
This is a repository copy of Seasonality of Formic Acid (HCOOH) in London during the 
ClearfLo Campaign.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/125048/

Version: Published Version

Article:

Bannan, Thomas J., Murray Booth, A., Le Breton, Michael et al. (12 more authors) (2017) 
Seasonality of Formic Acid (HCOOH) in London during the ClearfLo Campaign. Journal of 
Geophysical Research: Biogeosciences. ISSN 2169-8961 

https://doi.org/10.1002/2017JD027064

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Seasonality of Formic Acid (HCOOH) in London

during the ClearfLo Campaign

Thomas J. Bannan1 , A. Murray Booth1, Michael Le Breton1, Asan Bacak1, Jennifer B. A. Muller1,

Kimberley E. Leather1, M. Anwar H. Khan2 , James D. Lee3,4, Rachel E. Dunmore4 ,

James R. Hopkins3,4, Zoë L. Fleming5, Leonid Sheps6, Craig A. Taatjes6 , Dudley E. Shallcross2 ,

and Carl J. Percival1,7

1Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Science, University of Manchester,

Manchester, UK, 2Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Bristol, UK, 3National Centre

for Atmospheric Science, University of York, York, UK, 4Wolfson Atmospheric Chemistry Laboratories, Department of

Chemistry, University of York, York, UK, 5National Centre for Atmospheric Science, Department of Chemistry, University of

Leicester, Leicester, UK, 6Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA, 7Now at Jet

Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract Following measurements in the winter of 2012, formic acid (HCOOH) and nitric acid (HNO3)

were measured using a chemical ionization mass spectrometer (CIMS) during the Summer Clean Air for

London (ClearfLo) campaign in London, 2012. Consequently, the seasonal dependence of formic acid

sources could be better understood. A mean formic acid concentration of 1.3 ppb and a maximum of

12.7 ppb was measured which is significantly greater than that measured during the winter campaign

(0.63 ppb and 6.7 ppb, respectively). Daily calibrations of formic acid during the summer campaign gave

sensitivities of 1.2 ion counts s�1 parts per trillion (ppt) by volume�1 and a limit of detection of 34 ppt.

During the summer campaign, there was no correlation between formic acid and anthropogenic emissions

such as NOx and CO or peaks associated with the rush hour as was identified in the winter. Rather, peaks

in formic acid were observed that correlated with solar irradiance. Analysis using a photochemical

trajectory model has been conducted to determine the source of this formic acid. The contribution of

formic acid formation through ozonolysis of alkenes is important but the secondary production from

biogenic VOCs could be the most dominant source of formic acid at this measurement site during

the summer.

1. Introduction

Organic acids, the most abundant being formic acid (HCOOH), are ubiquitous in the troposphere. Formic acid

has been found in urban, rural, marine, polar, and remote areas in both the gaseous phase and aerosol phase

(Chebbi & Carlier, 1996; Keene & Galloway, 1988; Khare et al., 1999; Le Breton et al., 2012; Yu, 2000) with gas

phase concentrations ranging from low hundreds of parts per trillion (ppt) to a few ppb (Paulot et al., 2011).

Organic acids contribute to the acidity of precipitation (Andreae et al., 1988; Keene & Galloway, 1988; Keene

et al., 1983), well known to be a problem in urban environments. Formic acid acts as a major contributor to

cloud condensation nuclei (Yu, 2000). This is a result of their higher hygroscopicity at comparatively low

critical supersaturations when formic acid is incorporated into the aerosol (Novakov & Penner, 1993).

Hence, formic acid ultimately influences total indirect radiative forcing, a poorly understood effect in the

atmosphere (Solomon, 2007).

Despite an understanding of numerous sources of formic acid, relative importance of sources is poorly

quantified (Chebbi & Carlier, 1996) and models simulating concentrations in the atmosphere generally

underestimate significantly when compared with measured results by factors up to 50 (Ito et al., 2007;

Millet et al., 2015; Paulot et al., 2011; von Kuhlmann et al., 2003). Discrepancies between modeled and

observed concentrations are partly due to a fundamental shortfall of data (Stavrakou et al., 2012) causing a

lack of understanding of processes influencing concentrations. The differences between predicted and

measured concentrations of organic acids in the atmosphere have led to many suspecting there are missing

source terms which are unaccounted for (Leather et al., 2011). Based on the work of Nguyen et al. (2015), an

emission flux on the order of 1 nmol m�2 s�1 is required during the day to match the discrepancies between

modeled and measured formic acid.
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Secondary photochemical production of formic acid, primarily from biogenic precursors such as isoprene, has

been shown to be a dominant source of formic acid globally (Neeb et al., 1997; Paulot et al., 2011; Sanhueza

et al., 1996; Veres et al., 2011), but the magnitude is highly uncertain. Photochemical production proceeds by

the ozonolysis of terminal alkenes, the majority of which are released from vegetation, and the subsequent

reaction of Criegee intermediates (e.g., Johnson & Marston, 2008; Leather et al., 2011; Taatjes et al., 2013,

2014; Welz et al., 2012). A detailed list of alkenes that are known to produce carboxylic acids via ozonolysis

reactions can be found in Chebbi and Carlier (1996), with isoprene ozonolysis being a dominant source

(Paulot et al., 2011). As temperature and light intensity have a strong effect on emission rates of alkenes such

as isoprene, the potential importance of seasonality and global location on formic acid production is evident.

Other known sources of formic acid nonexhaustively include primary emissions from biogenic and anthropo-

genic activity, secondary production via alkene ozonolysis (Sanhueza et al., 1996), acetaldehyde tautomeriza-

tion to vinyl alcohol, followed by reaction with OH (Andrews et al., 2012; Millet et al., 2015), biomass burning

(Andreae & Merlet, 2001; R’Honi et al., 2013), and photodegradation of secondary organic aerosol (Malecha &

Nizkorodov, 2016). In urban environments, the photooxidation of enols is also a formic acid source (Archibald

et al., 2007). A detailed inventory of known sources can be found in Paulot et al. (2011) with contributions

depending on factors such as anthropogenic activity, type, and amount of vegetation and meteorological

conditions (e.g., Avery et al., 2001; Jones et al., 2017).

Measured global formic acid concentrations do show seasonal variations, directly correlated with growing

seasons (Andreae et al., 1988; Grutter et al., 2010; Keene & Galloway, 1988; Peña et al., 2002) suggesting that

terrestrial vegetation is a significant source of carboxylic acids. Rinsland et al. (2004) also showed the impor-

tance of seasonality of formic acid production with concentrations between July and September being a

factor of 2.5 higher than October through December. This was in good agreement with Talbot et al. (1988)

who showed an increase by a factor of 2.7 in the growing season but much lower than that reported from

Mount Lemmon, Arizona, where an increase by a factor of 7.5 was observed in summer (Johnson &

Dawson, 1993).

Globally, only 10% of total formic acid is said to be produced by fire events or anthropogenic means

(Stavrakou et al., 2012). The importance of direct anthropogenic emissions of formic acid during winter in

London was shown in the Clean Air for London (ClearfLo) winter intensive observation period (Bannan

et al., 2014). The winter study presented no evidence of production from biogenic or secondary photochemi-

cal pathways but demonstrated that direct anthropogenic emissions were the dominant source of formic

acid at this time and location. High correlations with NOx, CO, and rush hour periods with formic acid produc-

tion and no correlation with nitric acid or ozone during the complete winter ClearfLo time series showed

that this organic acid was released directly from vehicle emissions (Bannan et al., 2014). Global modeling

using the emission factors derived from London during winter suggested that in the northern midlatitudes,

around major urban centers, the contribution of formic acid from direct emissions at particular locations

(Northern Europe) can reach up to 30% (Bannan et al., 2014). Therefore, it is necessary to establish if the

importance of direct anthropogenic emissions to the total formic acid concentration is isolated to just the

winter months in London, and likely other mega cities, or if other sources in the summer dominate or at least

contribute to the overall concentrations of formic acid at this time.

This study will compare the results of formic acid production from winter (January to February 2012; Bannan

et al., 2014) with the summer (July to August 2012) as part of the Clean Air for London (ClearfLo) campaign to

assess the importance of seasonality to formic acid production at this location.

2. Experimental

2.1. Site Description

Measurements as part of the ClearfLo summer campaign (http://www.clearflo.ac.uk/) were made in North

Kensington, London, between 20 July and 19 August 2012. The ClearfLo project aims to provide long term

combined atmospheric measurements, resulting in a greater accuracy for future predictions of air quality,

specifically within the city of London. Measurements as part of the ClearfLo campaign were primarily taken

during approximately 1 month long intensive observations for two periods, one in the winter

(January–February 2012) and the second in summer (July–August 2012). The summer measurement period
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coincided with the 2012 Olympic Games, providing an opportunity to assess how such a large event in a city

influenced important atmospheric species. Also, the site is an air quality monitoring station run by the

Automatic Urban and Rural Network (AURN). Information from which can be found in Bigi and Harrison

(2010), presenting results between the years of 1996–2008 of CO, NOx, SO2, and PM10. Results from Bigi

and Harrison (2010) suggest that this location in North Kensington can be defined as an urban

background site.

Detailed site and instrumental descriptions have already been included in Bohnenstengel et al. (2015) and

Bannan et al. (2014). The site and instrument set up for the summer are identical apart fromminor procedural

changes in the running of the CIMS. The site is located at 51.521055°N, 0.213432°W based in the grounds of

the Sion Manning School, within a residential area, 7 km west of Central London. The summer measurement

period was held during school holidays, so traffic patterns were slightly altered by this but the residential

traffic would be unaffected.

2.2. Chemical Ionization Mass Spectrometry

A chemical ionization mass spectrometer (CIMS) was utilized to make measurements of formic and nitric acid

as well as other trace gaseous species at a 1 Hz frequency. The CIMS selectively ionizes specific gas phase

species using I� as a reagent gas which is analyzed by a quadrupole mass spectrometer. This system was

developed by the Georgia Institute of Technology and has been described by Nowak et al. (2007). The system

and calibration set up has also been described by Bannan et al. (2014) and shown in Figure 1. Measurements

were made simultaneously with ClNO2 and N2O5 (Bannan et al., 2015). The set up between the winter and

summer campaigns was identical to allow continuity of results with only minor procedural changes in the

timings of calibrations been changed. Details of which will be described in full in a following section.

2.3. Ionization Scheme

I� has been used successfully and selectivity as a reagent ion in the CIMS in numerous ground and airborne

bases studies (Huey et al., 1995; Le Breton et al., 2012, 2014; Slusher et al., 2004) and was the same ionization

scheme used in the winter study to measure organic acids among other species also (Bannan et al., 2014).

Specifically, for the Manchester CIMS the methyl iodide reagent ions were produced as previously described

by Le Breton et al. (2012), from a gas mixture which comprised 0.5% methyl iodide (CH3I (99.5%, Sigma-

Aldrich), H2O (0.5%) in N2 (99.998%, BOC)). The CH3I mixture and N2 (99.998%, BOC), at flow rates of

1 cm3 min�1 and 1.5 standard liters per minute, respectively, are passed over the alpha-emitting radioactive

source (Polonium-210 inline ionizer, NRDinc Static Solutions Limited) creating an excess of I� and I. (H2O)
� in

the ionization region which react with the species of interest for detection.

The sensitivity of the mass spectrometer is dependent directly on the amount of I · H2O
� in the system, as it is

the I · H2O
� and not I� that is the most efficient ionizer of the species such as formic (R1) (Slusher et al., 2004).

As illustrated in Le Breton et al. (2014) above a threshold of 1 × 105 counts per second (cps) of I · H2O
� the

Figure 1. Schematic of the CIMS used in this study.
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sensitivity to formic acid is independent of relative humidity with the tuning of our system. Throughout the

ClearfLO measurement period the average I · H2O
� was in excess of 4 × 105 cps, well above the threshold

required for sensitivity to the independent to changes in water vapor. No normalization was therefore

required. This was achieved through the tuning of the ion optics but as H2O also is added to the ionization

mix to this further ensures that that the sensitivity of the system is independent to that of fluctuation in ambi-

ent relative humidity, as used by Le Breton et al. (2014).

I�·H2On þ HC Oð ÞOH➔HC Oð ÞOH·I�·H2On(R1)

2.4. Formic Acid Calibration, Sensitivity, and Limit of Detection

Formic and nitric acid instrumental backgrounds were determined for 20 continuous minutes every 180 min.

These were determined by passing the sample air through densely packed sodium bicarbonate coated nylon

shavings, changed weekly, which act as an efficient acid scrubber (Huey, 2007). Twice daily calibrations for

formic and nitric acid were also run using a formic and nitric permeation tubes as well as a diluted flow of

0.001% formic acid gas mixture. Instrumental sensitivities for formic and nitric acid were calculated to be

1.2 and 0.84 ion counts s�1 pptv�1, respectively. The 3σ limit of detection for formic acid during the full

campaign was 34 ppt. The same data quality assurance measures described in Bannan et al. (2014) were

applied in the summer observation period.

2.5. CIMS Analysis and Data Acquisition

The CIMS continuously monitors 11 mass peaks with a dwell time of 100 ms. Sampling and calibration cycles

are averaged to 30 s, from 1 s data. Correlation with meteorological and chemistry data are completed with

averaged data over 5 min.

2.6. Photochemical Trajectory Model

A photochemical trajectory model has been used to compare with the measurement suite. The model has

been described in detail in previous papers (Johnson, Utembe, and Jenkin, 2006; Johnson, Utembe, Jenkin,

Derwent, et al., 2006; Utembe et al., 2005). Meteorological back trajectories derived from the NOAA online

trajectory service (http://ready.arl.noaa.gov/HYSPLIT_traj.php) are used to drive the photochemical model

(air parcel) that integrates the continuity equation for each chemical species in the model. Pressure, tempera-

ture, terrain height, mixed layer depth, relative humidity, and the zenith angle of the Sun are calculated at

each time step and are used to calculate kinetic rate coefficients and photolysis rates of the certain species.

If the air parcel is in the boundary layer then emissions into the air parcel and dry deposition of certain species

out of the air parcel can take place. A species-dependent dry deposition velocity approach was used for dry

deposition. More details about the deposition velocities for the gas phase chemical species used in themodel

can be found in Derwent et al. (1996) and Abdalmogith et al. (2006). The formic acid dry deposition velocity

was set to 2.0 cm/s based on von Kuhlmann et al. (2003) study. No allowance was made for the wet deposi-

tion of formic acid. The deposition loss of formic acid is crudely represented for in the model which can

impact the formic acid prediction in the photochemical trajectory model (PTM) study. Emissions of NOx,

CO, SO2, NH3, CH4, and anthropogenic NMVOCs are taken from the NAEI (http://naei.defra.gov.uk) for the

UK, CORINAIR (http://www.eea.europa.eu), for certain parts of the EU, including Ireland and France and

EMEP (http://www.emep.int) for the remaining European areas. The biogenic emissions inventory used is

based on the work outlined in Simpson et al. (1995). The representation of biogenic VOC emissions has been

described in detail elsewhere (Johnson, Utembe, Jenkin, Derwent, et al., 2006). The speciation of the emitted

anthropogenic VOCwas based on the NAEI, which identifies 650 individual species (Goodwin et al., 2001). The

speciation of the total NMVOC emissions into 115 individual hydrocarbons (21 alkanes, 20 alkenes/alkynes

including 11 terminal alkenes, 18 aromatics, 16 carbonyls, 17 alcohols/glycols, 12 ethers/glycol ethers, 3

organic acids, and 8 esters) which contribute ~66% of the total NAEI emissions, by mass. The remaining

34% from over 500 hydrocarbons which were emitted in the form of appropriate surrogates with the basis

of the chemical class and reactivity. The relative contributions of the individual species to the total emissions

can be found in Utembe et al. (2005).

The chemical mechanism used in a photochemical trajectory model (PTM), is the Common Representative

Intermediates (CRI) mechanism version 2. The detailed description of the CRI mechanism is given by

Watson et al. (2008) with updates highlighted in Jenkin et al. (2008), and the full mechanism is available
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via the Master Chemical Mechanism (MCM) website (http://mcm.leeds.ac.

uk/CRI/). The rate coefficients specified as a function of temperature and

incident light (values taken from either the MCM (http://mcm.leeds.ac.

uk/) and/or the Jet Propulsion Laboratory kinetic evaluation reports

(http://jpldataeval.jpl.nasa.gov/), assuming perfect mixing within any

given air parcel. The CRI mechanism consists of methane and 115 emitted

nonmethane hydrocarbons using 434 chemical species competing in

1,183 photochemical reactions and gives excellent agreement in terms

of its ability to produce ozone with the MCM v3.1 over a full range of

NOx levels (Jenkin et al., 2008; Watson et al., 2008). Trajectories are inte-

grated every hour starting 96 h previously to arrive at the measurement

point so that a complete time series for the whole campaign can

be generated.

2.7. Supporting Measurements

Measurements of NOx were made using a chemiluminescence instrument

(Air Quality Design Inc., USA). Ozone measurements were made using a UV Absorption TEI 49C and 49i

(Thermo Scientific) with a limit of detection of 1 ppb. CO was measured using an Aerolaser AL 5002 UV fluor-

escence instrument which was calibrated using an Air Products 200 ppb CO in air standard that was certified

to NPL standards.

Isoprene measurements were made using a dual channel GC-flame ionization detector and was operated by

the National Centre for Atmospheric Science (NCAS) Facility for Ground Atmospheric Measurements (FGAM)

(now the Atmospheric Measurements Facility (AMF)) with the instrument set up and calibration described in

Hopkins et al. (2003) and its deployment during ClearfLO described in detail by Dunmore et al. (2015).

2.8. Dispersion Modeling

Dispersion modeling was carried out using the UK Met Office’s Numerical Atmospheric-dispersion Modeling

Environment (NAME) dispersion model (Jones et al., 2007); see detail in Bohnenstengel et al. (2015). The

NAME dispersion model was used to produce 3-hourly averaged air mass footprints for the campaign period

that tracks the air mass origins during the previous 24 h. A count of particle concentration was taken every

15 min during the 24 h period and summed together to create a probability footprint. A regional map over

the 24 h domain was used to count the number of particles traveling through predefined regions including

UK continental, Atlantic Ocean, the Channel, the North Sea and continental Europe. For each 3-hourly

footprint, the total amount of particles counted in each region was translated into a % regional influence

(from the total particle count in the whole domain), similar to a residence time in each region.

3. Results and Discussion

Formic acid concentrations during the Summer ClearfLo Campaign, 2012, are shown in Figure S1 in the

supporting information. Formic acid concentrations up to 12.7 ppb were observed in this study, a factor of

1.9 greater than the maximum concentration reported during the winter campaign. Concentrations of formic

acid were highest on the 23–26 July with peaks of 12.7, 12.5, 10.4, and 7.8 ppb, respectively, concurrent with

the 4 days of the highest recorded temperatures. The 26 July had the highest recorded maximum tempera-

ture of 32°C, followed by the 23–25 July, all with a daily maximum temperature of over 29°C. NAME modeling

analysis for the 22–24 July suggests that the air originated from Northern France and over the English

Channel (Figure S2), with a strong south easterly UK influence (with the residence time over the London area

increasing significantly toward the 24 July). On the 25 and 26 July the air masses changed quite suddenly,

bringing a more northerly air mass from the North Sea area with an East Anglian, UK Midlands, and some

Benelux influence. Periods after this include a westerly influence and then again north European influence

(but with much more clean Atlantic air in the mix than during the 22–24 period), with Figure S2 providing

a visualization for changes in air mass influence throughout the complete measurement period.

Concentrations of formic acid rarely dropped below the limit of detection (34 ppt), which only occurred

during nighttime hours. Peaks in formic acid occurred between 4 and 6 p.m. local time after which, concen-

trations dropped significantly following sunset (Figure 2).

Figure 2. Diurnal average of formic acid in both the summer and winter

campaign. Red line indicates the total average for the summer campaign,

with the standard deviation of this also showed in light red. For comparison,

the winter average diurnal cycle is also shown from Bannan et al. (2014)

in blue.
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The mean concentration of formic acid measured in summer was 1.33 ppb

in comparison with 0.63 ppb reported during winter. The 211% increase in

formic acid concentration between seasons indicates that there is either a

switch of the types of sources seen or an enhancement of a particular

source of formic acid in the summer months. This factor is comparable

with the seasonal dependence shown by Rinsland et al. (2004) who saw

a 250% increase in formic acid concentrations between summer and

winter. The meteorology and chemistry differences between the summer

and winter campaigns were considerable. The mean solar maximum for

the winter and summer campaigns were measured to be 192 W/m2 and

534 W/m2, respectively, with an average summer temperature of 20°C in

comparison with 5°C measured in the winter. Pollution levels, denoted

by NO and CO were also substantially smaller during the summer. Such

a considerable change in conditions between the two mirrored campaigns provides an ideal base for a sea-

sonal comparison in sources of formic acid in an urban environment.

Measured winter formic acid (Bannan et al., 2014) presented a strong positive correlation between anthropo-

genic and pyrogenic emissions such as NOx and CO, demonstrating a direct anthropogenic emission of this

organic acid. In contrast with the winter measurements, there is no relationship between formic acid

production and NOx (Figure S3) or CO during the summer. The average diurnal profiles for the summer

campaign are shown in Figure S4 illustrating that there is an anticorrelation between the average diurnal

profiles of these anthropogenic and pyrogenic dominated emissions (NO, NO2, and CO) and formic acid

production. The levels of CO and NOx are found to be lowest from noon to the afternoon due to the faster

oxidation processes. The response of formic acid to oxidative changes are found to be opposite to changes

in CO and NOx (Figure S4), suggesting a strong photochemical source of formic acid. This is not consistent

with the winter where definite formic acid rush hour peaks are observed. A change in traffic patterns as a

result of the Olympic Games can be ruled out for the altering of the diurnal cycle of formic acid as the vehicle

emission tracers, that is, NOx and CO, still show similar rush hour peaks as in the winter despite lower concen-

trations seen in summer.

A comparison between the summer and winter diurnal profile is shown in Figure 2. In winter, the values for

the average diurnal cycle range between 0.3 and 1.1 ppb and peaks in formic acid concentrations are evident

during rush hour periods. Conversely, formic acid production during the summer is peaking during sunlight

hours, with an average maximum of 2.8 ppb at 6 p.m. (Figure 2). Concentrations of formic acid in the summer

begin to rise soon after 10 a.m. and decrease only after sunset, and an average minimum of 0.8 ppb is

reached by midnight. No such rush hour peaks are observed in the formic acid trend during the summer;

instead, a correlation with daytime production is seen.

Because of the lack of either observable correlations with anthropogenic trace gas markers (Figure S3) or rush

hour peaks in the average diurnal cycle of formic acid (Figure 2), direct anthropogenic emissions can be ruled

out as the dominant source in the summer in contrast with the winter study. Using the formic acid emission

ratios derived from the winter campaign: 1.22 × 10�3 ppb�1 and 8.35 × 10�3 ppb�1 to CO and NOx, respec-

tively (Bannan et al., 2014), it is possible to derive a direct anthropogenic emission, as shown in Figure 3.

Formic acid concentrations with an average of 0.2 ppb and a peak concen-

tration of 0.73 ppb could be expected from this vehicle source. Direct

anthropogenic emissions only contribute 15% to the overall concentra-

tions observed (Figure 3). This would suggest that the summer formic acid

concentrations are now being dominated by other sources.

Nitric acid is a secondary photochemical product arising from the reaction

between OH and NO2 and a relationship between formic and nitric acid

would suggest the former to be produced via a secondary production

pathway (Le Breton et al., 2012, 2014; Veres et al., 2011). The very low

correlation between nitric and formic acid throughout the winter

campaign (R2 = 0.137), illustrated that secondary production was not a

large contributor to formic acid production at that time and location.

Figure 3. Measured formic acid and calculated formic acid released from

vehicle emission based on the NOx to formic acid emission ratios derived

in the winter (Bannan et al., 2014). Vertical lines in the figure indicate mid-

night in the time series.

Figure 4. The relationship between formic and nitric acid between the 19

July and 20 August. Color here is depicting time of measurements, with

data averaged to a 5 min resolution.
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This is in stark contrast to the summer campaign where there is a

much stronger positive correlation with formic and nitric acid

throughout (R2 = 0.62) (Figure 4), suggesting secondary photochemi-

cal production of formic acid in summer in this location. There

appears to be two gradients for the formic to nitric acid production,

one for the majority of the campaign and another on 15–16 August.

The NOx against ozone, colored by formic acid, plot shown in Figure 5

is in contrast to the correlations observed during the winter campaign

(Bannan et al., 2014). During the winter campaign, the highest

concentrations of formic acid were observed in periods of high NOx,

with only very minimal concentrations seen in elevated ozone conditions. However, during the summer

measurements, high concentrations of formic acid are observed in the high ozone, low NOx region. This

further indicates a strong switch from the dominance of direct anthropogenic emission of formic acid in

the winter to a strong secondary, photochemical production pathway in the summer.

A possible secondary photochemical production of formic acid is via the ozonolysis of a terminal alkene and

the subsequent isomerization reaction of the Criegee intermediate. (e.g., Leather et al., 2011; Welz et al., 2012;

Taatjes et al., 2008, 2012, 2013). Isoprene is the major VOC emitted by plants (Finlayson-Pitts & Pitts, 2000;

Guenther et al., 2006) and ozonolysis of this terminal alkene has been shown to produce large quantities

of formic acid (e.g., Neeb et al., 1997). The mean concentration for ozone throughout the summer campaign

was 27.8 ppb, in comparison with 0.5 ppb that was seen in the winter. Isoprene concentrations are also

significantly larger in the summer campaign with a mean concentration of 0.12 ppb in comparison with

the average 0.03 ppb observed in winter. Thus, it is clear that secondary production rates are much more

significant in the summer and why no evidence of this production pathway was seen in the winter campaign.

Figure 6 shows the secondary production rate of formic acid, that is, [isoprene] × [ozone], in comparison with

formic acid, showing the peak formic acid agrees well with secondary production rate via ozonolysis.

Indeed, recently, Welz et al. (2012) suggest that the reaction of Criegee intermediate with the water dimer

could be the missing source of formic acid in the atmosphere if it is assumed that the yield from reaction

(R4) exclusively forms formic acid.

>¼ CH2 þ O3→CH2OO(R2)

CH2OOþ H2O→products(R3)

CH2OOþ H2Oð Þ2→products(R4)

However, recently Nguyen et al. (2016) have measured the branching ratio for reactions (R3) and (R4) and

have shown that there are three possible reaction channels

CH2OOþ H2O→CH2O(R3a)

→HCOOH(R3b)

→HMHP(R3c)

CH2OOþ H2Oð Þ2→CH2O(R4a)

→HCOOH(R4b)

→HMHP(R4c)

and reported F4(CH2O) = 6% for both (R3a) and (R4a), HCOOH = 21% for (R3b) and 54% for (R4b) and

HMHP = 73% for (R3c) and 40% for (R4c). Sheps et al. (2017) also reported CH2O = (40 ± 10)%,

HMHP = (55 ± 15)%, and HCOOH <10% for reactions (R4a)–(R4c), respectively.

Figure 7 shows that a comparison of observed isoprene, O3, NO, HNO3, CO, and HCOOH levels with PTM,

which reproduces the observations moderately well with Pearson r values of 0.36, 0.48, 0.21, 0.46, 0.59,

and 0.39 for isoprene, O3, NO, HNO3, CO, and HCOOH, respectively. The model-calculated concentrations

of NO, CO, and HNO3 are overestimated but do not impact the model formic acid as they are not directly

related to the formation of HCOOH. The PTM grossly underpredicts the measured formic acid, despite

Figure 5. NOx against ozone concentrations from 20 July 2012 to 20 August 2012.

Formic acid concentrations are depicted by both size and color.
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accounting for known sources such as the ozonolysis of well-defined

alkenes (e.g., isoprene, ethene, and 2-methylpropene) and direct

emissions from cars. Isoprene is underestimated in the PTM

simulation during higher photochemical episode periods because of

its highly reactive nature and short lifetime (Utembe et al., 2005)

which is reflected in the diel pattern of isoprene in this study

(Figure 7a). The formic acid formation is influenced by the sources

upwind in the few hours before the measurements; thus, the

production from the ozonolysis of isoprene can be underestimated

in the PTM. Including (R4) with the branching ratios reported by

Nguyen et al. (2016) the PTM simulations of formic acid do improve

compared with the base case (the case where the reactions of CH2OO with water or water dimer are not

considered); moreover, both scenarios (includes (R3) and (R4)) fall far short of the observed formic acid

(Figure 7a), and some other formic acid sources are clearly needed in the model.

If CH2OO reactions are not a significant source of formic acid, what could these sources be? One possible

contributor to the missing sources of formic acid is the direct emissions from vegetation. Jardin et al.

(2011) and Seco et al. (2007) reported the direct emission of HCOOH from different trees in the range of

0.02–0.11 nmol/m2/s which are very small compared with the emission flux budget of 1 nmol/m2/s inferred

by Nguyen et al. (2015). We investigated the impact of direct emission sources of formic acid using emission

scenarios of isoprene using the PTM. A direct emission of HCOOH to the PTM with temporal profile similar to

isoprene emissions does not improve formic acid predictions with a reduction of Pearson r to 0.26 for the

ClearfLo campaign measurements (Figure 7b) supporting the nonexistence of a significant direct biogenic

source of formic acid. The alternative contributor to the sources of formic acid could be secondary production

from additional biogenic precursors. Ozone is likely to be strongly correlated with hydroxyl radicals (OH) and

isoprene emissions are highly correlated with the emissions of other light-dependent biogenic VOCs.

Figure 7. (a) Comparison of measured formic acid, isoprene, O3, CO, and NO to PTM model results. The model formic acid including reactions (R3) and (R4) are also

shown in the figure. (b) Comparison of formic acid to models that include additional formic acid emission with profile proportional to that of isoprene,

[isoprene] × [O3] and [SOA] × [OH]. Vertical lines in the figure indicate midnight in the time series.

Figure 6. The formic acid time series (red) and [isoprene] × [ozone]. The 64 min

measurement resolution used here, that is, rate of measurement of isoprene.

Vertical lines in the figure indicate midnight in the time series.
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We conducted a PTM integration considering the emission scenarios of HCOOH as [isoprene] × [O3]. The

result (Figure 7b) shows much improved agreement between model and measured HCOOH for the whole

campaign with a Pearson r of 0.59 which suggests that a large biogenic emission source of formic acid from

the oxidation of unspecified light-dependent biogenic VOCs could be important. A further PTM experiment

with HCOOH direct emissions assumed proportional to the product of model secondary organic aerosols

(SOA) and OH ([SOA] × [OH]) slightly improves the model-measurement agreement (Pearson r = 0.42) and

so such a source may be important elsewhere but in this environment appears to have a negligible impact.

4. Conclusions

Measurements of formic and nitric acid have been reported from London during the summer months and

growing season. Measurements have been made in London under the ClearfLo Campaign, which was split

into two intensive observation periods, one in the winter (previous study by Bannan et al., 2014) and the

other in the summer (this work). The summer campaign coincided with the London 2012 Olympics. From

the previous study (Bannan et al., 2014) during the winter campaign, formic acid emissions were shown to

be strongly dependent on direct anthropogenic emissions from vehicles. However, in the summer there

was little evidence for any anthropogenic emissions of formic acid. Average concentrations of formic acid

were over a factor of 2 higher for the complete summer campaign relative to the winter measurements.

This is in good agreement with other studies such as Rinsland et al. (2004) who suggest that summer concen-

trations exceed winter concentrations by 250% and that a strong seasonality in the production of formic acid

is seen. The elevated formic acid and positive correlations with HNO3 and O3 allude to a strong photochemi-

cal production source, but using photochemical trajectory model integrations, ozonolysis of alkenes alone

cannot explain such high levels of formic acid. Adding the formic acid emission scenarios as

[isoprene] × [O3] to the PTM improve formic acid predictions over most of the ClearfLo campaign measure-

ments suggesting that the oxidation of unspecified light-dependent biogenic VOCs could be the dominating

biogenic source of formic acid.
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