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Achieving Biocompatible SABRE: An in vitro Cytotoxicity
Study

Anand Manoharan,[a] Peter J. Rayner,[a] Wissam Iali,[a] Michael J. Burns,[a] V. Hugh Perry,[b] and
Simon B. Duckett*[a]

Introduction

Clinical magnetic resonance imaging (MRI) is at the forefront

of disease diagnosis. It uses strong magnetic fields, radio

waves, and field gradients to give detailed images of human

anatomy. However, due to the inherent low sensitivity of MRI,

almost all clinical applications detect water due to its high con-

centration in the body. Hyperpolarization methods turn typical-

ly weak MRI responses into strong signals and thus open the

door to new diagnostic techniques. For example, dynamic nu-

clear polarization (DNP) has been used to create the signal

strength necessary to track the in vivo metabolism of pyruvate

in prostate tumors,[1] whilst spin exchange optical pumping

(SEOP) of noble gases has allowed the diagnosis of pulmonary

diseases.[2]

An alternative low-cost approach to hyperpolarization uses

parahydrogen (p-H2) to create a non-Boltzmann nuclear spin

distribution without changing the identity of the molecule of

interest. This technique is known as signal amplification by re-

versible exchange (SABRE) and is shown schematically in

Figure 1.[3] It can enhance the signals detected by MRI and nu-

clear magnetic resonance (NMR) spectroscopy across a wide

range of nuclei such as 1H, 13C, 15N and others.[4] It works by

harnessing the latent polarization of p-H2 through binding to a

metal catalyst, typically [Ir(H)2(Sub)3(IMes)]Cl,[5] as hydride li-

gands. Simultaneous binding of the substrate allows spontane-

ous transfer of polarization through the scalar coupling net-

work at low magnetic fields.[6] Subsequent substrate dissocia-

tion from the catalytic complex allows buildup of hyperpolar-

ized substrate in solution.

A recent study showed that 2H labeling a series of nicotina-

mide and methyl nicotinate molecules can simultaneously im-

prove their SABRE-enhanced NMR and MRI detection and de-

crease magnetic relaxation. The optimal substrate in this study

was methyl-4,6-d2-nicotinate (d2-MN), which gave up to 50%

polarization in conjunction with T1 relaxation values approach-

ing 2 minutes.[7] This makes d2-MN an ideal candidate for

in vivo detection. However, despite some applications of

methyl nicotinate (MN) in cosmetic and veterinary pharmaceu-

tics, the effect of selective deuteration has not been studied.

The isotopic labeling of drug molecules is a well-established

route to modify their safety and/or efficacy.[8] Deuteration pri-

marily affects the biological fate of drugs that are metabolized

through a pathway that involves hydrogen–carbon bond

breaking, as significant rate changes can occur due to the ki-

netic isotope effect. The metabolic pathway of nicotinic acid

derivatives typically proceeds via formation of the N-oxide,

though routes involving 6-hydroxy species are also known. For

this reason the toxicity of d2-MN in comparison with MN is de-

termined here using in vitro cytotoxicity analysis.

Figure 1. Schematic representation of the SABRE effect.

Production of a biocompatible hyperpolarized bolus for signal

amplification by reversible exchange (SABRE) could open the

door to simple clinical diagnosis via magnetic resonance imag-

ing. Essential to successful progression to preclinical/clinical

applications is the determination of the toxicology profile of

the SABRE reaction mixture. Herein, we exemplify the cytotox-

icity of the SABRE approach using in vitro cell assays. We con-

clude that the main cause of the observed toxicity is due to

the SABRE catalyst. We therefore illustrate two catalyst removal

methods: one involving deactivation and ion-exchange chro-

matography, and the second using biphasic catalysis. These

routes produce a bolus suitable for future in vivo study.
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Another potential source of toxicity that arises from the

SABRE technique is the iridium catalyst itself. Whilst some data

on the adverse effects of iridium salts has been reported[9] ,

little information is known about organo-iridium complexes.[10]

Therefore, we present a thorough investigation into the poten-

tial toxicity of the metal catalyst in conjunction with solvent

and substrate effects. We determine the biocompatibility of

the SABRE reaction by performing in vitro cytotoxicity analysis

on human cell lines and present a method for depletion of the

catalyst from solution in order to create a biocompatible bolus

that could be progressed to in vivo measurement.

Results and Discussion

Evaluating the cytotoxicity of SABRE substrate

Methyl-4,6-d2-nicotinate (d2-MN) has been reported to give the

highest 1H polarization levels by SABRE to date.[7] From a bio-

logical perspective, MN is widely used as rubefacient in cos-

metics due to its percutaneous penetration properties upon

topical application and moreover known for its vasodilatory ef-

fects at lower doses and inflammatory response at higher

doses.[11] Given the substantial SABRE enhancement levels and

biological applicability, d2-MN is considered an ideal candidate

for probing on in vitro/in vivo tests for SABRE detection. How-

ever, whether d2-MN retains the characteristics of MN is still

unclear. In this study, we use d2-MN as a model substrate to as-

certain the broader SABRE toxicology profile.

To establish the effect of selective deuteration on toxicity we

began by determining the IC50 (half maximal inhibitory concen-

tration) values of MN and d2-MN. For this, well-established

cancer cell lines of human origin were treated with either MN

or d2-MN at varying concentrations for up to 48 h, and the via-

bility was assessed by the MTT method.[12] The results obtained

for each cell line are shown in Table 1. The IC50 value for MN

was found to range between 12.6–33.3 mm across the cell

lines, and interestingly, despite the deuterium labeling, a com-

parison of the IC50 values indicates that the toxicity levels of

d2-MN are similar to those of MN. Importantly, both substrates

have millimolar IC50 values (Table 1) and are within the concen-

tration range used in a typical SABRE reaction (mm). It is noted

here that these results are based on the solubility of the sub-

strates directly in the high volume of the cell culture medium,

and it is still unclear how the effect would be under the condi-

tions of SABRE, in which different solvents are used. Neverthe-

less, these data provide a reference IC50 value for optimizing

SABRE for further analysis. From this analysis, we conclude that

deuteration of the methyl nicotinate has no quantifiable effect

in modulating toxicity across the cell lines studied here.

Effect of SABRE solvents on cell viability

SABRE-induced polarization levels are typically highest in alco-

hol solvents such as [D4]methanol or [D6]ethanol.
[7, 13] However,

some applications can produce hyperpolarized substrates in

aqueous solution, though enhancement levels are typically re-

duced.[14] To create a biocompatible hyperpolarized bolus with

high polarization levels, it has been suggested that the hyper-

polarization step should be carried out in [D6]ethanol prior to

dilution with D2O.

To assess the toxicity of these solvent mixtures, we per-

formed an appropriate cell viability assay on A549 and MCF7

cells, which were treated with various dilutions of [D6]ethanol

in D2O. As shown in Figure 2, the viability of both cell lines

was significantly decreased if [D6]ethanol (100%) was added to

cell culture medium and treated for a short time (6 h). Con-

versely, over the same time period (6 h), 50% [D6]ethanol in

D2O (1:1) showed no change in cell viability. Extending the

treatment durations to 24 h, however, significantly decreased

the viability (Figure 2B). We found that treatment of cells in a

30% [D6]ethanol in D2O (30:70) solution did not show toxicity

to cells over long treatment times relative to other deuterated

solvent mixtures (Figure 2B and Supporting Information Fig-

ure S1). Together the results indicate that a significant decrease

in cell viability is evident when the solvent contained

[D6]ethanol concentrations higher than or equal to 50%. The

behavior of analogous protio solvent mixtures is similar (Sup-

porting Information Figure S2). From these in vitro cytotoxicity

analyses on SABRE solvents, we conclude that to achieve opti-

Table 1. Comparing the IC50 values of methyl nicotinate (MN) vs. methyl-

4,6-d2-nicotinate (d2-MN) in human cancer cell lines.

Cell Line IC50 [mm]

MN d2-MN

A549 13.6 17.4

MCF7 33.3 25.2

HeLa 21.9 14.9

MDA-MB-231 12.6 12.3

Figure 2. Effect of deuterated solvent mixture on cell viability: MTT cell via-

bility assays performed on the indicated cell lines after A) 6 h and B) 24 h of

treatment with deuterated solvents at various ratios. The final solvent

volume in the cell culture medium was 10%. EtOD= [D6]ethanol. Data are

the mean+SD. *P<0.05, **P<0.005, ns: not significant vs. untreated con-

trol (100% viable) ; one-way ANOVA.
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mal biocompatibility it is important to consider the duration of

exposure on cells in culture (or in vivo) when performing

SABRE using solvent with higher (>30%) [D6]ethanol content.

As the optimal solvent mixture for biocompatibility deter-

mined here is 30% [D6]ethanol in D2O, we wished to quantify

the effects of using this solvent directly for the SABRE polariza-

tion of d2-MN. Thus, we prepared a sample containing 5 mm

[IrCl(COD)(IMes)] , 20 mm d2-MN in [D6]ethanol in D2O (30:70).

After exposure to p-H2 at 3 bar and 298 K in a magnetic field

of 60 G we observed a 105�22-fold total signal enhancement

at 9.4 T. The corresponding 1H NMR spectra are shown in the

Supporting Information (Figure S3). This is a significant de-

crease in polarization relative to the use of 100% [D6]ethanol

as solvent, and polarization under 3 bar p-H2 gave a signal en-

hancement of >2800-fold.[7] As we have previously shown, fur-

ther optimization may be achieved by using a higher pressure

of p-H2 and isotopically labeled catalysts, and work is ongoing

to improve the polarization levels.

Evaluating the cytotoxicity of substrate in solvent

Having found that 30% [D6]ethanol in D2O does not induce

toxicity to cells in vitro, we then performed viability assays for

d2-MN dissolved in this solvent mixture. Again, we compared

d2-MN with MN to exclude any toxic effects that arise from the

selective deuteration in d2-MN when dissolved in alcohol sol-

vents. Importantly, d2-MN shows good solubility in this solvent

composition and it did not decrease the viability of A549 and

MCF7 cells when treated for up to 6 h (Figure 3A,B, respective-

ly). However, longer treatment times at concentrations higher

than 5 mm are shown to affect the viability of both cell lines

(Figure 3C,D). Surprisingly, as shown in Figure 3D, when com-

pared with MN, d2-MN induced a significant decrease in the vi-

ability of MCF7 cells at this concentration (5 mm) when treated

for long time (24 h). This further indicates that deuteration

might affect the toxicity effects of the substrate either by itself,

or that toxicity is more pronounced as an additive effect when

mixed in alcohol solvent at this long exposure time (24 h). To-

gether, our data suggest that the in vitro cytotoxicity of d2-MN

in an [D6]ethanol/D2O solvent mixture depends on the dura-

tion of exposure on cells in culture. It is worth mentioning that

the aim of our cytotoxicity assessment is to allow us to under-

stand the transient effect these compounds or solvents play

under the stated conditions. We are aware that in an in vivo

setting, biocompatibility would be dependent on physiological

status and the pharmacokinetics of the organism and the

mechanism of action of the treated material. Nonetheless, the

SABRE approach requires the contrast agent to stay in the

body for a comparatively short time prior to excretion, as relax-

ation limits utility and further reduces toxicity concerns.

Evaluating the biocompatibility of SABRE reaction mixture

Given that the cytotoxic dosage of d2-MN in the solvent

[D6]ethanol/D2O (30:70) is well above the amounts used for a

typical SABRE reaction (considering only less than or equal to

10% will be taken as a bolus for treatment) we sought to in-

vestigate the effect of the SABRE reaction mixture on A549

and MCF7 cell lines. For this, we prepared a typical SABRE solu-

tion containing 5 mm of [IrCl(COD)(IMes)] together with 20 mm

d2-MN in [D6]ethanol/D2O (30:70) and activated it with 3 bar

H2. We exposed the cells to various bolus volumes (1.25, 2.5, 5,

and 10%) of the activated mixture and assessed the viability of

the cells at different time periods by MTT assay. As illustrated

in Figure 4, treatment with the SABRE reaction mixture over a

short period of time (1 h) did not decrease the viability of

A549 and MCF7 cells when the lowest volume (e.g. , 1.25%)

was added to the cell culture medium. However, cells that

were treated with 10% bolus of the SABRE reaction mixture

showed less viability at the same time point.

To distinguish the cytotoxic effect of the substrate and cata-

lyst in the mixture we prepared, in parallel, analogous solu-

tions containing various concentrations of either d2-MN or

[IrCl(COD)(IMes)] alone. Unfortunately, [IrCl(COD)(IMes)] is less

soluble in [D6]ethanol/D2O (30:70) and, moreover, cannot form

an active catalyst without the presence of a substrate when ac-

tivated with H2. Under these conditions, a precipitate formed

(Supporting Information Figure S4), and cytotoxicity assess-

Figure 3. Cytotoxicity of alcohol-solubilized methyl nicotinate: MTT cell via-

bility data showing A),C) A549 and B),D) MCF7 cells treated for 6 h (upper

panel) and 24 h (lower panel) with various dilutions of MN and d2-MN solu-

bilized in 30% [D6]ethanol in D2O. The final solvent volume in the cell cul-

ture medium was 10%. Data are the mean+SD from three independent ex-

periments (n=3). Statistically significant differences from untreated control

group (or from protio form of MN) are shown. *P<0.05, ns: not significant

vs. untreated control group; one-way ANOVA.
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ment using this emulsion to treat cells is not expected to pro-

vide comparable results. Nevertheless, we treated the cells

with a solution of d2-MN alone, and no adverse effect was ob-

served even at treatments over 24 h on both cell lines. This in-

dicates that the deleterious effect of the SABRE reaction mix-

ture on cells could be due to the presence of the catalyst and

not the substrate (Supporting Information Figure S5). In con-

trast, the cells treated with various bolus volumes of [IrCl(CO-

D)(IMes)] , prepared by homogeneous mixing of the precipitate,

showed loss of cell viability at higher volumes and short time

points (Supporting Information Figure S6). Together these data

indicate that the SABRE reaction mixture induces a decrease in

cell viability at higher volumes, and this is likely due to the

presence of activated catalyst. We therefore conclude that in

order to achieve biocompatibility, the amount of activated cat-

alyst must be either decrease or eliminated.

Method of catalyst deactivation and removal

We have thus developed a protocol to remove the SABRE cata-

lyst from solution. The addition of a chelating ligand to the

SABRE reaction prevents reversible exchange of the substrate,

deactivating the SABRE process without affecting the polariza-

tion levels whilst extending T1 relaxation times.[15] We postulat-

ed that the addition of bathophenanthrolinedisulfonic acid

disodium salt (BPS) would see it irreversibly bind to the iridium

center whilst giving an opportunity to remove the resultant

species via ion-exchange chromatography. This procedure is

shown schematically in Figure 5. First, we prepared the activat-

ed SABRE reaction mixture in [D6]ethanol/D2O solution prior to

the addition of a solution of 2.0 equiv of BPS in D2O. Following

the reaction by 1H NMR spectroscopy reveals the immediate

formation of a new hydride species at d�19.6 ppm which we

attribute to [Ir(IMes)(BPS)(d2-MN)(H)2]Cl and confirmed by LC–

MS (Supporting Information Figure S7). After filtration through

DEAE-Sephadex� with D2O as eluent, less than 2% of the cata-

lyst remains in solution with high mass recovery of d2-MN,

which can be delivered in the biocompatible [D6]ethanol/D2O

solvent mixtures. This protocol is therefore efficient at remov-

ing the SABRE catalyst from solution. Importantly, the hyperpo-

larized SABRE signal is still visible after the deactivation and

depletion steps. The total signal gains were 74�21-fold which

represents a 30% decrease in signal relative to the standard

SABRE sample in [D6]ethanol/D2O (30:70). 1H NMR spectra are

shown in the Supporting Information (Figure S7). As the deac-

tivation and depletion process takes a minimum of 12 seconds

longer than a standard sample measurement, we attribute the

loss to relaxation effects.

Cytotoxicity assessment of catalyst depleted SABRE mixture

The cytotoxicity of the catalyst-depleted samples on cells was

then evaluated by taking different volumes (1.25, 2.5, 5, and

10%) of the reconstituted mixture in [D6]ethanol/D20 (30:70)

and by following the treatment conditions in the same manner

as performed with the non-quenched SABRE reaction mixture.

Pleasingly, 10% of the bolus containing the catalyst-depleted

SABRE reaction mixture did not alter the viability of A549 cells

for up to 6 h of treatment (Figure 6A). Similarly, MCF7 cells

showed no changes in cell viability when treated with higher

volumes (10%) of the catalyst-depleted SABRE mixture for up

to 1 h and for up to 6 h with lower volumes (�5%, Figure 6B).

However, longer treatments (24 h) showed significant decrease

at both lower and higher volumes in both cell lines (Fig-

ure 6A,B). It is noted that when extrapolating to an in vivo

model, it is unlikely to show the same long-term toxicity due

to higher metabolic activity and detoxification mechanisms. To-

gether these data indicate that deactivation and removal of

the catalyst could overcome the adverse effect of the SABRE

reaction mixture when treating live cells under the conditions

used here.

Achieving biocompatible SABRE by biphasic catalysis

We hypothesized that using the recently reported biphasic ap-

proach to SABRE catalysis could be a more rapid and facile

Figure 4. Evaluating the biocompatibility of SABRE reaction mixture: A) A549 and B) MCF7 cells were treated with various bolus volumes (0, 1.25, 2.5, 5, and

10%) of SABRE reaction mixture, and cell viability was assessed 1, 6, and 24 h thereafter by MTT assay. Data are the mean+SD from three independent ex-

periments (n=3). *P<0.05, **P<0.005, ns: not significant vs. untreated control (100% viable) ; one-way ANOVA.
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way to deplete the solution of the iridium catalyst.[16] In this

method the SABRE catalyst is located in a chloroform or di-

chloromethane phase and minimally in the aqueous phase.

Conversely, the hyperpolarized substrate is distributed be-

tween the two. For toxicity assessment on cells, the aqueous

phase was isolated, and various bolus volumes (2.5, 5.0, 7.5,

and 10%) were added to the cell culture medium. We per-

formed the appropriate viability assay at different time points

as illustrated in the previous sections. Treatment with the

phase-separated SABRE mixture did not decrease the viability

of either A549 or MCF7 cells at any of the time points tested

(Figure 7). The minimal cytotoxic effect observed here is similar

to the effect seen when treated with the substrate alone (Sup-

porting Information Figure S9). This result indicates that the cy-

totoxicity associated with the SABRE reaction mixture is negat-

ed by this method. While we are able to produce a biocompat-

ible bolus by this phase-separation method, the polarization

level achieved by the biphasic catalysis is approximately 2000-

fold for the same substrate (d2-MN), (Supporting Information

Figure S10). Nevertheless, we conclude that polarization in the

biphasic mixture is higher than that observed in an

[D6]ethanol/D2O solution under 3 bar p-H2 and at 298 K.

Figure 5. Schematic presentation of the catalyst deactivation procedure: 1. Activation: The active catalyst is formed through reaction of [IrCl(COD)(IMes)] , d2-

MN, and H2 in [D6]ethanol/D2O (30:70) solution. 2. Deactivation: Addition of BPS leads to immediate formation of the deactivated catalyst [Ir(IMes)(BPS)(d2-

MN)(H)2]Cl as confirmed by 1H NMR spectroscopy and LC–MS. 3. Depletion: Ion-exchange chromatography on DEAE-Sephadex� leads to <2% catalyst con-

tamination.

Figure 6. Achieving biocompatible SABRE by deactivating the catalyst : MTT viability assay showing A) A549 and B) MCF7 cells treated with various volumes of

catalyst-depleted SABRE reaction mixture for 1, 6, and 24 h. Data are the mean+SD from three independent experiments (n=3). *P<0.05, **P<0.005, ns:

not significant vs. untreated control (100% viable) ; one-way ANOVA.
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Conclusions

In summary, we have shown through in vitro cytotoxicity stud-

ies that it is possible to create a biocompatible SABRE bolus

for future in vivo detection. This is an important step toward

preclinical/clinical disease-state diagnosis using SABRE technol-

ogy. We have exemplified our toxicity study for methyl-4,6-d2-

nicotinate (d2-MN), which shows strong hyperpolarization

levels and long magnetic lifetimes.[7] By determination of the

IC50 values across a number of human cancer cell lines we

have shown that deuteration of the substrate does not show

significant change in toxicology relative to its protio analogue.

This will provide important information for the future develop-

ment of SABRE contrast agents. We will also determine the ef-

fects of other common isotopic labeling strategies (e.g. , 13C

and 15N) as we further expand our substrate profile. For exam-

ple, we are interested in the tuberculosis drug isoniazid[17] and

molecules that can sustain long-lived singlet states.[4f, 18] The

solvent composition was shown to have a substantial effect on

cell survival rate in an in vitro assay; 100% [D6]ethanol pro-

duced adverse effects on the cells over time periods of up to

6 h. We overcame this by dilution with D2O and found that a

[D6]ethanol/D2O ratio of 30:70 showed no cell death over 24 h.

Again, solvent deuteration had no effect over their protio ana-

logues.

We have shown that the iridium catalyst is the largest con-

tributor to decreasing the viability of cells in the SABRE mix-

ture. Therefore, we have developed a simple and robust

method to remove it from solution by ion-exchange chroma-

tography. To achieve this we add bathophenanthrolinedisulfon-

ic acid disodium salt (BPS) and subsequently flush the solution

through DEAE-Sephadex�. The eluent from this procedure

showed minimal adverse effects on a number of cell lines for

up to 6 h exposure and retained 70% of the initial SABRE-in-

duced polarization. Furthermore, the recently reported bipha-

sic approach to SABRE catalysis has also been shown to lead

to bolus biocompatibility after separation of the aqueous

phase.

We are currently working toward the development of an au-

tomated delivery method that includes all of the proposed de-

activation, depletion, or separation methods to exclude the

catalyst that can be used in a clinical setting. Additionally, as

the SABRE catalyst is the main source of toxicity, we are con-

sidering synthetic strategies to decrease toxicity through fur-

ther changes to the catalyst.

Experimental Section

Chemicals and reagents : All chemicals were purchased from

Sigma–Aldrich, Fisher, or Alfa-Aesar. Deuterated solvents

([D6]ethanol, deuterium oxide (D2O), and chloroform-d (CDCl3))

were purchased from Sigma. The following compounds were pre-

pared according to published procedures: methyl-4,6-d2-nicoti-

nate[7] and [IrCl(COD)(IMes)] .[19]

Cell culture : Human alveolar adenocarcinoma cells (A549), breast

cancer cells (MCF7), and cervical cancer cells (HeLa) were kindly

provided by Prof. Christoph Borner (IMMZ, Freiburg, Germany). The

human breast adenocarcinoma cell line MDA-MB-231 was a gift

from Prof. Thomas Kaufmann (University of Bern, Switzerland). All

cell lines were grown in DMEM supplemented with 10% fetal

bovine serum (FBS), penicillin (100 UmL�1), streptomycin

(100 mgmL�1), and l-glutamine (2 mm) (all from Gibco Life Technol-

ogies). The cells were maintained in a humidified atmosphere

under standard conditions (37 8C, 5% CO2). The media were

changed at regular intervals, and upon reaching appropriate con-

fluence (90%) the cells were passaged after brief exposure to a

trypsin/EDTA solution (Invitrogen).

Treatment of cells : Immediately after trypsin/EDTA treatment,

viable cells were counted in a hemocytometer by Trypan blue

(Sigma) exclusion. The required number of cells (normally 104 per

well in a 96-well tissue culture plate (Nunc)) was seeded 24 h

before treatment so that they are in exponential growth phase at

the start of the experiment. Before treatment various volumes of

the bolus from substrate, catalyst, or the SABRE reaction mixture

were diluted to a maximum of 10 mL in the same solvent from

which the compounds were originally prepared. For cell assays,

throughout this study (unless otherwise indicated) we kept the

final amount of the solvent at 10% in the total volume of the cell

growth medium (i.e. , 10 mL in 100 mL).

Figure 7. Evaluating the biocompatibility of biphasic SABRE reaction mixture: MTT viability assay showing A) A549 and B) MCF7 cells treated with various vol-

umes (0, 2.5, 5, 7.5, and 10%) of the bolus from the aqueous fraction of a SABRE reaction in biphasic solvents for 1, 6, and 24 h. Data are the mean+SD from

three independent experiments (n=3).
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MTT assay : The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide) assay is a commonly used colorimetric

method to determine in vitro cytotoxicity of the given compound

by means of a functional mitochondrial dehydrogenase activity in

living cells.[12] In this method, MTT tetrazolium is reduced to insolu-

ble formazan crystals and it is directly proportional to the number

living cells. Therefore, this assay represents a measure for cell via-

bility as well. For this assay, cells (normally 104 cells per well in a

96-well plate) were taken in triplicates and treated with a range of

compounds (see above) or kept as cell viability control with no

compound treatment (untreated) in cell growth media. After incu-

bation at desired time points the cell growth media was replaced

with fresh media (100 mL) and incubated with 10 mL of MTT

(5 mgmL�1, dissolved in cell growth media and filter sterilized

(0.22 mm)) for 4 h in a humidified atmosphere at 37 8C. The

medium with MTT was then carefully aspirated, and the formed

formazan crystals were solubilized in 100 mL of dimethyl sulfoxide

(DMSO). The absorbance of the colored (purple) solution was then

measured at 570 nm using a microplate reader (MultiskanGO, Ther-

moFisher). The absorbance values (averaged out of triplicates)

were blanked against DMSO, and the absorbance of cells exposed

to cell growth medium only (i.e. , untreated) was taken as 100%

viable (i.e. , control). The cell viability of the compound-treated

samples were then calculated by normalizing to the untreated con-

trol sample and are normally expressed as percent of control. Each

assay was repeated a minimum of three times for statistical analy-

sis of the data.

Evaluation of IC50 : Compounds were dissolved in cell growth

media, and cells were treated with various concentrations of the

compound (ranging from a maximum of 80 mm to a minimum of

1.25 mm) in 1=2 serial dilutions. Cell viability was analyzed by MTT

assay after 48 h treatment. IC50 values of MN and d2-MN were cal-

culated by using GraphPad Prism software (version 5.0).

Catalyst deactivation and removal : A solution of [IrCl(COD)(IMes)]

(5 mm) and d2-MN (20 mm, 4.0 equiv) in [D6]ethanol/D2O (30:70,

total volume: 3.0 mL) was degassed prior to the introduction of hy-

drogen at a pressure of 3 bar. After 5 min, the sample was opened

to air, and a solution of bathophenanthrolinedisulfonic acid disodi-

um salt hydrate (BPS) (10 mm, 2.0 equiv) in water (1.0 mL) was

added. The resulting suspension was eluted through DEAE-Sepha-

dex� (2.5 g) with water (11 mL). For treatment on cells the eluent

was vacuum dried and reconstituted in 30% [D6]ethanol in D2O.

Prior to treatment various volumes of the bolus were further dilut-

ed as indicated above.

Biphasic SABRE—biphasic separation : A solution of [IrCl(CO-

D)(IMes)] (5 mm) and d2-MN (20 mm, 4.0 equiv) in CDCl3 (1.5 mL)

and D2O (containing 0.9% NaCl) (1.5 mL) was mixed together and

was degassed prior to the introduction of hydrogen at a pressure

of 3 bar. After phase separation the aqueous layer was removed,

and prior to treatment various volumes of the bolus were further

diluted as indicated above.

Statistical analysis : All experiments were performed at least three

times (n=3), and all data are presented as the mean and standard

deviation (SD) of the mean. The significance of the differences be-

tween treated samples and the untreated control was assessed by

one-way analysis of variance (ANOVA) using GraphPad Prism soft-

ware (version 5.0). Statistical significance was set at P values <0.05.
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Achieving Biocompatible SABRE: An in

vitro Cytotoxicity Study

Catalyst removal options: It is possible

to head toward the destination, in vivo

imaging under SABRE with biocompati-

bility, via two routes. One requires

quenching of catalyst and separation

via an ion-exchange column. The

second route, biphasic catalysis, em-

ploys the aqueous phase, and no cata-

lyst is carried forward. Upon exiting, a

biocompatible medium is achieved.
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