1s
22s

22p
63s

23p
64s

23d
104p

64d
10)].52 For the atoms treated by an ECP, the corresponding -PP basis 

sets are used. Since the cc-pVTZ-PP and cc-pwCVTZ-PP basis sets for K, Rb, and Cs are not yet 

available in the literature, we have provided them in the Supporting Information (SI). These basis 

sets are specifically matched to the ECPs mentioned above and have the following number of 

primitives and contracted functions at the cc-pVTZ-PP level: K, (11s10p6d1f)/[5s4p3d1f]; Rb, 

(11s9p5d1f)/[5s4p3d1f]; Cs, (11s9p6d4f)/[5s4p3d2f]. In all cases linear dependency issues were 

avoided by constraining the optimizations such that the ratio between successive functions in a given 

angular symmetry was greater than or equal to 1.6. The problem of correlating functions in 

ECP-based calculations recovering less correlation energy than in all-electron calculations53, 54 was 

circumvented by uncontracting an extra s-type correlating function, as in previous work.54, 55 The 

cc-pwCVTZ-PP basis sets for these elements add 2s2p2d1f sets of functions that have been 

optimized using the well-established strategy for weighted core-valence basis sets.49 To keep 

discussions throughout the main text succinct, we will refer to the mixture of these basis sets for the 

B3LYP and CCSD(T) simply as AVTZ and AWCVTZ, respectively.  

A bonding analysis of the optimized MX3 species was performed using Weinhold natural bond 

orbital (NBO) theory56 and the Bader quantum theory of atoms-in-molecules (QTAIM).57 

Intermolecular hyperconjugation was quantified with the second-order energy for delocalizing 
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electrons from a donor orbital (L) to an acceptor orbital (NL):58 

 

!"2$ = &'
("), +)$,

-.' − -'
 

 

where ("),+)$ is the NBO Fock matrix element, and qL and ɛL are the occupancy and energy of 

orbital L, respectively. Resonance structures from natural resonance theory (NRT)59-61 were obtained 

to characterize the overall electronic structure, and types of bonding types in MX3. We expand this 

picture by discussing the covalent and ionic contributions to the natural bond order. QTAIM was 

used to locate the bond critical points to assess the electron density occurring between each atom. 

The above described NBO (HF/AWCVTZ) and QTAIM (B3LYP/AVTZ) analyses were performed 

using NBO 6.058 and AIMAll 16.01.09.62  

 

 

 

 

 

 

 

 

 

 

 

Page 10 of 47

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



11 
 

Results and Discussion 

A systematic study of MX3 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) was performed using 

density functional and coupled-cluster methods. In view of possible metal-dependence indicated by 

theoretical studies of MF3 (M = Li, Na, K, Rb, and Cs),29-31 several structures were considered 

(Figure 2) using the B3LYP functional to locate possible local minima. This was then followed by 

high-level coupled-cluster computations [CCSD(T) with the weighted core-valence basis sets, see 

Methods]. The equilibrium geometries (Table 2 and Figure 3), vibrational modes and frequencies 

(Tables 3-6 and Figure 5), bond analysis (Tables 7-8), thermochemistry (Table 9), and other relevant 

results for each species considered are reported and discussed.  

 

Performance of the New Weighted Core-Valence Basis Sets 

We wish to assess the uncertainty of the computed geometries and vibrational frequencies for the 

MX3 species. In addition, the weighted core-valence basis sets for the alkali metals (K, Rb, and Cs, 

see Methods and SI) are newly developed, and no assessment of their accuracy is currently available. 

Since there is little experimental information on the MX3 species, the relevant diatomic species MX 

and X2 (M = Li, Na, K, Rb, Cs and X = Cl, Br, I) are selected as a test set. Within the NIST 

database,63 there are well-established gas phase experimental values for the equilibrium bond 

distances and harmonic vibrational frequencies of MX and X2. Within this test set, 15 ionic and 3 

covalent bonds are included, and we benchmark our chosen theoretical methods against the 

experimental values of these species in Table 1.  
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TABLE 1. Benchmark of the CCSD(T)/AWCVTZ equilibrium bond lengths (in Å) and harmonic 
vibrational frequencies (in cm-1) of MX and X2 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) 
molecules against experimental values from the NIST tables. 

 Equilibrium Bond Lengths  Harmonic Vibrational Frequencies  

Species Computed NIST Deviation  
Percent 

Error 
Computed NIST 

Percent 

Error 

LiCl 2.029 2.021 0.008 0.4% 635 643 -1.2% 

NaCl 2.373 2.361 0.013 0.6% 359 366 -1.9% 

KCl 2.683 2.667 0.017 0.6% 276 281 -1.8% 

RbCl 2.805 2.787 0.019 0.7% 231 228 1.3% 

CsCl 2.939 2.906 0.033 1.1% 210 214 -1.9% 

LiBr 2.180 2.170 0.009 0.4% 553 563 -1.8% 

NaBr 2.517 2.502 0.015 0.6% 293 302 -3.0% 

KBr 2.838 2.821 0.018 0.6% 216 213 1.4% 

RbBr 2.964 2.945 0.020 0.7% 167 169 -1.2% 

CsBr 3.104 3.072 0.032 1.0% 147 150 -2.0% 

LiI 2.400 2.392 0.008 0.3% 493 498 -1.0% 

NaI 2.729 2.711 0.018 0.7% 254 258 -1.6% 

KI 3.066 3.048 0.019 0.6% 184 187 -1.6% 

RbI 3.199 3.177 0.023 0.7% 136 139 -2.2% 

CsI 3.348 3.315 0.033 1.0% 117 119 -1.7% 

Cl2 2.003 1.987 0.016 0.8% 548 560 -2.1% 

Br2 2.295 2.281 0.014 0.6% 319 325 -1.8% 

I2 2.673 2.666 0.007  0.3% 217 215 0.9% 

  Mean: 0.018 0.7%  Mean: 1.7% 
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For the equilibrium bond length, the overall mean absolute error (MAE) and mean absolute 

percent error (MAPE) was found to be 0.018 Å and 0.7%, respectively. For each of the three metal 

halides series (MCl, MBr, and MI), the theoretical bond lengths are all slightly longer than the 

experimental values, with an increasing trend from LiX to CsX. The largest differences between 

theory and experiment occur for CsX, with percent errors being 1.1%, 1.0%, and 1.0% for CsCl, 

CsBr, and CsI, respectively. For the X2 (X = Cl, Br, and I), a decreasing trend in positive deviations 

(Cl2: 0.8%, Br2: 0.6%, and I2: 0.3%) can be noticed.  

For the harmonic vibrational frequencies, the overall MAPE was found to be 1.7%. From Table 

1, most deviations are negative and within 2.0%. However, RbCl, KBr, and I2 are exceptions with 

positive deviations, and NaBr is the species with the highest deviation beyond 2.0% (-3.0%). No 

obvious trend in percent errors can be found for the MCl and MBr series, however, the MI series 

shows an increasing trend from LiI to RbI, with an exception that the percent error for CsI drops 

below RbI. Consistent with the situation for bond lengths, the percent errors of the X2 species 

decrease from Cl2 to I2 (Cl2: -2.1%, Br2: -1.8%, and I2: 0.9%).  

In summary, the CCSD(T) method with the selected weighted core-valence basis sets predicts 

reliable structures and harmonic frequencies for the relevant diatomic species MX and X2 (M = Li, 

Na, K, Rb, Cs and X = Cl, Br, I). Accordingly, the accuracy of our computed equilibrium bond 

lengths and harmonic vibrational frequencies of alkali metal trihalides MX3 should be satisfactory 

for assessing the experimental conclusions of Ault, Andrews, and coworkers.3  
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Possible MX3 Structures 

Previous theoretical 29-31 and experimental studies32, 33 have noticed that the identity of the metal 

(M) in the metal fluoride systems MF3 (M = Li, Na, K, Rb, and Cs) dictates the structure of the 

global minimum. To investigate whether a similar metal-dependence exists for MX3 (M = Li, Na, K, 

Rb, Cs and X = Cl, Br, I) species, several structures were first considered using the B3LYP/AVTZ 

method. The B3LYP functional was selected due to its reliable performance in the theoretical 

fluoride study of Tozer and Sosa29 in reproducing Ault and Andrews’s MF3 experimental results.32, 33 

The isomers explored for the MX3 (M = Li, Na, K and X = Cl, Br, I) are shown in Figure 2. The first 

three structures (also shown in Figure 1) were chosen because they have been previously identified 

as minimum-energy structures on the MF3 potential energy surface.29-31 Five additional structures (4 

– 8 in Figure 2) were selected as they represent alternate symmetries, which are constrained during 

optimization. Also the coplanarity of all four atoms implicit in structure 1 and 2 was relaxed, 

effectively allowing 1 to be C1 and 2 Cs in symmetry. 

 

 

 

Figure 2. Possible stationary point structures explored for the MX3 (M = Li, Na, K and X = Cl, Br, I) 
systems using B3LYP/AVTZ method.  
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In contrast to the structural variations noticed in the case of the fluoride species MF3,
29, 30 results 

for the other halides, the subject of this paper, are generally consistent for Li, Na, and K. For all MX3 

species, structures 1, 2, and 3 correspond to minima, transition states, and second-order saddle points, 

respectively. The only other possible minimum was found to be the structure 7, although it shows 

some metal-dependence. The LiX3 structures 7 were all found to be first-order saddle points with 

small imaginary frequencies of 43i, 34i, and 22i cm-1, for LiCl3, LiBr3, and LiI3, respectively. Most 

NaX3 and KX3 structures of type 7 were predicted to be minima. However, a tiny imaginary 

frequency (5i) and two small imaginary frequencies (20i and 12i) were predicted for NaCl3 and KBr3, 

respectively. Finer integration grids might predict all real frequencies for these species, but the long 

inter-fragment distance (2.5 – 3.5 Å) and the small first few frequencies (below 50 cm-1) indicate that 

the structure 7 is not a strongly bound minimum. Moreover, for all MX3 species investigated, 

structure 7 lies 5.9 – 15.2 kcal mol-1 above structure 1 at the ZPVE-corrected B3LYP level. 

Optimizations of structures 4, 6, and 8 lead to either structure 1 or 7 (see SI). Optimizations of 

structure 5 separated the MX and X2 moieties beyond 4.0 Å.  

Could structures 1 and 2 be nonplanar (as one sees in the trifluorides)? Optimizations begun in 

nonplanar geometries returned uniformly to Cs and C2v minima. There were two exceptions: 1. For 

MCl3 (M=Na, K, Rb, Cs) a noncoplanar structure derived from 2 was a stationary point that turned 

out to be a transition state; the large imaginary frequency characterizing this geometry led to a 

structure 1 geometry. 2. For CsBr3 a nearly planar structure close to C2v (near 2) was a minimum, 

with a low frequency (23cm-1) mode leading back to structure 1. 

Though the Cs structures are definitely preferred, the question could be asked “By how much?” 

Some representative numbers for the energy difference between optimized Cs and C2v structures are 
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-11.0 kcal/mol for LiCl3, 1.1 kcal/mol for CsCl3, 10.0 kcal/mol for LiI3, 1.2 kcal/mol for CsI3. For Li 

species, the Cs and C2v structures are clearly separated by ~10 kcal/mol. However, the CsX3 (X = Cl 

or I) have Cs and C2v structures nearly degenerate in energy, consistent with their small imaginary 

frequencies (55i and 16i for CsCl3 and CsI3, respectively) in their C2v shape. This is an indication 

that large alkali metals (such as Cs) tend to have less impact on the X3¯ than the small ones (Li, for 

instance). We will explore this point further in the following sections.  

In summary, the strong metal-dependence reported for the MF3 (M = Li, Na, K, Rb, and Cs)29, 30 

species does not appear to carry over to the MX3 (X = Cl, Br, and I) systems. In contrast to the 

general preference for a C2v global minimum for MF3, our DFT computations suggest that the 

asymmetric T-shaped Cs structure (structure 1 in Figure 2) is a global minimum for all MX3 species. 

This is consistent with the Ault and Andrews’s experimental finding for MCl3 (M = Li, Na, K, Rb, 

and Cs).3 We only focus on the asymmetric T-shaped global minimum for the rest of the discussion. 
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Equilibrium Geometries for MX3 

The labels of atoms and bonds in MX3 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) are shown 

in Figure 3, and the parameters of all equilibrium geometries are listed in Table 2. For comparison, 

the “free” X3¯ (X = Cl, Br, and I) geometries are also reported.  

 

 
Figure 3. Labels of atoms and bonds in MX3 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) used in 
Table 2.  

 

For the trihalide series seen in Table 2, the Cl-Cl bond distance in the “free” Cl3¯ (D∞h) is 

predicted to be 2.313 Å at the CCSD(T)/aug-cc-pwCVTZ level. This value agrees well with the 

CCSD(T)/aug-cc-pV(T+d)Z result (2.314 Å) by Dixon and coworkers5 and the 

CCSD(T)/aug-cc-pVQZ result (2.313 Å) by Riedel et al.64 The Br-Br bond distance in Br3¯ is 

predicted to be 2.571 Å at the CCSD(T)/aug-cc-pwCVTZ-PP level. This value is slightly shorter than 

the Br-Br distance (2.585 Å) computed at the CCSD(T)/aug-cc-pVTZ-PP level by Dixon and 

coworkers.5 Both Cl-Cl and Br-Br bond distances are also close to DFT results obtained at the 

MPWB1K/6-31+G(d) level of theory by Pichierri.65
 The I-I bond distance in “free” I3¯ is predicted to 

be 2.944 Å at the CCSD(T)/aug-cc-pwCVTZ-PP level. This value is shorter than the I-I distance 

(2.973 Å) computed with the CCSD(T)/aug-cc-pVTZ-PP method by Dixon and coworkers.5 

However, our distance agrees well with the result (2.945 Å) at the CCSD(T)/aug-cc-pVTZ-PP level 

(all orbitals are correlated) by Braïda and Hiberty.23 The difference in bond lengths calculated with 
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ostensibly the same methodology, not to speak of what would be obtained with different levels of 

calculation, serves in a way to set the theoretical equivalent of an error bar on a calculation.  

 

TABLE 2. Equilibrium geometries (bond lengths in Å and angles in degrees) of MX3 (M = Li, Na, K, 
Rb, and Cs; X = Cl, Br and I) minima (see Figure 3) optimized using the CCSD(T)/AWCVTZ 
method. Previously reported values are given in parentheses.  

Species B1(X1-X2) B2(X2-X3) B3(M-X1) B4(M-X2) A(X1-X2-X3) A(X1-M-X2) 

Cl3¯ 
2.313 

(2.314a, 2.313b) 

2.313 

(2.314a, 2.313b) 
- - 180.0 - 

LiCl3 2.836 2.050 2.079 2.382 169.1 78.6 

NaCl3 2.719 2.078 2.440 2.733 174.1 63.1 

KCl3 2.598 2.116 2.786 2.982 174.3 53.4 

RbCl3 2.569 2.127 2.925 3.096 174.1 50.4 

CsCl3 2.553 2.132 3.084 3.253 174.1 47.4 

Br3¯ 2.571 (2.585a) 2.571 (2.585a) - - 180.0 - 

LiBr3 2.879 2.385 2.269 2.463 171.0 74.8 

NaBr3 2.817 2.410 2.629 2.809 174.0 62.3 

KBr3 2.741 (2.64c) 2.441 (2.49c) 2.989 3.083 173.2 53.6 

RbBr3 2.721 2.450 3.137 3.199 172.7 50.9 

CsBr3 2.702 (2.698d) 2.458 (2.440d) 3.312 3.344 172.0 47.9 

I3¯ 
2.944 

(2.972a, 2.945e) 

2.944 

(2.972a, 2.945e) 
- - 180.0 - 

LiI3 3.229 2.769 2.504 2.664 170.2 77.3 

NaI3 3.182 2.790 2.855 3.017 173.4 65.6 

KI3 3.113 2.816 3.226 3.321 172.9 56.8 

RbI3 3.095 (3.051f) 2.824 (2.833f) 3.376 3.444 172.4 54.0 

CsI3 3.075 (3.03g) 2.832 (2.83g) 3.552 3.589 171.7 51.0 
a The CCSD(T)/aug-cc-pV(T+d)Z values from ref. 5. b The CCSD(T)/aug-cc-pVQZ values from ref. 64. c X-ray values of 

Pnma KBr3 crystal from ref. 66. d X-ray values of Pmnb CsBr3 crystal from ref. 67. e The CCSD(T)/aug-cc-pVTZ-PP 

values from ref. 23. f X-ray values of Pnma RbI3 crystal from ref. 68. g X-ray values of CsI3 crystal from refs. 69 and 70.  

 

 

There are to date limited reports of any type for the MX3 (X = Cl, Br, and I) structures in the gas 

phase or in matrices. Hence we are drawn to some solid state results. And here we need to insert an 

anticipation of what Table 2 holds, which can be summarized as a variable asymmetrization of the 
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trihalide moiety of MX3, in the asymmetric environment the trihalide faces in a Cs geometry. 

Such asymmetrization is a sign of the relatively small energy involved in changing the B1 and 

B2 bond lengths from equality in X3¯ itself, no cation present, along an antisymmetric stretching 

coordinate. Experimentally, the evidence for this is the beautiful Bürgi and Dunitz diagram (a plot of 

B1 vs B2) for all the triiodide structures in the Cambridge Structural Database (CSD71) in 2003, by 

Svensson and Kloo.72 We have regenerated this plot in Figure 4, The impetus for a structure to move 

from the 45˚ line (B1=B2) is, of course, the asymmetry of the counter-cation in the structure, or the 

crystal packing. Whichever it is, the hyperbola we see is prima facie evidence of an energetically 

easy excursion along a very specific potential energy surface in which B1≠B2. A similar diagram for 

tribromide structures may be found in Robertson et al.14 

 
Figure 4. A plot of the two distances, d1 and d2 (corresponding to our B1 and B2) in the triiodide 
structures in the Cambridge Structural Database. 

 

We can simulate the energetics involved theoretically by fixing 2.67 Å < B1 < 2.94 Å (the limits 

are its values in I2 and I3¯), and allowing B2 to vary. The resulting plot (in the SI) reproduces the 

hyperbola pretty well, and shows that it takes 4.8 kcal/mol for I3¯
 to move from B1 = 2.67 Å, B2 = 
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3.07 Å to B1 = B2 = 2.94 Å. 

 Returning to specifically MX3 structures, with the M of this study, we do find some in the 

literature. In these, even if the stoichiometry is MX3, one does not have a molecular crystal of MX3 

entities well-separated from other such molecules; instead there are arrangements of varying 

complexity of X3 anions of varying asymmetry, and the M cations. The structures resolved in 

previous experimental studies at least in part to give an idea of their complexity.   

The structures observed fall into three groups: (1) MX3 solid state structures; (2) MX3·Z, where 

one or more Z molecules accompany the metal halide in the solid state structure; (3) extended 

structures associated with high pressure environments, often theoretical. 

In group 1 we have structures of CsBr3, RbI3 and CsI3 (the latter done independently by two 

groups, and also at -160˚C).67, 68, 70, 73 In each case, the coordination environment of the trihalide is 

far from simple – for instance in CsBr3 the tribromide group has no less than 8 different Cs+ ions 

coordinated to it, at 3.52-4.02 Å. And that coordination environment is very, very different from that 

we calculate for our isolated MX3 molecules. Nevertheless, the observed asymmetries of the 

trihalides in these structures quite remarkably resemble those calculated by us for isolated molecules. 

In the crystal structure of CsBr3 in Pmnb space group,67 the experimental Br-Br bond length pair was 

reported to be 2.698/2.440 Å, which agrees well with the values 2.702/2.458 Å reported in the 

present research. The I-I bond length pairs in the RbI3
68 and CsI3

69, 70 crystal structures were reported 

to be 3.051/2.833 and 3.04/2.84 Å (some variation among the crystal structures), respectively, and 

the two sets of values are close to the corresponding 3.095/2.824 and 3.075/2.832 Å obtained at the 

CCSD(T)/AWCVTZ level in this work. A theoretical study of the CsI3 crystal finds 3.01/2.90 Å.74 

The second group – MX3 associated with other molecules – is a rich one. Here are three 
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examples of many: KI3·H2O, KI·KI3·6(N-methyacetamide), Cs2I8 = Cs2·(I3)2·I2.
75-77 Naturally, the 

triiodide environments are still more complex in these compounds. Remarkably the triodide in 

KI3·H2O is nearly symmetrical, I-I 2.925/2.935 Å, the asymmetry calculated by us is 2.816/3.182 Å. 

The trihalides in Cs2I8 are closer to our molecular asymmetry, at 2.84/3.00 Å. One has to draw an 

imaginary line somewhere in listing compounds in this class, as the structures quickly shade over to 

the multitudinous class of polyiodides, in which trihalides interact weakly or strongly with iodide 

ions and I2 molecules.72 

The high pressure structures, the third group, are a relatively new phenomenon, one with which 

one of us (RH) is much involved. Under extreme conditions of elevated pressure new stoichiometries 

emerge, simply not there at 1 atm. Calculations often precede syntheses in this playground; actual 

observation of predicted phases is relatively rare. In the two cases we mention, NaCl3 and KCl3, one 

actually has seen the compositions in experiment. In the NaCl3 crystal structure (Pm3n space group) 

at high pressure (200 GPa),78 the shortest Cl-Cl and Na-Cl bond distances were recently reported to 

be 2.06 and 2.30 Å. These two distances are not far from to 2.078 and 2.440 Å (B2 and B3 in Figure 

3 and Table 2) at the CCSD(T)/AWCVTZ level in this work, respectively. The Br-Br bond length 

pair in KBr3 was reported in 2017 to be 2.64/2.49 and 2.90/2.51 Å in Pnma (4 GPa) and 03121 (15 

GPa) space groups, respectively.66 These distances may be compared to our theoretical values 

2.741/2.441 Å (Table 2) at the CCSD(T)/AWCVTZ level. In general, it may not be fair to compare 

distances in a calculated compressed crystal with our isolated molecule values a P = 1 atm. 

Returning to our computational results, summarized in Table 2, in all MX3 structures, a clear 

decreasing and increasing trend can be observed in the change of B1 (X1-X2) and B2 (X2-X3) bond 

lengths from Li to Cs, respectively. In other words, the bonds B1 and B2 tend to converge at CsX3 

Page 21 of 47

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



22 
 

with a distorted structure compared to the “free” X3¯ (Cl-Cl: 2.313 Å; Br-Br: 2.571 Å; I-I: 2.944 Å, 

Table 2), implying a decreasing interaction of M+ with X3¯, probably due to the increasing 

metal-halogen distance from Li+ to Cs+. Moreover, the Br3¯ and I3¯ are less distorted than Cl3¯ by the 

same alkali metal, in terms of the imbalance of bond pair B1/B2 in Table 2. Both B3 (X1-M) and B4 

(X2-M) keep increasing because of the enlarged atomic size from Li to Cs, and the bond pair B3/B4 

distances become more similar from LiX3 to CsX3. Particularly, the B3 and B4 distances in CsBr3 

and CsI3 are almost equal with a ∆(B3-B4) of only about 0.03-0.04 Å, whereas it is relatively large 

for CsCl3 (~ 0.17 Å).   

We already mentioned the MX·X2 perspective, which emerges in the next section; the similarity 

of B2 and B3 distances brings to mind still another viewpoint, an organometallic one: it suggests an 

M+ ion π-bonding to just one pair of atoms in a trihalide anion. 

Most importantly, the internuclear distance between M and atom X3 (Figure 3) is always long 

(mostly beyond 4.0 Å, with the exception of Li-Cl3 being 3.901 Å). Hence no strong interaction 

between the alkali metal and this particular halogen atom X3 is seen. This is consistent with the 

observation that the MX3 (M = Li, Na, K, Rb, Cs and X = Cl, Br, I) species all possess an 

asymmetric T-shaped Cs equilibrium structure, instead of a symmetric C2v structure (Figure 1), such 

that is seen for most MF3 species.29-31 Such a different preference of symmetry between MF3 and 

MX3 is largely dictated by the different electronic structures of the two, which has been discussed in 

the Introduction (see also Scheme 1).  

For the angle A(X1-X2-X3) in Table 2, a ~6–10º deviation from linear X3¯ is noticed for all MX3 

series. The LiX3 always possess the most bent A(X1-X2-X3) angle, which is about 10º from linearity 

and distinct from those of NaX3 by 3º–5º. The A(X1-X2-X3) angles from NaX3 to CsX3 are more 

Page 22 of 47

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



23 
 

consistent, especially for the MCl3. However, a slightly decreasing trend from Na to Cs can be found 

for the MBr3 and MI3 series. In the Svensson and Kloo review of triiodide structures, their Fig. 10 

shows small departures from triiodide linearity in hundreds of such structures. Departures from 

linearity of ~6–10º are rare; indicating in still another way the strong M-X3 bonding. In discrete 

molecules, in addition, the angle A(X1-M-X2) becomes increasingly acute due to the enlarged 

atomic size from Li to Cs.  

In summary, our geometrical parameters show reasonable agreement with available experiments. 

For all three MX3 series, the trend in geometrical change indicates a generally decreasing distortion 

of the X3¯ structure by M+ from Li+ to Cs+. Cs (and not C2v) symmetry is established for all MX3 (X 

= Cl, Br, and I). Such preference for Cs symmetry is also reflected in the MX3 harmonic vibrational 

modes and frequencies, which are discussed in the following section.  

 

Vibrational Modes and Frequencies of MX3 

Generally, for the “free” D∞h X3¯ (X = Cl, Br, and I) anions, the antisymmetric stretch (σu) and 

bend mode (πu) are both IR-active, while the symmetric stretch (σg) is Raman-active, as shown at the 

top of Figure 5. Since the MX3 experiments necessarily contain countercations, which distort the X3¯ 

into a lower symmetry, both stretches are expected to have substantial intensity in the IR and Raman 

spectra.  
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Figure 5. Vibrational modes for the D∞h “free” X3¯ (illustrated for Cl3¯) and Cs MX3 (illustrated for 
KCl3).  

 

 

In Table 3, the harmonic vibrational frequencies of the isolated X3¯ computed in this work agree 

to within 3 cm-1 of those reported by Dixon and coworkers.5 However, with respect to the 

experimental MCl3 frequencies (see Table 4) of Ault and Andrews,3 we only observed reasonable 

agreement with the 258 cm-1 band for KCl3. In fact, the experimental frequencies of the two 

prospective MCl3 bands range from 327 - 410 cm-1 and 225 - 276 cm-1, respectively.3 A similar range 

is also noticed for our computed MCl3 frequencies. It is unclear why the two stretch frequencies of 

Cl3¯ vary so greatly over the range of alkali metal countercations. The extended ranges for the 

computed MBr3 and MI3 frequencies (Table 5-6) imply a similar ambiguity. This calls into question 
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whether the two observed MX3 bands truly correspond to the symmetric and antisymmetric stretches 

of X3¯. Rather, the bonding in MX3 establishes alternate normal modes of vibration that include 

substantial displacement of both the halide and metal. Therefore, a direct comparison of the 

frequencies of X3¯ and MX3 is not straightforward, and explicit inclusion of the alkali metal cation is 

necessary.  

 

 

TABLE 3. Harmonic vibrational frequencies (cm-1) and infrared intensities (in parentheses, km mol-1) 
for the isolated X3¯ (X = Cl, Br, and I) anions computed using the CCSD(T)/AWCVTZ method.  

Mode Cl3¯ Br3¯ I3¯ 

 ωa ωb ωa ωb ωa ωb 

ω1 (asym stretch, σu) 253 (623)c 254 187 (250) 186 138 (151) 139 

ω2 (sym stretch, σg) 264 (0)c 261 164 (0) 161 114 (0) 112 

ω3 (bend, πu) 161 (1) 159 89 (0) 88 57 (0) 57 
a Harmonic vibrational frequencies in this work. b Harmonic vibrational frequencies reported by Dixon and coworkers 

(ref. 5). c Vibrational modes for ω1 and ω2 switch for Cl3¯.  

 

 

TABLE 4. Harmonic vibrational frequencies (cm-1) and infrared intensities (in parentheses, km mol-1) 
of the chlorides MCl3 (M = Li, Na, K, Rb, and Cs) molecules predicted using the CCSD(T)/AWCVTZ 
method.  

 LiCl3 NaCl3 KCl3 RbCl3 CsCl3 

 ω expt
a ω expt

a ω expt
a ω expt

a ω expt
a 

ν1 (a')b 453 (93) 410 414 (188) 375 370 (242) 345 360 (245) 340 354 (239) 327 

ν2 (a')b 576 (107) - 322 (41) 276 248 (57) 258 222 (80) 223 216 (89) 225 

ν3 (a')b 281 (84)  183 (25)  190 (16)  179 (10)  174 (27)  

ν4 (a')b 92 (77)  117 (113)  138 (158)  134 (140)  127 (116)  

ν5 (a')b 124 (5)  85 (8)  66 (2)  52 (1)  44 (1)  

ν6 (a'')b 108 (7)  123 (1)  138 (1)  141 (1)  143 (1)  

a Raman and IR fundamentals reported in the Ault and Andrews argon matrix study (ref. 3). b The ν1-6 correspond to the 

modes 1-6 in Figure 5, respectively. 
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A Complex of MX with X2? 

 The idea that the alkali metal trihalides might be viewed (that’s all, just a suggestion of an 

alternative perspective) as strongly bound complexes of MX and X2 came from examining the 

detailed nature of the fundamental vibrations of these molecules. 

As depicted in Figure 5, the antisymmetric and symmetric stretches of X3¯ proposed in the 

previous experimental study3 of MX3 are not found among our computed vibrational modes of MX3. 

Note that the modes illustrated in Figure 5 are similar in all MX3 (M = Li, Na, K, Rb, Cs and X = Cl, 

Br, I) molecules. However, for the species with heavy metals (Rb and Cs) which show relatively 

mild perturbation to X3¯ (judging from its distance asymmetry in Table 2), mode 2 (M-X1 stretch) is 

coupled with the adjacent X1-X2 stretch. Still, no sign of any well-preserved symmetric or 

antisymmetric stretches of the “free” X3¯ anion can be found from the modes of MX3.  

Figure 5 illustrates the vibrational modes for KCl3. The fundamental vibrations of other MX3 

molecules are remarkably similar, despite the difference in internal asymmetry of the X3 unit, and 

distance of M from X3. There are differences, which may be seen by comparing KCl3 and MX3, 

illustrated in SI. We also found useful a Total Energy Distribution (TED) analysis of the vibrations. 

which allows one to see the internal coordinates entering a given vibration. These are tabulated in the 

SI (Table S1). A file allowing animation of all vibrations is available from the authors. 

Only modes 1 and 6 involve displacement of the halides alone, whereas modes 2, 3, 4, and 5 

involve significant displacements of the metal as well. Note that mode 1 is almost a pure X-X bond 

stretch; however, the stretch appears localized to a single X-X bond (X2-X3, B2 in Figure 3), unlike 

the stretches of X3¯ which displace two X-X bonds. This is not unexpected; the equilibrium 

geometries of the X3¯ unit in MX3 are unsymmetrical in just this direction. Mode 2 appears to be a 
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localized M-X (M and X1, B3 in Figure 3) bond stretch. This localization of two fundamental modes 

of vibration, conserved across the series studied, suggests that the MX3 system may be alternatively 

described as an MX-X2 complex, rather than a M+X3¯ ion pair. On this basis, modes 1 and 2 should 

be distorted X-X and M-X stretches. Specifically, compared to the “free” X2 and MX frequencies 

(Table 1), the localized X-X and M-X stretch frequencies of the MX3 species (Tables 4-6) are mostly 

found to be lowered, and a consistently decreasing trend may be found moving from Li to Cs.  

We note in passing that the optimized bond distances also show a sign of MX���X2 bonding – 

the X1-X2 distance is always longer than X2-X3, and M-X1 is shorter than M-X2. Agreed, the 

differences are not large, but the trend is consistent.  

While we question the previous description of the MX3 normal modes, the corresponding 

frequencies computed here should still align with the experimental vibrational bands. This is because 

all the modes belong to irreducible representations of the Cs point group, and are thus both 

IR/Raman-active. So a detailed comparison with matrix isolation experiment is in order. 

 As shown in Tables 3 and 4, a direct comparison of the MCl3 harmonic vibrational frequencies 

with the experimental values of Ault and Andrews3 yields generally better agreement than the 

previous comparison using Cl3¯, isolated, noninteracting vibrational modes. To facilitate the 

assignment of the experimental bands, we notice that only a few modes have the intensity necessary 

for detection. In addition, the noted IR spectrophotometer limit (200 cm-1) of the experiment3 

precludes the observation of ν4 – ν6 for LiCl3 and ν3 – ν6 for MCl3 (M = Na, K, Rb, and Cs). 

Therefore, only ν1 and ν2 are candidates for assignment to the experimental IR/Raman bands.  

The harmonic vibrational frequencies corresponding to ν1 and ν2 of the MCl3 molecules are 

relatively close to the experimental values. However, there remain significant discrepancies. 
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Deviations above 40 cm-1 from fundamentals are noticed for ν1 and ν2 of LiCl3 and NaCl3. The ν2 

harmonic vibrational frequencies for KCl3, RbCl3, and CsCl3 deviate by 20-27 cm-1, which is more 

reasonable, but still larger than expected. For the frequencies of this magnitude, we do not expect 

substantially large enough anharmonic contributions to correct these deviations. A plausible reason 

for such deviations is that the large red-shift (about 20 – 60 cm-1, see Table S1 in the SI) noted for 

MX vibrational fundamentals in argon matrices8 carries over to the MX3 species. Recall that in Ault 

and Andrews’s experiment,3 MCl3 was generated through the reaction of MCl and Cl2 in an argon 

matrix at 15 K. As such, the MCl stretch was measured prior to MCl3 formation. This stretch 

frequency aligns with the value reported by Jacox (see Table S1 in the SI),8, 79 confirming a similar 

argon-induced shift for the Ault and Andrews MCl band. By extension, their reported MCl3 bands 

may be significantly shifted as well. Accordingly, assessing the agreement between gas-phase 

theoretical frequencies and argon matrix experimental frequencies3 is challenging. Depending on the 

metal involved, ν1 and ν2 can be tentatively assigned to the Cl-Cl and M-Cl stretches, which are 

probably the actual vibrational bands observed in the Ault and Andrews experiment.3   

In comparison, there are fewer experimental results for the MBr3 (Table 5) and MI3 (Table 6) 

species. The 214 cm-1 KBr3 band reported by Ault and Andrews3 is close to our computed frequency 

for the localized Br-Br stretch mode (ν1 = 225 cm-1). Since the largest vibrational frequency of the 

“free” Br3¯ is predicted to be 187 cm-1 (Table 3), it is not reasonable to assign this 214 cm-1 band to 

Br3¯ in KBr3. A good agreement between theory and experiments6, 7, 16, 80 is achieved for the CsBr3 

vibrational frequencies. The ν1, ν2, and ν4 frequencies are computed to be 217, 152, and 96 cm-1, 

respectively, each of which matches the observed vibrational bands within 10 cm-1.  Comparison of 

the computed frequencies of CsBr3 (Table 5) and the “free” Br3¯ (Table 3) indicate that the 152 and 
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96 cm-1 experimental bands seemingly match those of Br3¯, whereas the 217 cm-1 band does not.  

 

 

TABLE 5. Harmonic vibrational frequencies (cm-1) and infrared intensities (in parentheses, km mol-1) 
of the bromides MBr3 (M = Li, Na, K, Rb, and Cs) molecules predicted using the 
CCSD(T)/AWCVTZ method. The KBr3 and CsBr3 frequencies in italics are from experiments.  

 LiBr3 NaBr3 KBr3 RbBr3 CsBr3 

ν1 (a')a 244 (72) 227 (81)  225 (134), 214b  220 (137) 217 (138), 206c/210d/213e 

ν2 (a')a 475 (88)  258 (67) 183 (23) 155 (32) 152 (40), 140c/136d/138e 

ν3 (a')a 283 (79) 150 (26) 141 (38) 128 (14) 122 (4) 

ν4 (a')a 104 (38) 108 (47) 113 (31) 106 (30) 96 (27), 82e 

ν5 (a')a 76 (17) 66 (6) 50 (3) 37 (2) 29 (1) 

ν6 (a'')a 77 (6) 79 (1) 82 (0) 83 (0) 84 (0) 
a The ν1-6 correspond to the modes 1-6 in Figure 5, respectively. b Raman and IR frequencies reported in ref. 3. c Raman 

and IR frequencies reported in refs. 6 and 7. d IR frequencies reported in ref. 80. e Raman frequencies reported in ref. 16.  

 

 

 

TABLE 6. Harmonic vibrational frequencies (cm-1) and infrared intensities (in parentheses, km mol-1) 
of the iodides MI3 (M = Li, Na, K, Rb, and Cs) molecules predicted using the CCSD(T)/AWCVTZ 
method. The CsI3 frequencies in italics are from experiments. 

 LiI3 NaI3 KI3 RbI3 CsI3 

ν1 (a')a 171 (56) 164 (69) 168 (67) 160 (87) 157 (88), 145
b
/145

c/149
d 

ν2 (a')a 417 (79) 222 (37) 149 (40) 118 (12) 110 (17), 101b/100c/103d/113e 

ν3 (a')a 273 (58) 130 (16) 106 (23) 96 (22) 90 (11) 

ν4 (a')a 80 (26) 83 (27) 86 (16) 79 (10) 74 (12), 66
c/69

d 

ν5 (a')a 51 (7) 47 (4) 39 (4) 30 (2) 24 (1) 

ν6 (a'')a 53 (8) 51 (1) 53 (0) 53 (0) 54 (0) 
a The ν1-6 correspond to the modes 1-6 in Figure 5, respectively. b Raman and IR frequencies reported in refs. 6 and 7. c 

IR frequencies reported in ref. 80. d IR frequencies reported in ref. 81. e Raman fundamental (in solid argon) reported in 

ref. 4. 
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For CsI3, we find that the three vibrational frequencies from experiments6, 7, 80, 81 align well with 

our predicted harmonic values for ν1, ν2, and ν4. It should be noted that each of the three computed 

frequencies of “free” I3¯ (Table 3) are in relatively good agreement with the corresponding 

experimental values for ν1, ν2, and ν4 of CsI3 (Table 6). This is the only case where X3¯ completely 

corresponds with MX3. However, CsI3 is an extreme case, for which the frequencies (and the 

geometry) tend to suggest a Cs+I3¯ ion pair, in spite of its underlying electronic structure (see next 

section). More generally, the experimental frequencies of CsBr3 and CsI3 were obtained from the 

solid state,6, 7, 16, 80, 81 which might involve alternate electronic structures that make a direct 

comparison between theory and experiment ambiguous. The seemingly aligned I3¯ and CsI3 

frequencies are outliers. They by no means guarantee overall agreement across all MBr3 and MI3 (M 

= Li, Na, K, Rb, and Cs) species. 

To summarize: with limited experimental data, no solid conclusion can be drawn here from the 

experimentally observed vibrations about whether the MBr3 and MI3 should be viewed more as an 

M+X3¯ ion pair or the MX-X2 complex. These concerns notwithstanding, explicit consideration of the 

metal is instrumental in understanding the vibrational frequencies of the MX3 species. And an 

MX-X2 complex viewpoint of the bonding in the molecule, a perspective that has hitherto not 

received much attention, is naturally suggested by the vibrational modes. Key factors driving the 

vibrational frequencies are clearly evinced by an intimate examination of the electronic structure 

through bonding analyses.  
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Bonding Analyses of MX3 

Bond strength has been described theoretically in the literature by a plethora of bonding indices. 

Just the fact that there are so many is evidence that bond indices, even as they carefully defined, are 

to some degree arbitrary. We chose to follow here the insight obtained from a natural bond orbital 

bond order, as defined by Weinhold and Landis.82 The natural bond orbital (NBO) results in Table 7 

show that the bond order of B1 (X1-X2) is consistently lower than that of B2 (X2-X3) for each MX3 

species. No surprise, as this follows the calculated equilibrium distances. A considerable increase of 

X1-X2 bond order indicates the X1-X2 and X2-X3 become more balanced for KBr3, RbBr3, CsBr3, 

KI3, RbI3, and CsI3. For the MCl3 species, the X2-X3 bond orders are large, approaching those of a 

single bond. But as the distances in Table 2 show, the corresponding bond length remains 

substantially longer than in Cl2.  

In the NBO formalism, it is possible to assign covalent and ionic character to bonds.59-61 The 

covalency of the X2-X3 bond is also supported by its natural bond order, comprised primarily of 

covalent contributions (Table 7), although an increasing ionic character of the X2-X3 bond can be 

found on moving from LiCl3 to CsCl3. The preference of covalent over ionic character is switched 

for KBr3, RbBr3, CsBr3, KI3, RbI3, and CsI3, in which the X2-X3 bonds possess slightly more ionic 

features than covalency. This is in accordance with the increased negative charges on atom X3, as 

shown in Table 7.  

The calculated charge distribution shows almost complete electron transfer from the metal ion to 

the trihalide. And in the trihalide, no matter how asymmetric it is, the net charge on the central atom, 

X1 is close to zero. The electron transferred is distributed, in an asymmetric fashion consistent with 

the asymmetry of the bonding, among X1 and X3. The pileup of electron density at the termini of a 
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three-center electron-rich system is what one would expect; it is connected, in another context, to the 

presence of strongly electronegative fluorides at the termini and not the middle of such bonds (e.g. 

FXeF). 

The presence of the metal cation engenders localization of electron density mostly onto X1, as 

shown by the natural charges in Table 7. Orbital interactions based on the NBO perturbation theory 

analysis (see Methods) shows that the leading interaction between the X1 and X2-X3 units is always 

the donation of an X1 lone-pair n(X1) into the X2-X3 antibonding orbital σ*(X2-X3) for all MX3 

species. Thus, strengthened X1-X2 and weakened X2-X3 bonds are expected. The energies for this 

n(X1) → σ*(X2-X3) interaction (see SI) gradually increase from LiX3 to CsX3 (X = Cl, Br, or I). 

Therefore, the bond orders of X1-X2 and X2-X3 are expected to increase and decrease, respectively. 

This finding aligns with the trends for the natural bond orders of X1-X2 and X2-X3 given in Table 7. 

Also, this is in consistent with the decreasing X1-X2 and increasing X2-X3 bond lengths in Table 2.  

The general picture that emerges is consistent with the donor-acceptor picture of bonding in the 

trihalide anions, at one end of a bonding spectrum, at the other end being symmetrical electron-rich 

bonding.20-24 
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TABLE 7. Natural bond orders and natural charges for MX3.
a  

 Natural bond order: total (covalent/ionic) Natural charge 

 X1-X2 (B1) X2-X3 (B2) X1-M (B3) X2-M (B4) X1 X2 X3 M 

Cl3¯ 0.50 (0.25/0.25) 0.50 (0.25/0.25) - - -0.48 -0.03 -0.48 - 

LiCl3 0.06 (0.00/0.06) 0.90 (0.82/0.08) 0.50 (0.02/0.48) 0.43 (0.01/0.42) -0.88 0.00 -0.05 0.93 

NaCl3 0.08 (0.01/0.07) 0.86 (0.73/0.13) 0.89 (0.02/0.87) 0.01 (0.00/0.01) -0.86 0.01 -0.11 0.96 

KCl3 0.13 (0.03/0.10) 0.79 (0.61/0.18) 0.75 (0.01/0.74) 0.06 (0.00/0.06) -0.81 0.01 -0.18 0.97 

RbCl3 0.15 (0.04/0.11) 0.77 (0.57/0.20) 0.72 (0.01/0.71) 0.06 (0.00/0.06) -0.79 0.01 -0.20 0.98 

CsCl3 0.16 (0.04/0.12) 0.75 (0.54/0.21) 0.69 (0.01/0.68) 0.07 (0.00/0.07) -0.79 0.01 -0.21 0.98 

Br3¯ 0.50 (0.25/0.25) 0.50 (0.25/0.25) - - -0.48 -0.03 -0.48 - 

LiBr3 0.13 (0.03/0.10) 0.76 (0.62/0.14) 0.47 (0.02/0.45) 0.43 (0.01/0.42) -0.77 -0.01 -0.14 0.92 

NaBr3 0.15 (0.04/0.11) 0.75 (0.56/0.19) 0.74 (0.02/0.72) 0.06 (0.00/0.09) -0.76 0.00 -0.20 0.96 

KBr3 0.30 (0.11/0.18) 0.56 (0.25/0.31) 0.25 (0.00/0.25) 0.19 (0.00/0.19) -0.71 0.00 -0.26 0.97 

RbBr3 0.31 (0.12/0.19) 0.55 (0.24/0.31) 0.23 (0.00/0.23) 0.20 (0.00/0.20) -0.70 0.01 -0.28 0.97 

CsBr3 0.32 (0.13/0.19) 0.54 (0.23/0.31) 0.23 (0.00/0.23) 0.20 (0.00/0.20) -0.68 0.01 -0.30 0.98 

I3¯ 0.50 (0.25/0.25) 0.50 (0.25/0.25) - - -0.49 -0.03 -0.49 - 

LiI3 0.15 (0.03/0.12) 0.77 (0.60/0.17) 0.53 (0.03/0.50) 0.32 (0.01/0.31) -0.73 -0.01 -0.16 0.89 

NaI3 0.17 (0.05/0.12) 0.74 (0.54/0.20) 0.58 (0.02/0.56) 0.26 (0.00/0.26) -0.72 -0.01 -0.21 0.94 

KI3 0.31 (0.12/0.19) 0.55 (0.25/0.30) 0.44 (0.01/0.43) 0.10 (0.00/0.10) -0.69 0.00 -0.27 0.96 

RbI3 0.32 (0.13/0.19) 0.54 (0.24/0.30) 0.24 (0.00/0.24) 0.21 (0.00/0.24) -0.68 0.00 -0.29 0.97 

CsI3 0.33 (0.14/0.19) 0.53 (0.23/0.30) 0.24 (0.00/0.24) 0.21 (0.00/0.21) -0.67 0.00 -0.31 0.97 

a The CCSD(T)/AWCVTZ geometries are used. See Figure 2 for atomic label and bond definition for MX3.  

  

 

Both B3 (X1-M) and B4 (X2-M) bonds possess some “purely” ionic character, supported by the 

natural charges and their predominant ionic bond orders reported in Table 7. For the MCl3 series, 

except for the similar X1-M and X2-M bond orders for LiCl3, the X1-M bond orders for the other 

species are much higher than the X2-M bond orders, but comparable to the corresponding X2-X3 

(B2) covalent bonds. This observation supports a view of MCl3 as formed from MX and X2 

interacting through weaker X1-X2 and X2-M bonds. For the bromides and iodides, however, a 

considerably decreased X1-M bond order for KBr3, RbBr3, CsBr3, KI3, RbI3, and CsI3 can be noticed, 
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coupled to the generally increased X1-X2 and X2-M bond orders. This is another indication that the 

X3¯ is less impacted by the larger metal atoms than the smaller ones, which also leaves these species 

standing at a borderline between the MX-X2 complex and M+X3¯ ion pair. However, the featured 

antisymmetric and symmetric stretches of X3¯ are not clearly exhibited in their vibrational modes 

discussed previously.  

To further correlate the NBO results with the vibrational frequencies, the gradually increasing 

interaction energies (see SI) for the donor-acceptor interaction [n(X1) → σ*(X2-X3)] from LiX3 to 

CsX3 rationalize the increasingly shifted X-X stretch frequencies (Tables 4-6) in MX3, relative to the 

frequencies of corresponding “free” diatomic X2 species (Table 1). The increasing dative interaction 

from Li to Cs leads to a greater σ*(X2-X3) orbital occupation, which weakens the X2-X3 bond (B2) 

and therefore lowers the X-X stretch frequencies. On the other hand, a comparison of the M-X 

stretch frequencies of MX3 and the “free” MX shows that the X1-M (B3) stretch in MX3 becomes 

decreasingly impacted from Li to Cs. The physical origins of this trend seem ambiguous. One 

possible explanation is that its displacement of the metal in the M-X1 stretch decreases as it becomes 

heavier, making any perturbation from the X2 moiety have less impact. 
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QTAIM  

 All of the molecules studied feature bond critical points for every short contact. This is shown 

in Fig. 6 for a typical molecule, KCl3. 

 

 

Figure 6. Bader analysis for the Cs MX3 (illustrated for KCl3), including bond critical points (BCPs, 
green) and ring critical point (RCP, red). The dashed line for the central KCl bond indicates a CP 
density below the “weak CP threshold” of 0.025 a.u.  

 

Our results from Bader’s quantum theory of atoms-in-molecules (QTAIM) are reported in detail 

in the SI. Consistent with above NBO results (Table 7), the electron density at the bond critical 

points (BCPs) of B1 (X1-X2) is lower than that of B2 (X2-X3) for each MX3 species, suggesting a 

consistently stronger X2-X3 bond than the X1-X2 bond. Similar to the NBO results from LiX3 to 

CsX3, the trends in BCP densities of the X1-X2 bonds (increasing) and X2-X3 bonds (decreasing) 

indicate that the two bonds become more balanced. In Bader’s characterization of atomic 

interactions,83 the Laplacian of the electron densities ∇2ρ(BCP) in Table S2 (in the SI) should provide 

general bonding features of the MX3 systems. The consistently smaller ∇2ρ(BCP) of the bond X2-X3 

compared to that of the X1-X2 bond implies that the former possesses more covalency than the later. 

In addition, the X2-X3 ∇2ρ(BCP) increases from LiX3 to CsX3, suggesting an increasing ionic and 

decreasing covalent character.  
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In summary, the bonding trends explored with NBO and QTAIM approaches clearly show that 

X1-X2 and X2-X3 become more balanced from LiX3 to CsX3, although they are never as “truly” 

balanced as in the “free” D∞h symmetric X3¯. We are led to the same conclusion drawn from the 

structures (Table 2) of MX3: a decreasing effect of the M+ cation on the X3¯ anions from LiX3 to 

CsX3. A comparison of the bonding types of X3¯ (Scheme 1) and MX3 (Table 7) shows that the two 

equal contributors (bonding types I and II) to the bonding in X3¯ anions collapse into mostly just one 

of the two for MX3, mainly depending on the position of the metal cations.  

 

 

Thermochemistry of MX3 

The reaction energies (D0, corrected by ZPVE) of three different dissociation pathways:  

MX3 → MX + X2  

MX3 → M+ + X3¯ 

MX3 → M + X3 

are summarized in Table 8. The reason for studying the neutral version of the MX3 → M+ + X3¯ 

fragmentation is that ionic fragmentation is naturally more endothermic than neutral ones. In all 

cases, the dissociation energy for the MX3 → MX + X2 reaction is much lower than that of the MX3 

→ M+ + X3¯ (or MX3 → M + X3) dissociation. This result supports our previous conclusion 

indicating that the MX3 system is also well-described as an MX-X2 complex, rather than an M+X3¯ 

ion pair.  
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TABLE 8. Endothermicities (D0, kcal mol-1) of the three different dissociation processes for MX3 (M 
= Li, Na, K, Rb, and Cs; X = Cl, Br, and I) molecules predicted using the B3LYP3/AVTZ method.  

Species D0 (MX3 → MX + X2) D0 (MX3 → M+ + X3¯) D0 (MX3 → M + X3) 

LiCl3 10.0 134.8 115.1 

NaCl3 11.2 114.1 99.0 

KCl3 12.9 100.3 105.6 

RbCl3 13.3 95.8 105.8 

CsCl3 13.1 91.6 108.9 

LiBr3 14.3 127.6 101.8 

NaBr3 15.3 109.1 87.9 

KBr3 17.5 95.7 95.0 

RbBr3 17.9 91.3 95.3 

CsBr3 18.0 87.3 98.6 

LiI3 15.0 120.7 88.4 

NaI3 15.2 104.0 76.3 

KI3 17.3 90.5 83.2 

RbI3 17.5 86.0 83.4 

CsI3 18.1 82.2 87.0 

 

 

A note on the numbers in the last two columns: the energetics is a reflection of the differences in 

the ionization potentials of the metal atoms (falling from 5.5 eV for Li to 3.9 eV for Cs), and the 

vertical electron affinities of the neutral X3 species. The latter are remarkably high, 4-5 eV.  For the 

MX3 → MX + X2 dissociation, an increasing trend for D0 can be noticed from LiX3 to CsX3 (X = Cl, 

Br, or I). This is consistent with the increasing trend for D0 in the fluoride MF3 → MF + F2 (M = Na, 

K, Rb, and Cs) series reported by Tozer and Sosa29. In addition, previous experiments determined the 

bond strengths (X3¯ → X2 + X¯) of the isolated Cl3¯, Br3¯, and I3¯ to be about 24, 30, and 30 kcal 

mol-1 in the gas phase, respectively.9, 10 Those values are about the twice the D0 values computed 

here for the MX3 → MX + X2 dissociations. This is additional evidence that presence of an alkali 

metal cation weakens the X-X covalent band of X3¯, favoring localization of more electron density 

on a terminal X atom. For the MX3 → M+ + X3¯ dissociation, a decreasing trend in D0 can be found 
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from LiX3 to CsX3 (X = Cl, Br, or I). This indicates that the distortion of X3¯ by M+ decreases with 

increasing cation size, caused by the increasing distance between M+ and X¯ as well as the 

decreasing M-X orbital overlap from LiX3 to CsX3. This agrees well with the structural trend for 

increasingly balanced X1-X2 and X2-X3 bond lengths (Figure 3 and Table 2) moving from LiX3 to 

CsX3.  

 

Conclusions 

The alkali metal trihalides MX3 (M = Li, Na, K, Rb, Cs; and X = Cl, Br, I) are systematically 

studied here using coupled-cluster methods with the weighted core-valence correlation consistent 

basis sets (new basis sets for K, Rb, and Cs). Benchmarks comparing the CCSD(T) method against 

experimental results show satisfactory performance for the new basis sets in predicting reliable 

structures and harmonic vibrational frequencies for the relevant diatomic species MX and X2. An 

isomer search using the B3LYP functional confirms a planar asymmetric T-shaped structure as the 

global minimum for all MX3 species.  

The CCSD(T) computations suggest a strong distortion of the X3¯ anions by the alkali metal 

countercations M+, in the equilibrium geometries, vibrational spectra, bonding, and thermochemistry. 

For the vibrational modes, the well-established antisymmetric and symmetric stretches of the “free” 

X3¯ anions are not retained in any MX3 species. Instead, localized and mutually-perturbed X-X and 

M-X stretches are involved.  For the vibrational frequencies, a comparison of our theoretical MX3 

harmonic vibrational frequencies with the experimental fundamentals yields generally better 

agreement than the previous comparison using the “free” X3¯ anions. In a bonding analysis, the NBO 

and QTAIM results show low natural bond orders and electron densities at the bond critical points 
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between MX and X2, respectively. In the thermochemistry, the MX3 → MX + X2 dissociation 

pathway has a much smaller endothermicity than the MX3 → M+ + X3¯ (or MX3 → M + X3) pathway. 

All above results lead us to suggest that the MX3 system might alternatively be described as an 

MX-X2 complex, rather than the M+X3¯ ion pair proposed in previous studies.1-4  

Our conclusions are likely applicable only to the MX3 systems in the gas phase, in inert matrices 

(argon and neon), or in non-polar solvents if possible, as no strong solvation would be expected. 

Strong solvation of M+ and X3¯ ions in polar solvents (H2O, for instance) could make the M+X3¯ ion 

pair an appropriate description for the MX3 systems. Such solvation phenomena on the molecular 

and electronic structure of X3¯ are known as a crucial part of understanding their electrochemistry in 

electrolytic media,84, 85 a subject beyond present study.  

The two perspectives on MX3 molecules – strong complexation of trihalide anions by metal 

cations, and strong interaction of polar MX molecules with dihalogens -- are complementary to each 

other, each with its own advantages and consequences. We think the chemistry of these remarkable 

molecules will benefit from keeping both pictures of the bonding in them in view.   

 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website. 

Convergence parameters used for programs, the cc-pwCVTZ-PP basis sets for K, Rb, and Cs, and 

the detailed information of all species.  
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