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We present recent developments obtained in the so-called N2LO exten-
sion of the usual Skyrme pseudo-potential. In particular, we discuss the
isovector splitting mass in infinite nuclear matter and the pairing gaps of
selected semi-magic even-even nuclei.
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1. Introduction

Skyrme’s original idea [1] was to build an effective zero-range pseudo-
potential as a momentum expansion of a given finite-range form factor. In
Ref. [2], we have explicitly discussed how it is possible to derive (starting
from a finite-range interaction such as Gogny [3] or M3Y [4]), all the terms
of the Skyrme interaction up to any order. At order three, the results are
in agreement with the previous calculations done in Refs. [5, 6] when one
imposes that the N3LO1 pseudo-potential is invariant under Galilean and
local gauge transformations.

The main motivations behind exploring such extended versions of the
Skyrme pseudo-potential have been discussed in Ref. [7]: the current dis-
crepancies observed between predicted values with the standard Skyrme

1 NℓLO with ℓ = 1, 2, 3, . . . is the name given to the pseudo-potential or a functional

when the highest power of the momentum operator kept before truncating the ex-

pansion is k2ℓ.

(1)
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pseudo-potential and the measured observables can’t be further reduced
by using improved fitting procedures. It is thus time to explore richer
functionals that may help us getting theoretical predictions closer to the
experimental measurements.

The first decisive step can be found in Ref. [8] where the authors have
used for the very first time the extended N3LO functional [5] to test the
role of higher order terms. By means of density matrix expansion (DME),
they have shown that the next-to-next-to-leading order (N2LO) plays an
important role in reducing by roughly one order of magnitude the discrep-
ancy between the exact result and the DME expansion. By extending the
formalism to N3LO, the DME results further improve and get closer and
closer to the exact values, thus showing that the expansion converges.

Then, in Ref. [9], we have performed the very first study of the extended
Skyrme N2LO pseudo-potential in the case of spherical even-even nuclei. In
that article, we have obtained the first parametrisation of such a pseudo-
potential using properties of some selected double-magic nuclei. In the
present article, we continue our investigation, by extending our analysis to
open-shell nuclei and in particular exploring the behaviour of pairing gaps
along some isotopic chains [10] using the N2LO pseudo-potential.

The article is organised as follows: in Sec. 2 we briefly summarise the
key-concepts of the N2LO Skyrme pseudo-potential. In Sec.3, we discuss the
properties of the effective mass and in Sec. 4 we discuss pairing properties
of the SN2LO1 interaction. We finally provide our conclusions in Sec. 5.

2. Skyrme N2LO

The N2LO Skyrme pseudo-potential, as described in Refs. [5, 6, 11], is
a generalisation of the standard Skyrme interaction, corresponding to the
expansion of the momentum space matrix elements of a generic interaction
in powers of the relative momenta k,k′ up to the fourth order. It is written
as the sum of three terms [12]

VN2LO = V C
N2LO + V LS

N1LO + V DD
N1LO . (1)

The central term reads

V C
N2LO = t0(1 + x0Pσ) +

1

2
t1(1 + x1Pσ)(k

2 + k′2) + t2(1 + x2Pσ)(k · k′)

+
1

4
t
(4)
1 (1 + x

(4)
1 Pσ)

[

(k2 + k′2)2 + 4(k′
· k)2

]

+t
(4)
2 (1 + x

(4)
2 Pσ)(k

′
· k)(k2 + k′2). (2)

In the above expression, a Dirac function δ(r1−r2) is to be understood [13].
The density-dependent term V DD

N1LO and the spin-orbit term V LS
N1LO have the



mazurian printed on December 8, 2017 3

same structure as in the standard Skyrme interaction [14]. An alternative
to the use of a density-dependent term would be the inclusion of an explicit
three-body term. This possibility has been discussed in details in Ref. [15].

From the interaction given in Eq. (1), we are in position to derive the
corresponding functional form by averaging over Hartree-Fock (HF) states.
Since the focus of the article is the study of semi-magic even-even nuclei, we
limit ourselves to the time-even spherically-symmetric case and we obtain

E =
∑

t=0,1

Cρ
t ρ

2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt −

1
2 C

T
t J2

t + C∇J
t ρt∇ · Jt

+ C
(4)∆ρ
t (∆ρt)

2 + C
(4)Mρ
t

(

ρtQt + τ2t

)

+ C
(4)Mρ
t

[

Re(τt,µν)Re(τt,µν) − Re(τt,µν)∇µ∇νρt

]

− C
(4)Ms
t

[

(∇µJt,µν)
2 + 4Jt,µνVt,µν − Im(Kt,µνκ)Im(Kt,µνκ)

]

. (3)

We refer to Ref. [9] for a more detailed discussion on the properties of the
N2LO functional. By comparing Eq. (3) with the standard form of the
Skyrme functional (N1LO), see for example Ref. [16], we observe the ap-
pearance of new densities: Vt,µν ,Kt,µνκ, Qt, τt,µν whose complete expressions
can be found in Ref. [9]. In this reference, we have also given some other
expressions of scalar quantities related to these new densities.
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Fig. 1. (Colors online) Isoscalar densities in 132Sn obtained with SN2LO1 func-

tional. See text for details.

In order to have a physical insight and give some order of magnitude, we
show in Fig. 1, the radial profile of all these local densities for 132Sn using
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the SN2LO1 interaction. We observe that the density Q has similar order
of magnitude and shape as the kinetic density τ , while the other additional
densities are peaked at the surface of the nucleus and almost zero in the
bulk of the nucleus. It is presently difficult to estimate the respective role
of these new densities since only one parametrisation is available, but we
plan to investigate in the near future their properties in a more systematic
way along the nuclear chart.

3. Effective mass

The value of the effective mass at saturation density [17] has a strong
impact on the density of states around the Fermi energy and thus on the un-
derlying pairing properties. In the fitting protocol used to adjust SN2LO1,
we have imposed an explicit constraint on the value of the effective mass
m∗/m at saturation density (ρ0=0.16 fm−3) in infinite symmetric nuclear
matter (SNM). From our fit, we have obtained m∗/m = 0.71; such a value
should be compared with the one derived for SLy5* m∗/m = 0.7 and fitted
with a similar protocol [18]. In Fig. 2 a, we show the evolution of the effec-
tive neutron mass, m∗

n/m, as a function of the density ρ for SNM and pure
neutron matter (PNM) for both interactions.
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Fig. 2. (Colors online) Panel a: neutron effective mass calculated in SNM and

PNM for the two interactions as a function of the density of the infinite system.

The vertical dashed line represents the saturation density ρ0 of SNM. See text for

details. In Panel b we show the evolution of neutron and proton effective masses

at saturation density and in function of the asymmetry parameter Y.

We observe that in both cases (SLy5* and SN2LO1), the behaviour of neu-
tron effective mass is very similar. In both cases, we observe the absence of
poles in the effective mass up to very high densities. In Fig. 2 b, we show



mazurian printed on December 8, 2017 5

the evolution of proton and neutron effective masses as a function of the
asymmetry parameter Y [19], from SNM (Y=0) to PNM (Y=1). We notice
that mass splitting is essentially zero at saturation density. The splitting is
slightly bigger in SN2LO1 than in SLy5*, but they are very close to zero.
We refer the reader to Ref. [17] for a devoted study of the isovector mass
splitting in Skyrme functionals.

4. Pairing gaps

In this section, we perform a first systematic study of the pairing gaps
using the SN2LO1 functional. As for the SLy5* functional [18], it has
been fitted using properties of infinite nuclear matter and doubly-magic
nuclei with the additional stability constraint coming from Linear Response
theory [20, 21, 22]. This particular choice leaves us complete freedom in
determining the parameters entering the pairing channel. Therefore, for
the current analysis, we have decided to use the numerical code WHISKY [9]
to solve the Hartree-Fock-Bogoliubov equations (HFB) [23] for a simple
density dependent pairing interaction of the form [24]

Vpair(r1, r2) = V0

[

1− η
ρ(R)

ρ0

]

δ(r1 − r2) , (4)

where R = (r1 + r2)/2 is the center of mass of the interacting particles
and V0 is the strength of the interaction. To avoid an ultraviolet divergency
associated with such a contact interaction [25], we adopted a sharp-cut off in
the quasi-particle space Ecut = 60 MeV. It is then possible to determine the
pairing field ∆(r). As it is well-known, its shape can be modified by setting
the value of the parameter η to 0, 1/2 and 1, thus producing a volume,
mixed and surface pairing field [26], respectively. To quantify the amount
of pairing correlations, we calculated the average pairing gap defined as [27]

∆̄ =

∫

∆(r)ρ̃(r)dr
∫

ρ̃(r)dr
, (5)

where ρ̃q is the pairing density. The results are depicted in Fig. 3. The
average pairing gaps have been obtained using SN2LO1 for the three values
of η = 0, 1/2, 1 mentioned above as a function of the neutron number N .
The experimental values have been extracted from experimental binding
energies [28] using the standard the three-point formula [29]. Since our
numerical code works in spherical symmetry only, we limited ourselves to
the four isotopic chains of semi-magic nuclei.
For these calculations, we have used a pairing strength of V0 = −200 MeV
fm3 (volume), V0 = −300.2 MeV fm3 (mixed) and V0 = −496.6 MeV fm3
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Fig. 3. (Colors online) Evolution of average pairing gaps for Ca, Ni, Sn and Pb

isotopic chains in function of the neutron number N . Full symbols correspond to

the SN2LO1 interaction, while the empty ones to SLy5*.The theoretical pairing

gaps have been calculated according to Eq.5. See text for details.

(surface). Since the pairing interaction is not adjusted during the fitting
procedure, we adjusted in a completely arbitrary way the pairing strength
to the same value of pairing gap in 120Sn. From this figure we can conclude
that the underlying single-particle spectrum is reasonable and the resulting
pairing gaps give a reasonable description of available experimental data.
For completeness, we have also repeated the same calculations using SLy5*
for the mean field and the same pairing interaction. In the figure, we have
reported only (for clarity) the case of volume-type pairing interaction (same
strength). The two other not reported cases give similar results compared
to the SN2LO1 ones. The small differences observed among the two interac-
tions are due to small differences in the underlying single-particle structure.
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5. Conclusions

In this article, we have discussed some important properties of the ex-
tended Skyrme interaction N2LO. By using the set of parameters deter-
mined in Ref. [9], we have first studied the behaviour of the effective mass
as a function of the density and isospin asymmetry of the infinite nuclear
medium. The isovector mass splitting is still not compatible with ab−initio
findings [30], but the current results go in the right direction. Therefore,
one may expect, adding such explicit constraint into the fitting protocol,
that we should be able to obtain a positive splitting [19].

We have discussed the isotopic evolution of pairing gaps for some rel-
evant isotopic chains of semi-magic nuclei using the SN2LO1 functional
plus density-dependent contact pairing interaction. At present the extended
functional provides us with results that are qualitatively of the same level
of accuracy as SLy5*, both being fitted with a very similar fitting protocol
including the explicit constraint on the linear response of infinite nuclear
matter [22]. This is an improvement compared to the vast majority of
existing functionals that manifest instabilities in the spin-channels. Unfor-
tunately at present, we have not been able to find a quantitative indicator
that proves the necessity of using the extended pseudo-potential compared
to the simpler SLy5*. A more rigorous statistical analysis of the properties
of the new functional is now mandatory [31] as well as a rethinking of the
penalty function used during the fit to identify the most relevant observ-
ables that may help better constraining higher order parameters and avoid
sloppiness [32] in some directions of parameter space.
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