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Abstract

The virtual array generation process based on typical sparse arrays is studied
for a mixture of circular and non-circular impinging signals. It consists of
two sub-arrays: one is the traditional difference co-array and the other one
is the new sum co-array. The number of consecutive virtual array sensors
is analysed for the nested array case, but it is difficult to give a closed-form
result for a general sparse array. Based on the extended covariance matrix
of the physical array, two classes of direction of arrival (DOA) estimation
algorithms are then developed, with one based on the subspace method and
one based on sparse representation or the compressive sensing (CS) concept.
Both the consecutive and non-consecutive parts of the virtual array can be
exploited by the CS-based method, while only the consecutive part can be
exploited by the subspace-based one. As a result, the CS-based solution
can have a better performance than the subspace-based one, though at the
cost of significantly increased computational complexity. The two classes
of algorithms can also deal with the special case when all the signals are
noncircular. Simulation results are provided to verify the performance of
the proposed algorithms.
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1. Introduction

Recently, the sparse array concept combined with co-array equivalence
has attracted significant interest in the community [1]. There are two repre-
sentative sparse array examples: co-prime arrays [2, 3, 4] and nested arrays
[5, 6]. Sparse arrays can form a larger aperture given the same number
of antennas and more importantly provide much more degrees of freedom
(DOFs) for direction of arrival (DOA) estimation than traditional uniform
arrays [7, 8, 3, 9, 10, 11, 12]. However, to our best knowledge, the DOA
estimation problem for such sparse arrays has not been properly studied yet
to exploit the possible non-circularity of the impinging signals.

On the other hand, DOA estimation based on noncircular signals for tra-
ditional uniform array structures has been studied widely. Practical exam-
ples for noncircular signals include those generated by modulation schemes
such as binary phase shift keying (BPSK), minimum shift keying (MSK),
Gaussian MSK (GMSK), pulse amplitude modulation (PAM), and unbal-
ance quadrature PSK (UQPSK), etc. Although the DOA estimation meth-
ods for noncircular signals have much higher computational complexity, they
can achieve a better performance in terms of resolution and robustness
against circular noise [13]. For a uniform linear array (ULA) with non-
circular signals, assuming the total number of physical sensors is M , then
it can be deduced that the virtual steering vector index range obtained by
vectorizing both the covariance matrix and the pseudo covariance matrix is
Cu = 2M −1 and the number of DOAs that can be resolved is Du = Cu−1.
However, this result is not applicable to the sparse array case and the virtual
array aperture generated for non-circular signals will be studied in detail in
this paper.

So far the DOA estimation algorithms proposed for noncircular signals
based on uniformly spaced arrays can be divided into two categories: the
subspace-based [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and the com-
pressive sensing (CS)-based [26, 27, 13, 28]. As we will see later, although
they can be applied to the sparse array case directly, they can only exploit
part of the increased DOFs provided by the system and will not achieve
the best possible estimation performance. Moreover, some of these algo-
rithms can only deal with noncircular signals and cannot be applied to the
general case with a mixture of circular and noncircular signals; the latter
case can occur when some of the sources are emitting noncircular signals,
such as BPSK signals, while some others are emitting circular ones, such
as quadrature phase shift keying (QPSK) or quadrature amplitude modu-
lation (QAM) signals. In this work, we will propose two classes of sparse
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array DOA estimation algorithms for a mixture of circular and noncircular
signals: one is subspace-based and one is CS-based. Both classes of algo-
rithms can also deal with the special case when all the impinging signals are
noncircular.

For the subspace-based methods, traditionally an extended covariance
matrix is first constructed, which is actually the covariance matrix of the
extended signal vector obtained by stacking the original array signal vector
and its conjugate together [14, 16, 20, 15, 17]. It can be divided into four
sub-matrices and the first two sub-matrices are used for the following DOA
estimation process and they provide the same number of DOFs for a ULA
in the general case; we call this case equally divided. However, for sparse
arrays, these two sub-matrices will generate different number of DOFs and
we call this case unequally divided, where two much larger sub-matrices can
be constructed, but with different dimensions and they help build a much
larger extended covariance matrix, as will be shown later. One effective
low-complexity algorithm based on uniformly spaced arrays for noncircular
sources is the polynomial rooting method [14]. Applying this algorithm to
sparse arrays leads to an algorithm called unequal length (UL) algorithm.
To increase the number of exploited DOFs further, an unequal length plus
(ULP) algorithm is then proposed in this paper.

For the CS-based methods, the direct covariance matrix (DCM) based
algorithm studied in [26] can be used for sparse arrays, but it turns out that
the maximum number of sources it can identify is limited by the DOFs of
the difference co-array. To overcome this limitation, we propose an extended
covariance matrix (ECM) based algorithm with sparse representation, which
can identify a much larger number of sources. Both the proposed ULP and
ECM algorithms can make effective use of the DOFs provided by the sum
co-array as well as those of the difference co-array. However, the number of
DOFs exploited by the ECM algorithm is a little lager than that of the ULP
algorithm, because the sparse representation based algorithm can utilize not
only the consecutive but also the nonconsecutive virtual sensors, while the
subspace-based algorithm can only use the consecutive ones.

This paper is organized as follows. The data model for noncircular signals
based on a general sparse array is presented in Sec. 2, where the consecutive
virtual sensors generated by the difference co-array and the sum co-array
are analyzed. The subspace-based DOA estimation algorithms are proposed
in Sec. 3, while the CS-based ones are introduced in Sec. 4. Simulation
results are provided in Sec. 5, with conclusions drawn in Sec. 6.

3



2. Data Model

Circularity is an important property of random variables [14, 29, 30],
and a zero-mean complex random variable x is said to be circular at the
second order, if its elliptic covariance is zero, i.e. E[xx] = 0, where E(·) is
the mathematical expectation; otherwise, it is noncircular. This property
will be used in constructing the pseudo covariance matrix of the received
array signals in the following.

Now considerK far-field stationary and uncorrelated narrowband signals
impinging on theM -sensor sparse array from DOA angles θk, k = 1, 2, . . . ,K
and θk ∈ [−90◦, 90◦], which are corrupted by additive circular white Caus-
sian noise. The power of these signals are η1, . . . , ηK , and among them Kn

signals are noncircular, while the remaining Kc of them are circular, with
Kc+Kn = K. Note that for our proposed methods, we do not need to know
the value of Kc or Kn. Define the unit inter-element spacing as d, which is
equal to half wavelength λ/2, and positions of the whole set of array sensors
can be expressed as

P = {p1, p2, . . . , pm, . . . , pM} · d (1)

Suppose the signals are uncorrelated with the noise, which is zero-mean
with covariance matrix σ2IM , where IM is the M ×M identity matrix. The
received array signal vector x(t) at time index t can be expressed as:

x(t) =
K
∑

k=1

a(θk)sk(t) + n(t) = As(t) + n(t) t = 1, 2, . . . , N (2)

where sk(t) is the kth zero-mean source signal, N is the number of snapshots,
a(θk) is the steering vector corresponding to the kth signal, given by

a(θk) = [e−j(2πp1dsinθk/λ), . . . , e−j(2πpMdsinθk/λ)]T (3)

with (·)T denoting the transpose operation. The steering matrix A and the
signal vector s(t) are formed by

A = [a(θ1), . . . ,a(θK)]

s(t) = [s1(t), . . . , sK(t)]T
(4)

The covariance matrix Rxx of the received array signal is given by

Rxx = E{x(t)xH(t)} =

K
∑

k=1

ηka(θk)a
H(θk) + δ2IM

= AΓAH + δ2IM

(5)
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where (·)H denotes the Hermitian transpose operation, and the source co-
variance matrix Γ is diagonal with

Γ = E[s(t)sH(t)] =











η1, 0, · · · , 0
0, η2, · · · , 0
... ,

... ,
. . . ,

...
0, 0, · · · , ηK











(6)

The pseudo covariance matrix is defined as

Rxx∗ = E{x(t)xT (t)} =

K
∑

k=1

ρke
jψkηka(θk)a

T (θk)

= (A∗V∗)Γ(A∗V∗)H

(7)

where (·)∗ denotes the conjugate operation, and V is a K × K diagonal
matrix. Its first Kn diagonal elements are ρke

jψk and last (K−Kn) diagonal
elements are 0, where ρk and ψk are the noncircularity rate and phase of the
kth noncircular signal. For circular signals, ρk = 0, and it is 0 < ρk ≤ 1 for
noncircular signals. For strictly noncircular signals, such as BPSK signals,
we have ρk = 1. If all the signals are circular, only Rxx is non-zero valued.
If the signals are a mixture of circular and noncircular signals, as studied in
this work, both Rxx and Rxx∗ are non-zero valued, and we can define the
extended covariance matrix as

R = E{xet(t)x
H
et(t)} =

[

A
A∗V∗

]

Γ

[

A
A∗V∗

]H

(8)

based on the extended signal vector xet

xet =

[

x(t)
x∗(t)

]

(9)

Two separate virtual arrays can be generated by vectorizing Rxx and
Rxx∗ , and the resultant difference co-array vector rxx and sum co-array
vector rxx∗ are respectively given by

rxx =
K
∑

k=1

ηkaxx(θk) + [δ2, . . . , δ2]T = Axxvxx + [δ2, . . . , δ2]T

rxx∗ =

Kn
∑

k=1

ρke
jψkηkaxx∗(θk) = Axx∗vxx∗

(10)
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with the corresponding steering vectors axx(θk) and axx∗(θk) given by (⊗
denotes the Kronecker product)

axx(θk) = a∗(θk)⊗ a(θk)

axx∗(θk) = a(θk)⊗ a(θk)
(11)

The corresponding steering matrices and the virtual source vectors are
given by

Axx = [axx(θ1), . . . ,axx(θK)]

Axx∗ = [axx∗(θ1), . . . ,axx∗(θK)]

vxx = [η1, . . . , ηK ]T

vxx∗ = [ρ1e
jφ1η1, . . . , ρKne

jφKnηKn , 0, . . . , 0]
T

(12)

Assume pi, pj , pu and pv are arbitrary values chosen from the set P in (1).
Clearly the values of rxx are related to (pi − pj), while those of rxx∗ are
related to (pu + pv).

Now, we analyze the DOFs provided by both co-arrays. Suppose the
consecutive values generated by (pi − pj) is Cd, while it is Cs for (pu + pv).
Define C̆d and C̆s as the corresponding total number of different integers
including both consecutive and nonconsecutive ones. For the two typical
sparse arrays, the co-prime array and the nested array[2, 3, 4, 5, 6], the
number of consecutive difference co-array virtual sensors is Cd = 2M1M2 +
2M2 − 1 in the nested array case using M = M1 +M2 sensors, and Cd =
2M1M2+2M1−1 in the co-prime array case usingM = 2M1+M2−1 sensors,
whereM1 andM2 are the associated parameters of the nested array and the
co-prime array. The total number of difference co-array virtual sensors of
the nested array is C̆d = Cd, but it is difficult to give a general result for the
co-prime array.

However, to our best knowledge, for the number of consecutive sum co-
array sensors, it has not been addressed yet. Due to complexity of the
problem, it is difficult to give an analysis for the co-prime array case, not
to mention the more general one, but the consecutive integers generated by
(pu + pv) can be analyzed for the two-level nested arrays. In such an array,
the first M1 + 1 elements of the array are consecutive segment from 1 to
M1+1, with an inter-element spacing d, and then the next M2−1 elements
have a spacing of (M1+1)d. When these elements are added together by the
sum operation, the first M1 + 1 elements are shifted to the positions of the
next M2 − 1 elements, making all the consecutive elements and shifted ones
consecutive. Since the last element of P is pM = (M1 + 1)M2, the number
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of consecutive virtual sensors generated by the sum co-array is given by
Cs = M1M2 + M1 + M2. The number of total sum co-array sensors is
M2− 1 more than Cs, i.e. C̆s =M1M2+M1+2M2− 1. For example, when
M1 =M2 = 2, we have pM = 6, Cd = 11, Cs = 8, C̆d = 11 and C̆s = 9.

One note is that Cd is normally much lager than Cs, since a sparse
array is usually designed by maximizing the number of consecutive elements
generated by (pi − pj), while the number of consecutive elements generated
by (pi + pj) is ignored in this process. For example, we have Cd − Cs =
M1M2+M2+M1− 1 > 0 for a nested array, and clearly Cd is much greater
than Cs.

In practice, for a finite number of snapshots, the covariance and pseudo
covariance matrices can be estimated as

R̂xx = (1/N)
N
∑

t=1

x(t)xH(t)

R̂xx∗ = (1/N)
N
∑

t=1

x(t)xT (t),

(13)

and the corresponding rxx and rxx∗ are then approximated by r̂xx and r̂xx∗ .
In the next two sections, based on the model in (10), we develop two

different DOA estimation methods, which can all effectively exploit the in-
formation carried by both the difference and the sum co-arrays.

3. Subspace Based DOA estimation: the Unequal Length Plus
(ULP) Algorithm

Some DOA estimation algorithms based on the subspace method have
been proposed for various scenarios with noncircular signals [14, 16, 20, 15,
17, 22, 23, 24, 25], but they are all applied to uniformly spaced arrays, where
the number of steering vector indexes in the difference covariance matrix
and the pseudo/sum covariance matrix are the same. One algorithm using
polynomial rooting proposed in [14] could also be adapted to the sparse array
case, and we call the adapted algorithm the unequal length (UL) algorithm,
as the dimensions of the two newly constructed sub-matrices are different,
which will be seen in the following. The specific processing procedure is
introduced below firstly. We also derive the maximum number of signals the
array can resolve based on the length of the difference co-array and sum co-
array. However, we will see later that this UL algorithm resolves less signals
than this maximum number. So we further modify the UL algorithm and
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propose a so-called unequal length plus (ULP) algorithm which can fully
exploit the potential of the sparse array to resolve the maximum number of
signals.

Firstly, we construct two new vectors rd and rs using the elements of the
difference co-array rxx and the sum co-array rxx∗ in (10), as given below.
The repeated elements in axx and axx∗ of (11) are merged, and we then
order the elements according to an increasing steering vector index, similar
to that of a standard uniform linear array, and at last these consecutive
virtual steering vector elements are used to construct the two new steering
vectors ad and as in (15), respectively. The length of these two new vectors
will be exactly Cd and Cs, respectively. Note that all the nonconsecutive
elements in axx and axx∗ are excluded from the construction of (15).

rd =
K
∑

k=1

ηkad(θk) + [δ2, . . . , δ2]T = Advd + [δ2, . . . , δ2]T

rs =

K
∑

k=1

ρke
jψkηkas(θk) = Asvs

(14)

with

ad(θk) = [e−j(2π
Cd−1

2
dsinθk/λ), . . . , ej(2π

Cd−1

2
dsinθk/λ)]T

as(θk) = [e−j(2πd∆psinθk/λ), . . . , e−j(2π(∆p+Cs−1)dsinθk/λ)]T

Ad = [ad(θ1), . . . ,ad(θK)]

As = [as(θ1), . . . ,as(θK)]

vd = vxx

vs = vxx∗

(15)

where ∆p is the first number in the consecutive sequence of values produced
by (pi + pj).

The l-th element of rd can be expressed as

rd(l) = ηke
−j[2π(

Cd+1

2
−l)dsinθk/λ] l = 1, ..., Cd (16)

and the lth element of rs is given by

rs(l) = ρke
jψkηke

−j[2π(l+∆p−1)dsinθk/λ] l = 1, ..., Cs (17)

In our discussions so far, we have treated the elements in rd and rs
as the received virtual signal for an array with steering vectors given by
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ad(θk) and as(θk), respectively. On the other hand, since those elements are
correlation values of the received signals by the original physical array, we
can use them directly to construct a new set of difference covariance matrix
and sum/pseudo covariance matrix of an equivalent ULA with dimensions
(Cd + 1)/2 and (Cs + 1)/2, respectively. In order to ensure the number of
sensors of the virtual ULA to be an integer, the value of Cd and Cs should
be odd. Cd always meets this requirement, but Cs may not. So we will use
(Cs − 1) instead of Cs when Cs is even.

Following a similar relationship as the structure of R in (8), we construct
a new extended covariance matrix Ru using the elements of rd and rs as
follows

Ru =





















rd(L1) . . . rd(2L1 − 1) rs(1)
...

. . .
...

...
rd(1) . . . rd(L1) rs(L1)
r∗s(1) . . . r∗s(L1) rd(L1)
...

. . .
...

...
r∗s(L2) . . . r∗s(L1 + L2 − 1) rd(L1 + L2 − 1)

. . . rs(L2)

. . .
...

. . . rs(L1 + L2 − 1)

. . . rd(L1 − L2 + 1)

. . .
...

. . . rd(L1)





















=

[

A1

A∗

2V
∗

]

Γ

[

A1

A∗

2V
∗

]H

(18)

where rd(i) or rs(i) denotes the ith elements of the vector rd or rs, A1 and
A2 are the steering matrices

A1 = [a1(θ1), . . . ,a1(θK)]

A2 = [a2(θ1), . . . ,a2(θK)]

a1(θk) = [e−j(2πdsinθk/λ), . . . , e−j(2πL1dsinθk/λ)]T

a2(θk) = [e−j(2πdsinθk/λ), . . . , e−j(2πL2dsinθk/λ)]T

(19)

We can see that the elements used in rd for constructing Ru is rd(i),
i = 1, · · · , 2L1 − 1. Since the maximum number of elements contained in rd
is Cd, we have 2L1−1 = Cd and then L1 = (Cd+1)/2. In the same way, the
range of elements used in rs is rs(i), i = 1, · · · , L1 + L2 − 1, and since the
maximum number of elements contained in rs is Cs, we have L1+L2−1 = Cs,
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and then L2 = Cs + 1− L1. In summary,

L1 = (Cd + 1)/2

L2 = Cs + 1− L1
(20)

The matrix Ru can be divided into four blocks accordingly

Ru =

[

R1 R2

R3 R4

]

(21)

whereR1,R2,R3,R4 are matrices with dimensions L1×L1, L1×L2, L2×L1,
and L2 × L2, separately.

Applying eigen-decomposition to Ru, we obtain a K-dimensional signal
subspace Us and an (L1 + L2 − K)-dimensional subspace Un. Similar to
[14], DOA estimation can be performed by minimizing the following cost
function:

J(θ, ψ) = bH(θ, ψ)UnU
H
n b(θ, ψ) = qHMq (22)

where the extended steering vector b, vector q and matrix M are given by

b(θ, ψ) =

[

a1(θ)
a∗2(θ)ρe

jψ

]

,

q =

[

1
ρejψ

]

,

M =

[

aH1 (θ)Un1U
H
n1a1(θ) a

H
1 (θ)Un1U

H
n2a

∗

2(θ)
aT2 (θ)Un2U

H
n1a1(θ) a

T
2 (θ)Un2U

H
n2a

∗

2(θ)

]

,

(23)

with ρ and ψ being the possible noncircularity ratio and phase of signals,
Un1 being an L1×(L1+L2−K) matrix andUn2 an L2×(L1+L2−K) matrix.
These two matrices are obtained by unequally splitting Un as follows,

Un =

[

Un1

Un2

]

(24)

It can be proved that the true values of θ are obtained when the determinant
of the matrix M becomes zero [14]. In this way, the noncircularity ratio ρ
and phase ψ have been separated from the signal direction θ, so that DOA
estimation can be performed independent of the noncircularity coefficients.
Now we can use the polynomial rooting method to find the DOA information
[14].
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Firstly, define z = e−j(2πdsinθ/λ). We have

a1(z) = [z, . . . , zL1 ]T

a2(z) = [z, . . . , zL2 ]T
(25)

and the matrix M becomes a function of z. We estimate the DOAs by
finding the values of z at which the determinant of matrix M equals zero.
As a result, the DOA estimation problem is transformed into a polynomial
rooting problem. The polynomial of z can be written as m1m4−m2m3 = 0,
where

m1 = aT1 (1/z)Un1U
H
n1a1(z),

m2 = aT1 (1/z)Un1U
H
n2a2(1/z),

m3 = aT2 (z)Un2U
H
n1a1(z),

m4 = aT2 (z)Un2U
H
n2a2(1/z).

(26)

After obtaining the roots zn of this polynomial, we can then calculate
the DOA estimates using

θk = arcsin(λ/(2πd)arg(zn)). (27)

The order of the polynomial is from (2−L1 −L2) to (L1 +L2 − 2) with
the number of roots being 2L1 +2L2 − 4. Due to the symmetry property of
the polynomial coefficients, the roots appear in reciprocal conjugate pairs.
Either one can be used for calculating the DOA result, since they have the
same angle in the complex plane [14]. So we obtain Dul = L1 + L2 − 2 =
Cs−1 possible DOAs using this method, and all of them can be noncircular
signals or at most (Cd − 1)/2 circular DOAs with a mixture of circular and
noncircular signals. Here we can derive the condition Cs > (Cd + 1)/2 for
this algorithm to work, which should be met by the array setting; otherwise,
Ru can not be constructed. Fortunately this condition can be met by all
nested and co-prime arrays.

The noncircularity phase ψk can also be estimated. Recalling that the
minimum of the quadratic form in (22) is obtained when this form is equal
to the smallest eigenvalue of M, ψk can be obtained by examining the eigen-
vector associated with this eigenvalue. The smallest eigenvalue being equal
to zero, and the corresponding DOA θk being known, we then have the
expression for the associated eigenvector as

q =

[

1

−
aT
2
(θk)Un2U

H
n1
a1(θk)

aH
1
(θk)Un1U

H
n1
a1(θk)

]

. (28)
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Comparing this with (22), we can determine the noncircularity phase corre-
sponding to the DOA θk as

ψk = π − arg(aT2 (θk)Un2U
H
n1a1(θk)). (29)

In theory, Cd elements could construct a (Cd+1)/2× (Cd+1)/2 matrix
at most, which can resolve (Cd−1)/2 signals; Cs elements could construct a
(Cs+1)/2× (Cs+1)/2 matrix at most, which can resolve (Cs−1)/2 signals.
Adding these two together, the maximum number of signals that can be
resolved theoretically can be finally derived as (Cs + Cd)/2 − 1. Note that
the maximum number of sources that can be resolved by the UL algorithm
(Cs−1) is obviously less than the theoretical maximum value (Cd+Cs)/2−1.
Next, we modify the UL algorithm and propose the ULP DOA estimation
algorithm, by which the theoretically maximum number of resolvable signals
can be achieved.

First, we construct another extended covariance matrix as follows

R̃u =

[

R∗

4 R
∗

3

R∗

2 R
∗

1

]

(30)

Then, a new cost function J̃ and matrix M̃ can be constructed in a
similar way as before, where M̃ contains four polynomials m̃1,m̃2,m̃3 and
m̃4. The degrees of these four polynomials are from (−L2 + 1) to (L2 − 1),
from (2 − L1 − L2) to 0, from 0 to (L1 + L2 − 2) and from (−L1 + 1) to
(L1 − 1), separately. The true values of θ can also be obtained by setting
the determinant of the matrix M̃ equal to zero, i.e. m̃1m̃4 − m̃2m̃3 = 0.

It’s clear that the order of the polynomials m̃1, m̃4, m̃2, and m̃3 is the
same as that of the m4, m1, m3, and m2, separately. That means the
maximum number of resolvable signals by solving the cost function J or J̃
is the same. However, we can increase this number by adding the two cost
functions together as follows

J(θ, ψ) + J̃(θ, ψ) = qH(M+ M̃)q (31)

Similarly, the DOA estimation result can be obtained by setting the
determinant of the matrix M+ M̃ to zero, i.e.

(m1 + m̃1)(m4 + m̃4)− (m2 + m̃2)(m3 + m̃3) = 0 (32)

We call this new solution the ULP algorithm. The degrees of the polyno-
mials (m1+m̃1) and (m4+m̃4) are the same, which are all from min[−L1+
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1,−L2 + 1] to max[L1 − 1, L2 − 1], where min[·] and max[·] are the opera-
tions to obtain the minimum and the maximum values, respectively. Because
L1 − L2 = Cd − Cs > 0, the degrees can be written as from (−L1 + 1) to
(L1−1). The degrees of the polynomials (m2+m̃2) and (m3+m̃3) are from
(2−L1−L2) to 0 and from 0 to (L1+L2−2), separately. Then, the degree of
(m1+m̃1)(m4+m̃4) is from 2(−L1+1) to 2(L1−1) with a length 4(L1−1),
while the degree of (m2+m̃2)(m3+m̃3) is from (2−L1−L2) to (L1+L2−2)
with a length 2(L1 + L2 − 2). Hence the degree of the whole polynomial
is half that of (m1 + m̃1)(m4 + m̃4) and half that of (m2 + m̃2)(m3 + m̃3)
added together, which is 3L1 +L2 − 4 = Cd+Cs− 2. That means there are
(Cd+Cs− 2) roots in total. Since they appear in reciprocal pairs, there are
Dulp = (Cd + Cs)/2 − 1 possible DOAs. Same as the UL algorithm, all of
these DOAs can be from noncircular sources, or at most (Cd− 1)/2 of them
are circular signals with the rest being noncircular.

After obtaining the DOA θk, the circularity phase ψk can also be calcu-
lated in the same way as the UL algorithm. The vector q can be constructed
as

q =

[

1

−
aT
2
(θk)Un2U

H
n1
a1(θk)+a

T
1
(θk)Un1U

H
n2
a2(θk)

aH
1
(θ)Un1U

H
n1
a1(θk)+a

H
2
(θk)Un2U

H
n2
a2(θk)

]

. (33)

Then, ψk is given by

ψk = π − arg(aT2 (θk)Un2U
H
n1a1(θk) + aT1 (θk)Un1U

H
n2a2(θk)). (34)

4. Compressive Sensing Based DOA Estimation: The Extended
Covariance Matrix (ECM) Algorithm

In this section, we propose a CS-based algorithm which, different from
the subspace-based one, does not require consecutiveness of the virtual sen-
sors, so that we can utilize not only the consecutive elements but also the
nonconsecutive ones generated by the co-arrays.

Similar to (14), we can use all the consecutive and nonconsecutive ele-
ments in rxx and rxx∗ to construct two vectors r̆d and r̆s by merging all the
repeated elements

r̆d = Ădvd + [δ2, . . . , δ2]T

r̆s = Ăsvs
(35)
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where

ăd(θk) = [e−j(2π(p1−pM )dsinθk/λ), . . . , e−j(2π
Cd−1

2
dsinθk/λ),

. . . , ej(2π
Cd−1

2
dsinθk/λ), . . . , ej(2π(pM−p1)dsinθk/λ)]T

ăs(θk) = [e−j(2πd2p1sinθk/λ), . . . , e−j(2πd∆psinθk/λ),

. . . , e−j(2π(∆p+Cs−1)dsinθk/λ), . . . , e−j(2π2pMdsinθk/λ)]T

Ăd = [ăd(θ1), . . . , ăd(θK)]

Ăs = [ăs(θ1), . . . , ăs(θK)]

(36)

Note that elements from e−j(2π
Cd−1

2
dsinθk/λ) to ej(2π

Cd−1

2
dsinθk/λ) are consec-

utive in ăd, while other elements are nonconsecutive ones. Similarly, the
elements from e−j(2πd∆psinθk/λ) to e−j(2π(∆p+Cs−1)dsinθk/λ) are consecutive
ones in ăs, and the others are nonconsecutive ones.

The elements of r̆d have the same expressions as those of rd in (16), while
the elements of r̆s have the same expressions as those of rs in (17), and the
only difference is their range. With the same reason as in the subspace-based
algorithm, C̆s should be odd, so we also use (C̆s − 1) instead of C̆s when it
is even, and the maximum number of DOAs to be resolved can be deduced
as (C̆d + C̆s)/2− 1, theoretically.

As shown in (35), by the original covariance matrix and pseudo covari-
ance matrix, we can construct two virtual subarrays with the received signal
vector given by r̆d and r̆s, steering matrix given by Ăd and Ăs, and source
signal vector given by vd and vs, respectively. Ignoring the effect of noise,
we can rewrite (35) as follows

r̆d = Ăd(Θ)vd

r̆s = Ăs(Θ)vs
(37)

where Θ represents the K real DOAs values. Define Θ̂ as the discrete angle
set that covers all possible directions of the incident signals, which contains
Kg potential incident angles θ̂1, . . . , θ̂Kg , Ăd(Θ̂) and Ăs(Θ̂) as the overcom-
plete dictionaries with structures corresponding to the estimated data model
ˆ̆rd and ˆ̆rs, v̂d and v̂s as the spatial distributions of vd and vs, with Kg ele-
ments in each of them, which have non-zero values only at locations of the
impinging signals.
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Then, the CS-cased DOA estimation problem can be formulated as

min ‖v̂‖1

subject to v̂(i) ≥ ‖[v̂d(i), v̂s(i)]‖2

where ‖ˆ̆rd − Ăd(Θ̂)v̂d‖2 ≤ βd

‖ˆ̆rs − Ăs(Θ̂)v̂s‖2 ≤ βs

(38)

where ‖ · ‖1 and ‖ · ‖2 are the l1-norm and l2-norm, separately, v̂d(i), v̂s(i)
and v̂(i) are the ith elements of v̂d, v̂s, and v̂, corresponding to direction
θ̂i in the set Θ̂, βd and βs are the reconstruction error bounds of ˆ̆rd and ˆ̆rs
respectively. A rough estimate for the values of βd and βs can be obtained
following the method in [26].

The noncircularity phase can also be estimated. Define v̂sk as the kth
peak value of v̂s. Then, ψk can be estimated as

ψk = arg(v̂sk) (39)

Note that the angles {θk}
K
k=1 and {ψk}

K
k=1 have been paired automatically.

We call the above solution the direct covariance matrix (DCM) algorithm.
Define the following two parameters

Ld = (C̆d + 1)/2

Ls = (C̆s + 1)/2
(40)

The DOFs of ˆ̆rd and ˆ̆rs are (2Ld − 1) and (2Ls − 1). As using (2Ld − 1)
elements can construct an Ld×Ld matrix at most and for 2(Ls−1) elements
it is Ls×Ls. For a linear array, these two sequences of elements correspond
to an Ld and Ls length array, and they can resolve (Ld − 1) and (Ls − 1)
signals, respectively. The total number of resolvable signals is determined
by the longer virtual array of the two, which is Ddcm = Ld−1 = (C̆d−1)/2,
and this number is also equal to the maximum number of circular signals
that can be resolved. That means the signals can all be noncircular, or
circular, or a mixture of them. To increase this number, we further propose
the following ECM sparse representation algorithm.

We first combine r̆d and r̆s into an extended vector r̆, and obtain the
following model

r̆ = Ăds(Θ) ·T · v (41)
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where

r̆ =

[

r̆d
r̆s

]

Ăds(Θ) =

[

Ăd(Θ)

Ăs(Θ)

]

T =
[

JK JK
]

v =

[

vd
vs

]

= [η1, . . . , ηK , ρ1e
jψ1η1, . . . , ρKne

jψKnηKn , 0, . . . , 0]
T

(42)

where JK is a K×K matrix with ones on its anti-diagonal. The last K−Kn

elements of v are zero-valued. In detail, we have

v(k) = ηk k = 1, . . . ,K

v(K + k) = ρke
jψkηk k = 1, . . . ,Kn

v(K + k) = 0 k = Kn + 1, . . . ,K

(43)

where v(i) denotes the ith element of v. Then, we go on to define the
corresponding parameters ˆ̆r, Ăds(Θ̂) and v̂, and formulate the following
problem

min ‖û‖1

subject to û(i) ≥ ‖[v̂(i), v̂(Kg + i)]‖2

where ‖ˆ̆r− Ăds(Θ̂) ·T · v̂‖2 ≤ β

(44)

where Ăds(Θ̂) is the new overcomplete dictionary, v̂ = [v̂Td v̂
T
s ]
T with dimen-

sion 2Kg× 1, û is a spatial distribution vector of dimension Kg× 1, β is the

new threshold value which can be calculated as β =
√

β2d + β2s .

Note that the l1 norm is used here as an approximation to the l0 norm for
sparsity maximization. Since the l1 norm penalizes lager weight coefficients
more heavily than smaller ones, the reweighted l1 norm minimisation method
can be employed for a closer approximation to the l0 norm[31, 32, 33, 34].
Using the reweighted l1 norm minimisation method, a lager weighting term
is introduced to those coefficients with smaller non-zero values and a smaller
weighting term to those coefficients with larger non-zero values. This weight-
ing term will change according to the resultant coefficients at each iteration.
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For the jth iteration, the problem (44) can be modified as follows:

min

N
∑

n=1

ζj(n)|ûj(n)|

subject to ûj(i) ≥ ‖[v̂j(i), v̂j(N + i)]‖2

where ‖ˆ̆r− Ăds(Θ̂) ·T · v̂j‖2 ≤ βi

(45)

where the superscript j indicates the value of the corresponding parameters
at the jth iteration, and ζj(n) is the reweighting term for the nth row of
coefficients, given by ζj(n) = (|ûj−1(n)| + γ)−1. Here, γ > 0 is required to
provide numerical stability to prevent ζj(n) becoming infinity at the current
iteration if the value of a weight coefficient is zero at the previous iteration.

The iteration processes are described as follows:

1. For the first iteration (j = 1), calculate the initial value |û| by solving
(44).

2. Set j = j + 1. Use the value of the last (|ûj−1(n)|+ γ)−1 to calculate
ζj(n), and then find v̂j and ûj by solving the problem in (45).

3. Repeat the last step until the positions of non-zero values of the weight
coefficients do not change any more for some number of iterations.

This reweighted scheme can be applied to the DCM algorithm in the
same way and in our simulations both the DCM and the ECM algorithms
are used with their reweighted versions as the non-reweighted ones cannot
give a meaningful result in some of the scenarios considered.

The above constrained l1- norm minimization problems can be solved
using cvx, a package for specifying and solving convex problems [35, 36].

The noncircularity phase can be estimated in the same way as in the
DCM case. Defining v̂k as the kth peak value of v̂(N + i), then ψk can be
estimated as

ψk = arg(v̂k) (46)

The extended array can be considered as the combination of two ULAs
with length Ld and Ls, respectively, which can resolve Decm = Ld+Ls−2 =
(C̆d + C̆s)/2 − 1 signals. These DOAs can all be noncircular, or at most
(C̆d − 1)/2 circular with the rest being noncircular. Because the CS-based
algorithm can utilize the consecutive and nonconsecutive virtual sensors
produced by both co-arrays, the number of resolvable signals by ECM is
larger than that by ULP. Interestingly, if we only consider the consecutive
virtual sensors, the number of resolvable signals by these two algorithms will
be exactly the same.
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Figure 1: Number of resolvable sources by different algorithms using different sparse array
structures.

5. Comparison and Simulation Results

5.1. Number of Resolvable Sources by Different Algorithms

Based on the two commonly used sparse array structures, i.e. the co-
prime array (CPA) and the nested array (NA), we give a comparison of
the number of resolvable sources by the proposed algorithms. Nested arrays
using UL and ULP algorithms are denoted as UL-NA, ULP-NA, respectively,
while co-prime array related algorithms are correspondingly denoted as UL-
CPA and ULP-CPA. On the other hand, for the DCM and ECM algorithms,
we have DCM-NA, ECM-NA, DCM-CPA and ECM-CPA. Define M1 and
M2 as the two parameters in the co-prime array or the nested array. There
are four different algorithms to be examined, and the number of resolvable
signals has been provided in previous sections for the four cases, which is
Dul = Cs − 1, Dulp = (Cd + Cs)/2 − 1, Ddcm = (C̆d − 1)/2 and Decm =

(C̆d + C̆s)/2− 1 for the UL, ULP, DCM and ECM algorithms, respectively.
The results are shown in Fig. 1, and the corresponding array settings are
listed in Tab. 5.1.

It can be seen that the ECM algorithm is better than the DCM algo-
rithm, while the ULP algorithm is better than the UL algorithm. Since
the CS-based algorithm can exploit not only the consecutive virtual sen-
sors, but also the non-consecutive ones, the number of DOAs that can
be resolved by the ECM algorithm is greater than that of the ULP al-
gorithm, especially for co-prime arrays. For example, when the sensor
number M = 6, the number of resolvable DOAs by different algorithms
is Dul = 14, Dulp = 18, Ddcm = 11, and Decm = 19 for the nested array, and
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Table 1: DOFs of different sparse array configurations.

NA NA CPA CPA

M (M1,M2) (Cd, Cs) (M1,M2) (Cd, Cs)

(C̆d, C̆s) (C̆d, C̆s)

2 (1, 1) (3, 3) −− −−
(3, 3) −−

3 (1, 2) (7, 5) −− −−
(7, 5) −−

4 (2, 2) (11, 9) −− −−
(11, 9) −−

5 (2, 3) (17, 11) −− −−
(17, 13) −−

6 (3, 3) (23, 15) (2, 3) (15, 11)
(23, 17) (17, 15)

7 (3, 4) (31, 19) −− −−
(31, 21) −−

8 (4, 4) (39, 25) −− −−
(39, 27) −−

9 (4, 5) (49, 29) (3, 4) (29, 21)
(49, 33) (35, 29)

10 (5, 5) (59, 35) −− −−
(59, 39) −−

11 (5, 6) (71, 41) −− −−
(71, 45) −−

12 (6, 6) (83, 49) (4, 5) (47, 31)
(83, 53) (59, 47)

13 (6, 7) (97, 55) −− −−
(97, 61) −−
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it is Dul = 10, Dulp = 12, Ddcm = 8, and Decm = 15 for the co-prime array.
With the increase of the total number of sensors, the ECM algorithm and
the ULP algorithm will be more and more advantageous than the other two.

5.2. Computational Complexity of Different Algorithms

The UL and ULP algorithms are subspace-based, while the DCM and
ECM algorithms are based on sparse representation solved by iterative con-
vex optimistion methods. So the computational complexity of the for-
mer two will be much lower than the latter ones in theory. The compu-
tational complexity of the UL and ULP algorithms are mainly on sub-
space derivations, which are of O{[(Cd + 1)/2 + Cs + 1]3} for UL and
O{2[(Cd + 1)/2 + Cs + 1]3} for ULP. The computational complexity for
solving (38) and (44) through second-order cone programming is O[(2Kg)

3].
Assume J is the total number of iterations, and then the computational
complexity of (45) is O[J(2Kg)

3]. It is clear that the computational com-
plexity of UL and ULP is mainly dependent on the number of second-order
co-array sensors Cd and Cs, while it is mainly determined by the searching
grade sizeKg for DCM and ECM. AsKg is always much greater than Cd and
Cs, the DCM and ECM algorithms will always have larger computational
complexity than the UL and ULP algorithms.

5.3. Simulation Results

In this part, simulations are performed to demonstrate the performance
of the derived algorithms, i.e. UL, ULP, DCM and ECM. When using CS-
based algorithms, the full angle range from −90◦ to 90◦ is discretized with a
step size of 0.1◦, and the number of reweighted iterations is set to be three.

In the first set of simulations, a nested array of M = 3 sensors is con-
sidered. The parameters of the sparse array is set according to Sec. 5.1 as
M1 = 1 andM2 = 2. In this situation, the number of signals can be resolved
by the four algorithms (UL-NA, ULP-NA, DCM-NA and ECM-NA) isDul =
4, Dulp = 5, Ddcm = 3 and Decm = 5, respectively. There are five BPSK
signals impinging on the array from directions (−15◦,−5◦, 5◦, 15◦, 25◦). The
number of data snapshots is 2000 and the signal-to-noise ratio (SNR) is
10dB. The simulation results show that the UL-NA algorithm has failed
to generate any meaningful result, because the number of roots on the unit
circle is less than 10 in this case. The number of roots that are on the
unit circle of the ULP-NA is exactly 10, and the DOA estimation results
are (−14.78◦,−4.23◦, 5.34◦, 9.48◦, 14.95◦), very close to the real ones. The
results for the DCM-NA and ECM-NA algorithms are shown in Fig. 5.3,
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Figure 2: DOA estimation results of DCM-NA and ECM-NA.
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Figure 3: DOA estimation results with a varying SNR.

from which we can see that the DCM-NA can only resolve three DOAs while
ECM-NA can resolve all of them effectively.

In the second set of simulations, a nested array with M = 6 sensors is
considered, and the parameters of the nested array are M1 = M2 = 3. In
theory, the number of signals that can be resolved is 14, 18, 11 and 19 for
the UL-NA, ULP-NA, DCM-NA and ECM-NA algorithms, respectively. Six
signals arrives from directions (−25◦,−15◦,−5◦, 5◦, 15◦, 25◦). Among them,
two are circular, three are BPSK signals, and one is UQPSK signal. The
number of snapshots is 2000. The SNR varies from −10dB to 22dB with
a step size of 4dB. The performance of the estimators is obtained by 500
Monte-Carlo simulations, and the root-mean-square error (RMSE) of DOA
estimates is shown in Fig. 3, where the legend ECM −NA− 0 denotes the
unweighted ECM scheme in (44).

It can be seen that when the SNR is low, the performance of the CS-based
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Figure 4: DOA estimation results with a varying snapshot number.

algorithms is much better than the subspace-based ones. When the SNR
is greater than 9dB, the subspace-based algorithms start to outperform the
CS-based ones. The estimation accuracy of the ECM-NA algorithm is always
better than the DCM-NA, while the accuracy of the ULP-NA is better than
the UL-NA. Since the number of DOFs exploited by the ECM-NA is the
largest, in theory it should always have the best performance. The main
reason why it was outperformed by the subspace-based algorithms when
SNR is greater than 9dB is that the performance of the CS-based algorithms
is dependent on the chosen grid size for the full angle range and the larger the
grid size, the better their performance. For example, we have tried a step size
of 0.05◦ instead of 0.1◦ and the CS-based algorithms were only outperformed
by the subspace-based ones when the SNR is larger than 11dB, but at the
cost of significantly increased computational complexity. This is the so-
called off-grid problem and many methods have been proposed to tackle it
and most of them can be applied here directly [37, 38, 39, 40]. Moreover,
as expected, the reweighted scheme of ECM in (45) always performs better
than the unweighted one in (44), especially for low SNR ranges.

In the third set of simulations, we fix the SNR at 10 dB and change the
snapshot number. All the other parameters are the same as before. The
results are shown in Fig. 4.

It can be seen that RMSEs of the CS-based algorithms do not change
very much for the considered range of snapshot number, but those of the
subspace-based algorithms varies a lot for different number of snapshots.
When the number of snapshots is greater than 1700, the estimation accuracy
of the subspace-based algorithms outperforms the CS-based one.

Finally, we give a brief comparison of the running time for different
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Table 2: Running time for different algorithms.

UL ULP DCM ECM

Running Time 0.0282s 0.0324s 149.2352s 175.4136s

algorithms as an indicator of their computational complexity. The number
of snapshots is fixed at 2000 and the average processing time for the four
different algorithms are listed in Tab. 5.3. It can be seen from the table
that the time used by the CS-based algorithms is more than 5000 times that
of the subspace-based ones, highlighting a common issue of the CS-based
DOA estimation algorithms in comparison with subspace-based ones.

6. Conclusion

The virtual array generation process based on typical sparse arrays has
been studied for a mixture of circular and non-circular impinging signals by
analysing both the covariance matrix and the pseudo covariance matrix of
the physical array. Two sub-arrays can be created by the matrices: one is
the traditional difference co-array and the other one is the new sum co-array.
The number of consecutive virtual array sensors has been provided for the
nested array, but it is difficult to give a closed-form result for a general sparse
array. By arranging the elements of the extended covariance matrix of the
physical array in different ways, two classes of DOA estimation algorithms
have been developed. The first is subspace-based and two algorithms are
developed: one is called UL and one is called ULP; the second class is
CS-based and again two algorithms are developed, which are called DCM
and ECM, respectively. Both the consecutive and non-consecutive parts of
the virtual array can be exploited by the CS-based algorithms, while only
the consecutive part is exploited by the subspace-based ones. As a result,
the CS-based solution can have a better performance than the subspace-
based one, although at the cost of a significantly increased computational
complexity. Simulation results have been provided to verify the performance
of the proposed algorithms.
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