
This is a repository copy of Forecast-Based Interference:Modelling Multicore Interference 
from Observable Factors.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/125044/

Version: Accepted Version

Proceedings Paper:
Griffin, David Jack orcid.org/0000-0002-4077-0005, Lesage, Benjamin Michael Jean-
Rene, Bate, Iain John orcid.org/0000-0003-2415-8219 et al. (2 more authors) (2017) 
Forecast-Based Interference:Modelling Multicore Interference from Observable Factors. In:
International Conference on Real-Time Networks and Systems. ACM , pp. 198-207. 

https://doi.org/10.1145/3139258.3139275

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Other licence. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Forecast-Based Interference: Modelling Multicore Interference
from Observable Factors

David Griffin
University of York

United Kingdom

david.griffin@york.ac.uk

Benjamin Lesage
University of York

United Kingdom

benjamin.lesage@york.ac.uk

Iain Bate
University of York

United Kingdom

iain.bate@york.ac.uk

Frank Soboczenski
Kings College London

United Kingdom

frank.soboczenski@kcl.ac.uk

Robert I. Davis
University of York

United Kingdom

rob.davis@york.ac.uk

ABSTRACT

While there is significant interest in the use of COTS multicore

platforms for Real-time Systems, there has been very little in terms

of practical methods to calculate the interference multiplier (i.e.

the increase in execution time due to interference) between tasks

on such systems. COTS multicore platforms present two distinct

challenges: firstly, the variable interference between tasks

competing for shared resources such as cache, and secondly the

complexity of the hardware mechanisms and policies used, which

may result in a system which is very difficult if not impossible to

analyse; assuming that the exact details of the hardware are even

disclosed! This paper proposes a new technique, Forecast-Based

Interference analysis, which mitigates both of these issues by

combining measurement-based techniques with statistical

techniques and forecast modelling to enable the prediction of an

interference multiplier for a given set of tasks, in an automated

and reliable manner. The combination of execution times and

interference multipliers can be used both in the design, e.g. for

specifying timing watchdogs, and analysis, e.g. verifying

schedulability.
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1 INTRODUCTION

The main driver of change in real-time computing systems is the

movement towards faster and cheaper platforms. Partly driven by

practical limits on processor clock speeds, there is a shift to

multicore platforms, where two or more processor cores
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concurrently execute instructions while sharing a number of

resources. The transition to multicore systems has resulted in a

well-known problem: interference between tasks. Interference

between multiple cores occurs when they compete for the same

resource. Interference is especially problematic as the amount of

interference generated by a contender task may not be specified or

may be highly variable, and may not be bounded. Hence there are

cases where traditional techniques, such as measurement based

analysis, are incapable of giving useful results. For example, in the

development of a system, not all tasks may be implemented, and as

such the current state-of-the-art measurement-based analysis is

incapable of giving any information about the effects of

interference from currently unimplemented tasks. Therefore, in

the case that due to the phased development of software not all

contender tasks are available upon completion of the task under

analysis, the measurement based analysis is not useful which

makes incremental timing verification impossible. This is

important in that if testing could be carried out on tasks as they

become available, these tests could determine probable bounds on

their resource usage, and this, in turn, could be used to shape the

development of the unavailable tasks and reduce the likelihood of

problems once they are integrated into the complete system.

The use of Common Off-The-Shelf (COTS) platforms presents

an additional challenge: the surrender of control over hardware.

When using specially designed real-time platforms, e.g. the avionic

systems platform described by Law [13], a number of features could

be implemented to aid the computation of timing behaviours. As

the name implies, COTS processors may not have these features,

limiting the applicability of techniques and in some cases may

implement schemes which are unknown due to manufacturers

wishing to obscure the details of their platform from competitors

for the sake of protecting their intellectual property. Therefore

classes of techniques, such as static WCET analysis [29], single-

core equivalence [16], and multicore response time analysis [2],

which rely on fully understanding the properties of the system

under analysis become infeasible.

Further, even in the case where hardware does have the

requisite features, the real-time properties of such schemes may

not work as expected. One example of this is cache partitioning

[25]. Cache partitioning is implemented by restricting the ability

of concurrently running tasks to utilise the entire shared cache. As

the tasks no longer contend for space in the cache, the interference
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is reduced. However, recently it has been shown by Farshchi et al.

[20] that even with cache partitioning in place, it is still possible

for cache related competition to occur, and for the effects of this

competition to be significant. Indeed, Farshchi et al. showed that

competition for cache miss status holding registers can cause a

slowdown of up to twenty times, demonstrating that even when

interference is mitigated there still exists the possibility of large

and unpredictable effects from tasks running on other cores.

In light of these observations, there is a strong argument that

approaches reliant on either completely understanding or

completely mitigating multicore interference are at best difficult to

apply to COTS platforms, and at worst impossible. As it is not

desirable to return to the higher costs and lower performance of

specialist or customised real-time processors, a different approach

is required to characterise multicore interference. At this stage,

black box techniques, such as statistical methods [15] appear to be

free of these limitations. Unfortunately, the black box techniques

used to date tend to be univariate which leads to a significant

limitation; whilst they may be able to determine if a property of a

system holds, they do not work as well when the system is not

completely defined. For example, in the implementation of a

system, different teams may be tasked with implementing different

subsystems. Each team of implementers will want to be able to test

their component in isolation to ensure that it will work on the

finished system, but black box testing is only capable of

determining properties relating to the interference between tasks

when all tasks are present. Therefore, it is impossible for each team

of implementers to guarantee that their component will work in

the finished system, which complicates development and testing. If

these issues were addressed by some form of an intermediate

model, this would open the door to effective parallel development

and compositional analysis, where different components

developed in parallel have temporal properties that interact in a

well-defined manner. In addition, the model would allow the

designers to consider how the impact of interference could be

reduced, not only in magnitude but also the degree of variability.

We conclude there are hard real-time systems for which there

is no real method to understand their detailed timing behaviour.

Instead multi-variate statistical verification that relates the inflation

in execution times to the platform and software factors that cause

it must be used to determine the validity of the system, and give

guarantees about its timing properties. As the critical definition of

real-time systems is that the timeliness of an answer impacts the

correctness of a system, one can argue that it is not necessary to

fully understand the method by which a worst-case execution time

estimate is obtained, provided that sufficient statistical testing can

be carried out to validate its accuracy. This opens up the possibility

that Deep Learning algorithms can be used to compute components

of the execution time, such as multicore interference, where the

state of the art is unable to do so using traditional methods. The

key difference to more traditional neural networks is that Deep

Learning uses many more layers that allow the resulting network

to represent the systems in a hierarchical fashion. From a timing

perspective, this means the network can automatically separately

learn the behaviour of parts of the system corresponding to when

significant effects occur (e.g. preemption from a new task, effectively

resulting in a cache flush) and then for each of these significant

effects a more detailed model is separately established. The overall

network is an ensemble of the collection of effects (significant or

otherwise). The Deep Learning’s hierarchy in effect gives a divide

and conquer approach allowing detailed models to be established

and learned without confusion from un-related events. Our initial

assessments showed Deep Learning to be much more effective than

a holistic traditional neural network approach. A similar trend has

been found in other domains, e.g. [8, 26].

1.1 Contribution

To take advantage of the observation that Deep Learning with

statistical guarantees is an appropriate approach for a number of

hard real-time systems, a new type of analysis is proposed. The

purpose of this analysis is not to determine the single-core

Worst-Case Execution Time (WCET) estimate for a task executed

in isolation as this can be calculated using existing techniques

such as those based on search-based techniques [13], static

analysis [29], Extreme Value Theory [5], and commercial

measurement-based tools such as Rapitime [24]. Instead, this paper

is specifically concerned with calculating how the execution time

of the task may be inflated by interferences from tasks sharing

resources in a multi-core context. The intention is that the analysis

provides a parameterised model of the interference so that a

worst-case interference multiplier can be determined without

restrictions on resource usage, the interference multiplier can be

tightened if the sharing of resources is controlled (e.g. by limiting

the number of accesses to a shared bus by each task), and where

tasks do have restrictions on their use of shared resources then

their usage can be verified as appropriate.

Figure 1: Overview of FBI Analysis

Illustrated in Figure 1, the proposed technique, Forecast Based

Interference (FBI) analysis, takes both execution times and

observations made on the task under analysis. The observations

are used to characterise the interference from a set of synthetic

contender tasks. By applying techniques from forecasting [17] and

Deep Learning [3, 7], FBI analysis constructs an FBI model of the

task which provides a mapping between observed rates of

interference and the effect of that interference on the execution

time of the task under analysis. The resulting FBI model can be

queried with the parameters given for the system as it will be

deployed to find an appropriate interference multiplier. As Deep

Learning is used to construct the model, no attempt is made to
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understand how the model works; instead, statistical testing on an

unseen data set is used to determine the accuracy of the model to

the required level of confidence. Finally, the interference multiplier

can be applied to a single-core WCET estimate (obtained by any

appropriate method) to derive a multicore WCET estimate for the

given level of interference. To the best of our knowledge, the

construction and deployment of such a model has not been

accomplished before. The primary advantage of FBI analysis is that

it makes few assumptions about processor features or behaviours,

instead relying only on features such as Performance Monitoring

Counters (PMC) commonly found in COTS hardware.

In addition to the usage outlined above, the FBI model is

versatile enough to support alternative uses. For example, one can

use the FBI model to find the maximum possible interference that

could be observed (by means of search on the model). A second

example is the use of the FBI model to facilitate parallel or

incremental development by including the maximum level of

interference a subsystem may generate as part of the specification

of the subsystem. In this case, even though there may be no

available observations for the actual co-running tasks, the model is

capable of giving a prediction about their effects. If hardware or

software support is available, these bounds could also be enforced

by a control mechanism (e.g. throttling), which would give further

confidence in the results at the expense of additional overheads.

1.2 Related Work

Radojković et al. [23] provide an empirical evaluation of the effects

of interference from contender tasks. While the COTS processor

chosen is not common for real-time applications, they demonstrate

that there are a wide variety of factors which can have a substantial

impact on the execution time of a task. This confirms that any

WCET analysis of a multicore system must take into account any

factors which have not been controlled for. Recent work by Yun et

al. [30] has provided an accurate, multicore model of the memory

subsystem of a COTS processor. In addition to demonstrating the

complexity of COTS hardware, this work also shows that there is a

significant gap between the theoretical worst-case performance of

a system and what can be observed given a set of contender tasks.

Forecasting [17] is the name given to the family of techniques

used to predict information about events which have not yet been

observed. There are many different types of forecasting, but all

rely on the same principle: constructing a forecast model of the

system under study which can be used to predict how the system

will behave under unobserved conditions. In the field of real-time

systems, Zheng [31] applied linear regression techniques to relate

the amount of resource accesses (obtained via the PMCs) to the

inflation in the execution times caused by the accesses; however, in

our experience, a linear relationship does not hold for most tasks

and platforms. Griffin et al. [9] employed forecasting to determine

information about the behaviour of tasks when their execution

time budgets were exceeded, by constructing a model based on the

observed behaviour of the tasks’ execution times. While Griffin

et al.’s work focused on the technique of extrapolation, this paper

employs Deep Learning Neural Networks (DLNNs) [19], a machine

learning approach capable of learning sophisticated patterns in data

and making predictions based on these learned patterns. One of

the benefits of this approach is that it is more capable of handling

multivariate models, as opposed to extrapolation which is better

suited to univariate problems.

Multicore interference and its effect on the WCET of a task has

been explored in work by Paolieri et al. [22] who describe the

IA3 algorithm. IA3 is an interference aware multicore resource

allocation algorithm which allows for each task to have multiple

WCETs, depending on the amount of interference generated by co-

running tasks. In evaluating their algorithm, Paolieri et al. attempt

to find the worst case interference by using synthetic contenders

which access shared resources as frequently as possible. For the

platform used in [21], this is a reasonable assumption, it leaves

open the question of how the approach can be extended to COTS

platforms where the worst case interference is non-trivial to find.

1.3 Organisation

Section 2 provides detail on the new approach, FBI analysis. An

evaluation on the test platform is carried out in Section 3, which

includes publicly available synthetic benchmarks as well as an

industrial case study. Finally, conclusions are drawn in Section 4.

2 FBI ANALYSIS

The goal of FBI analysis is to create a black box model which can

map between a set of easily observable PMCs and their effect on

the interference suffered by a task. As path data is not used, the

model must be capable of handling information from various paths

through the task. The length of an execution path impacts the

number of observed interference events during execution, whereas

event rates are comparable even if the execution time of distinct

paths differs. Hence, the model is described as taking the rate at

which the observed PMCs change and finding an interference

multiplier which can be applied to a single core execution time

estimate to produce a multicore execution time estimate which is

valid for the given rates of interference. However the model is

constructed, it must be able to handle complex features in the data

set. If the model is too simple, it will not be able to handle features

such as discontinuities in the effects of interference [19]. These

effects are likely to be caused by how different paths of a task react

to interference and are thus relatively common.

As with any measurement-based technique, the execution time

of a job is a critical piece of information to gather. To support

interference analysis (including for multi-core) it is also required

that observations are made which capture data on the events that

occur on the cores of the platform during the job’s execution; for

this work, we utilise the PMCs which most modern processors

possess [11, 27]. While PMCs are primarily used in applications

such as compiler optimisation, the information they expose can be

used to characterise the use of shared resources [6]. For example,

PMCs indicating cache misses signify an access to main memory

over the shared bus. As each core is able to write to its own PMCs,

it is possible to use PMCs to obtain a characterisation of each core’s

use of shared resources. Using PMCs in this way does present some

problems, however: there are typically more PMCs available than

physical registers in which they can be stored [11, 27], and so the

selection of PMCs is critical. If the PMCs used for the analysis do not

correspond to useful interference effects then any analysis based on
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these metrics would be inaccurate (either pessimistic or optimistic).

Further, while it can be inferred that there is some relation between

the PMCs and the execution time of the analysed tasks, for this to

be useful an analysis technique based on these PMCs must define

this relationship.

2.1 Overview

FBI analysis consists of five principal stages. The first two of these

stages have already been presented in detail in [14]. They are

therefore summarised below in sufficient depth to understand the

other three stages and the evaluation.

(1) Initial Data Collection: Data collection is carried out by

testing the task of interest on a multicore platform against

contender tasks and capturing as many performance

counters as possible in addition to execution times. All

measurements are made using end-to-end runs of the task;

there is no requirement to collect data at any intermediate

point during execution. Further details on this step are

given in Section 2.2.

(2) PMC Selection: While in traditional machine learning

approaches as much data as possible would be used, the

practical reality is the available PMCs are limited and

repeating tests to capture the effects of a wider range of

PMCs would be expensive. Therefore, the Principal

Component Analysis (PCA) technique is applied to identify

correlated PMCs along the axes of the Principal

Components (PCs) of the gathered data. Using the

information in the principal components, a set of PMCs’ are

chosen. Details on this step are given in Section 2.4.

(3) Main Data Collection: Once the representative PMCs have

been identified, the main data collection is carried out only

collecting measurements from the PMCs selected by PCA as

well as execution times. Again, the measurements required

are end-to-end measurements of the task running against

contender tasks. As this is a restricted form of the initial data

gathering step, the details are the same as given in Section

2.2.

(4) Modelling: Using the data gathered in the main data

collection stage, multiple forecast models are constructed

using automated modelling to determine the effect of

interferences on the task, which are expressed as a

multiplier. As these models are constructed using DLNNs,

additional precautions have to be taken against accepting

models which are only accurate on a portion of the domain;

this is accomplished by the creation of multiple models

which are used to implement Ensemble Modelling [19].

Additional details are given in Section 2.5

(5) Trust: Once the model has been created, it is necessary to

determine the trustworthiness of the model. This is

accomplished by evaluating its forecast accuracy against

unseen experimental data, which yields both a margin for

error and the statistical confidence that this margin

represents an upper bound on the interference effects. This

is described in Section 2.6

It is important to note that every stage of the process is dependent

on the task and platform being analysed, e.g. one task may make

more use of data than another task which mainly accesses devices.

Therefore all of the above five steps in the process have to be

repeated for each combination of the task under analysis and the

platform.

2.2 Data Collection - Initial and Main

As the FBI approach relies on detailed task-level instrumentation,

it is necessary to define the precise requirements. In addition to

the execution time of the analysed task, it is also necessary to

collect other metrics in order to establish links between observed

events and their impact on the execution time. In order to

accomplish this, the PMCs which the hardware platform exposes

are utilised. PMCs allow for counts of specific events, e.g. cache

misses or pipeline stalls, which can then be used as a proxy for the

actual level of interference between tasks at a high level. For

example, a high level of cache misses, but only when running

against a task contending for the cache, is indicative of a high level

of cache-related interference.

Initially, all PMCs must be captured. The platform used, the

Infineon AURIX [11], is representative of the typical problem

faced: the AURIX, like many real-world systems, is incapable of

capturing all PMCs simultaneously as there are only a limited

number of registers available for PMC use. In order to combat this,

tasks were run multiple times with the same inputs, capturing

different PMCs on each run. As the traces for identical runs

produce different results, due to interference from uncontrollable

sources (e.g. physical instability in the chip, uninitialised values

when the chip is powered on), it was necessary to find the level of

error that this approach introduces. This was accomplished by

monitoring a particular reference performance counter whilst a

specific set of inputs were repeatedly applied to the system. Each

time a set of inputs was repeated, the other performance counters

monitored different PMCs and the errors were assessed. The error

was the difference in what the reference performance counter

reported for a given set of inputs. The error was found to be

minimal (< 5%). Further, the Wald-Wolfowitz [28] test was

employed, which confirmed that the error observed could be

reasonably characterised as random noise, and therefore the error

would not introduce systemic failings [28]. In practice, these tests

only need to be carried out once per platform, and therefore once

these properties have been verified, instrumentation can be fully

automated.

Data collection must observe the effects of competition from

contending tasks. These contending tasks could be the actual tasks

competing for resources when the system is deployed. However,

for the reasons previously discussed, there are a number of

situations where these tasks cannot be used (e.g. the tasks have not

been developed yet). As such, FBI analysis uses synthetic

contenders which are held in and executed from main memory.

Unlike in previous work [22], where synthetic contenders were

used to create an assumed worst-case scenario, the synthetic

contenders used in FBI analysis must be able to exercise resources

at varying rates of interference. The contenders are designed to

exercise the shared resources over the range of values of interest,

i.e. to systematically exercise the resource to give a good quality

model. For example, a synthetic contender task may access shared
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memory every N cycles, and the shared bus every M cycles. The

values of M and N are stepped through the desired range of the

model. We note that the resulting model is only valid for this

range. In this paper, synthetic contenders are used which exercise

shared memory at a controlled rate; as all tasks under

consideration are run from the scratchpad with the generated data

being stored in shared memory, this satisfies the condition that all

sources of contention can be exercised at different interference

levels. In this framework, varying and exercising interferences

relies on the synthetic contenders. In the absence of scratchpad,

instruction memory layers, e.g. Flash or cache, could be additional

sources of interference and would need to be observed under

different interference configurations to apply the analysis. More

details on the implementation of the contenders for the AURIX

platform can be found in [14].

2.3 Evaluation Platform

To illustrate the difficulty in capturing all sources of execution

variability caused by interference, a brief description of the

platform used in this paper, the Infineon AURIX Tricore [11] is

given. The AURIX is a platform designed for use in real-time

automotive systems and has a number of features to facilitate

reliable computation. However, as the AURIX is designed to host

multiple tasks, with different requirements, the three processor

cores of the AURIX each have different capabilities, suited to their

intended roles. These capabilities are as follows:

• Core 0: Energy Efficient Tricore 1.6E.

• Core 1: High Performance Tricore 1.6P.

• Core 2: High Performance Tricore 1.6P.

Each core has access to a crossbar which connects a 472KB

SRAM unit, 4MB of flash memory, and any external peripherals.

Further details about the processor cores, such as local cache or

scratchpad configurations, are not publicly available, which

complicates any analysis which requires this knowledge.

Inter-core interference is typically caused by contested accesses to

one of the external resources; for example, if two cores access the

flash memory simultaneously they will contend as the flash cannot

serve multiple requests simultaneously.

Each core also exposes its own 12 PMCs (9 in the case of Core

0), which have the capability to monitor performance metrics such

as cache hits/misses and pipeline stalls. The PMC configuration

on different cores are independent; however, each core only has

3 registers to monitor its PMCs. Further, each individual PMC on

a core can only be mapped onto a single register, and so not all

combinations of 3 PMCs may be monitored simultaneously. For

example, it is impossible to monitor the number of hits for both the

instruction and data caches of Core 1 simultaneously.

In the best case, to capture data on all PMCs of the AURIX, it

would be necessary to run each test four times, which is undesirable

in that it increases the amount of testing that is required of the user.

While it is possible to run experiments four times to gather all data

for this platform, other platforms expose far more PMCs which

makes gathering all PMC data infeasible (e.g. the P4080 platform

[27] exposes approximately 128 PMCs, with 4 registers per core,

and would require each experiment to be repeated 32 times). There

is also a need to remove PMCs which do not contribute to the

analysis, as the use of low-quality PMCs can result in poor quality

models; for example, a computationally heavy task may not fetch

much data, and therefore the number of data cache hits does not

provide any useful information for analysis of such a task.

The PMCs exposed by the AURIX platform cannot monitor the

number of accesses to the crossbar or each resource in isolation,

e.g. accesses to shared variables bypass the cache and thus neither

hit nor miss. The maximum latency suffered by accesses to specific

resources, e.g. as a result of arbitration between concurrent

accesses, is also unclear. This limits the application of approaches

such as IA3 [22] which rely on those two values to incorporate the

contribution of interferences into WCET analysis.

Taking these points into account, it can be argued that it is

desirable, and at times necessary, to reduce the number of PMCs to

a smaller and more manageable set, and rely on existing observable

events to build an understanding of the impact of interferences.

However, without prior knowledge of the usefulness of PMCs, it

is necessary to build a small dataset with all PMCs in order to

determine their usefulness. To this end, the next section details an

automatic PMC selection phase, which uses Principal Component

Analysis to find a set of PMCs which are capable of representing

the variability in the data.

2.4 PMC Selection

The literature on statistical methods refers to techniques for

reducing the number of dimensions, PMCs in our case, as either

dimensionality reduction or feature selection. The goal for this step

is to identify the PMCs which are correlated, and then select a set

of representative PMCs which can be captured in a single trace

while still describing the majority of variability in the data. While

it is inevitable that some detail in the data will be lost at this stage,

the reduction in the amount of effort required to get a single data

point enables more data to be collected, which in turn increases

the amount of data used in the forecast model, and therefore the

accuracy of the predictions made.

In order to accomplish this, the technique of Principal Component

Analysis [12] is employed. PCA is a technique which identifies

correlations within a dataset by finding the Principal Components of

the data, with each PC describing the amount of variance attributed

to each correlated vector. In the context of this work, an example

PC is the number of accesses to a shared bus. Finding which PCs

represent the most variance is normally most useful in reducing

the complexity of the dataset. For example, if a PC accounts for

less than 10% of the variance of the entire dataset, then this can be

interpreted as sampling error and thus data along this PC can be

ignored. The end goal of PMC selection is to find a small number of

easily observable PMCs to measure. This small number is normally

dictated by the number of PMCs available on the platform being

used. An ILP solver [10] is used to determine the set of PMCs which

represent the maximum amount of variance in the data set collected.

A detailed evaluation of PMC selection can be found in [14].

One issue that may be encountered as a consequence of PMC

selection occurs if poor quality PMCs are selected; this can happen

if user constraints prevent high quality PMCs from being selected,

or high quality PMCs simply do not exist. That is, there are no

significant effects from interference either due to restrictions on
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the contenders employed by the user, due to the design the

hardware, or of the task itself. However, this does not lead to

invalid results: If this is the case then the outcome of the algorithm

is that model construction in the next stage of FBI will immediately

fail, see section 2.5. The reason is that there will be no link

between interference and execution time. Hence one can simply

conclude that for the task being evaluated, multicore interference

does not impact the execution time; this can occur if, for example,

all code and data for the task is consistently cached locally to the

core, and therefore unaffected by multicore interference.

2.5 Modelling

Once enough data describing the major variations in the PMCs has

been collected, i.e. the previous phase succeeds in selecting PMCs,

it can be used to develop forecast models. In this paper, the

technique used to construct the model is the TensorFlow Deep

Learning Neural Network (DLNN) implementation [7] via the

Keras framework [3]; TensorFlow was chosen as it has a proven

record of being able to model complex data [7] and has well

optimised implementations available. The desired output of these

models is a multiplication factor which can be applied to a

single-core execution time estimate to give the corresponding

execution time estimate in a multi-core environment, subject to a

given rate of interference from the contender cores. An important

consideration for an analysis technique is that users of the

approach are unlikely to appreciate having to repeatedly test the

same path through a task under varying rates of interference to

obtain an interference multiplier specific to that path. Further, this

approach may be unsound, as even if this was carried out for the

worst-case path of the task in a single core environment, there is

no guarantee that the worst-case path of the task in a multicore

environment is the same. Therefore, it is necessary to

acknowledge that variability in the execution times of a task may

come from the path taken and/or multicore interference, and that

there must be a way to distinguish between the two.

FBI analysis does not record the path of the task under analysis

but it does have information available about the nature of the

resources each path requires via the PMC data of the core under

analysis. Hence, by converting the raw PMC data into a rate of

change, corresponding to the rate at which the underlying

resource is accessed, it is possible to compare the amount of

resource each path requires. It is easy to surmise that if two paths

differ in length but access resources at the same rate, then the

effect of interference is likely to be proportionally the same.

Conversely, if paths of the task access shared resources at different

rates, then the effect of interference on these paths will be

different. Hence, this allows FBI to abstract away some of the

issues of multi-path programs.

However, even with this encoding, it can be expected that some

issues with multi-path programs remain. Hence, FBI is allowed to

select PMCs from the core under analysis, which gives an

indication of which path has been taken. For example, a similarity

in the number of cache misses suggests whether the same path is

being executed. This means that FBI is capable of incorporating

the difference between path execution times into the interference

multiplier if required, allowing the technique to handle cases when

the encoding of the problem does not fully remove the differences

between multiple paths.

The next step is to calculate the interference multipliers; these

are defined to be the ratio between the execution time and the low

watermark observed. This provides a sound approximation of the

actual interference multipliers, and so can be used to provide

information to the algorithm. As the technique uses machine

learning, it is capable of handling the case when the lowest

execution time is not observed, and will predict an interference

multiplier lower than 1.

In order to accomplish the actual forecasting, DLNNs [3, 7] are

employed. As seen in Figure 2, DLNNs can be trained to learn a

function using input/output data for that function. In this case, the

input data to the function is provided as the interference rates

(derived from the PMCs), and the output is the calculated

interference multiplier. For this work, an n-input, 1-output 3-layer

dense rectified linear TensorFlow network for regression learning

was used with Poisson Regression used for the objective function,

where n is the number of selected PMCs. The n-inputs relate to the

factors measured via the PMCs and the 1-output is the predicted

interference multiplier. The 3-layers of the DLNN are densely

connected; that is each neuron is connected to each neuron in the

preceding layer. The first layer has 128 neurons, and is used to

compute metrics on the observations; the second and third layers

have 64 and 32 neurons respectively, and are used to give

computational space to collating and combining the output of the

first layer. These parameters were chosen as either the most

appropriate for this type of regression problem (i.e. the amount of

neurons is progressively reduced from the input to the output) or

were selected after experimentation determined that further

increases in complexity did not yield further increases in accuracy.

This configuration also has the advantage that it places a lower

penalty on overestimation than underestimation when learning,

meaning that the analysis results from DLNNs of this form will

consistently be sound (i.e. lead to an overestimation of the

interference multiplier). Rectified linear refers to the fact the

inputs are normalised to lie within the range of 0 to 1 which is

always advised when training DLNN. The Poisson objective

function is assumed as it tends to be a good loss function when

dealing with outputs that can have a large variation in scale. By

contrast, other applicable loss functions, e.g. mean squared, tend to

struggle with numbers spread over a large range [19].

Input Layer Hidden Layer Output Layer

Training

data
Optimiser on

Hidden Layer

Figure 2: Use of DLNNs
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The use of DLNNs enables the automated learning of the

relationship between interference measurements and their effect

on the execution time of a task. One common pitfall in the

application of machine learning is the risk of overspecialisation

due to poor quality training data. This can be avoided by the use of

Ensemble Modelling [4]. Ensemble Modelling is an intuitively

simple technique: whenever a model is constructed, there is a

random chance that the model is inaccurate for any given portion

of the input space. If the random chance is greater than 50% then

the Ensemble Model is less accurate than the individual models

that it is composed of, then a failure can be detected by automated

testing, which would then try to recreate the Ensemble Model

using a different configuration or sample. If there is no failure,

then the Ensemble Model can be accepted.

FBI analysis takes advantage of Ensemble Modelling by training

multiple DLNNs from the data gathered. The training data is first

split into equally sized blocks with which to train the DLNNs, using

distinct training data. As the training of the DLNNs is handled by

the Keras library [3], it is not detailed here. The use of multiple

sets of training data allow the Ensemble Model to be populated by

multiple distinct models to minimise the risk of overspecialisation.

As this work is concerned with learning a normalised multiplier for

execution times, the consensus of the Ensemble Model is calculated

using the Geometric Mean [28]. The Geometric Mean is used as

each model may be normalised to a different value, which implies

other means such as the Arithmetic Mean are not valid.

2.6 Trusting the Model

As the model is constructed by machine learning, and is thus not

easily understandable, the model cannot be trusted in the same

way that traditional analysis techniques can be trusted1. To

achieve a level of trust in the model, the idea of Forecast Accuracy

is used [17]. Forecast accuracy is a well established metric that

frames the accuracy of predictions as an easily determined test; the

model is tested by comparing predictions to observations which

were not used to construct the model. Depending on how accurate

the model is when compared to reality, the forecast accuracy can

be established. Further the statistical confidence required of the

forecast accuracy can be set as required, however, the number of

tests that need to be performed (#tests) tends to increase quickly

with the confidence required (Conf ), i.e. #tests is O(1/(1 −Conf ))

[18].

In this application, evaluating the forecast accuracy amounts to

comparing results from actual observations with the results from

the FBI model. Assuming that there is no systemic bias in the model,

the error can be assumed to follow a normal distribution around

the true value. The degree of confidence required by the user thus

bounds the acceptable observed absolute error in the model, defined

as the margin for error E. If the FBI model is sufficiently accurate

for all queries, with the degree of accuracy corresponding to an

acceptable margin of error E specified by the user, then a claim

can be presented that the model is accurate to a degree of accuracy

given by the number of tests conducted. For example, if FBI analysis

determines its forecast accuracy at the 10% level is 99%, a margin

1Although it should be noted that no analysis technique can be deemed completely
trustworthy, due to the potential for implementation error.

for error of 10% will hold for 99% of the data; 99% of the model

predictions are within ±10% of the actual value. As this is a simple

operation, forecast accuracy is completely automated and calculated

after the generation of the model, allowing practitioners a degree

of confidence in the results. Note the FBI method does not aim to

obtain an absolute WCET bound, but instead an estimate of the

impact of interference on the WCET that is valid with a degree of

statistical confidence that the designer decides is reasonable. To

achieve a higher statistical confidence means more testing is needed.

If a higher degree of confidence is necessary, the user can either

provide more data for testing or repeat the experiment with new

observations.

2.7 Integrating Analysis Components

Having defined the individual components of FBI analysis, it

remains to outline how these components are combined. Firstly, a

small sample of heavily instrumented data is provided to the PMC

selection component (Section 2.4). Once appropriate PMCs are

selected, the bulk of the data is collected; provided that

instrumentation is automated, there is no need for manual

intervention at this step. A portion of this data is used to generate

an initial model (Section 2.5). This model is then tested with other

observations (Section 2.6) to determine the confidence in the

model, and therefore the appropriateness of using it. This process

is outlined in Algorithm 1.

1 Function FindConfidence(model, dataset, tarдet_accuracy)

2 accurate ← all r esults in dataset such that

abs((model .predict (r esults .f actors)/observed_inter f erence)−

1) < tarдet_accuracy

3 return len(accurate)/len(dataset )

4 Function FBITrain(simultaneous_pmcs , no_of _nets ,

test_samples , tarдet_conf idence )

5 init ial_dataset ← data captured with all PMCs instrumented

6 best_pmcs ← GetBestPMCs(init ial_dataset ,

simultaneous_pmcs )

7 main_raw_dataset ← data captured with best_pmcs

instrumented

8 main_dataset ←main_raw_dataset /

min(main_raw_dataset )

9 partitionmain_dataset into test_dataset of size

test_samples and train_dataset model ←

EnsembleModel (, no_of _nets, train_dataset )

10 Find minimummarдin_f or_error such that

F indConf idence(model, dataset,marдin_f or_error ) >

tarдet_conf idence

11 returnmodel,marдin_f or_error

Algorithm 1: The FBI Training Algorithm

In order to make a prediction using an FBI model, each DLNN

in the Ensemble is queried with the given interference rates. The

results of each DLNN are combined into an Ensemble Average by

taking their Geometric Mean. This Ensemble Average is then

returned as the predicted interference multiplier for the requested

interference rate. However, even once all the DLNNs are

constructed, it is necessary to find a margin for error for the FBI

model. This is accomplished by testing the model with previously
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unseen observations and computing the resulting error. Once this

is accomplished, the margin for error can be added to any

interference multiplier derived from the FBI model, which in turn

allows us to have confidence in the accuracy of the results. Next,

the FBI model can be used to compute the interference multiplier

for a given set of interference rates. The interference multiplier, I ,

and margin for error, E, can then be applied to the single-core

WCET estimate in order to find a WCET estimate with given

interference, as in the following equation:

WCETintef erence =WCETsinдle_core × (1 + E) × I (1)

In order to find the WCET estimate with interference, it is

necessary to find the Worst-Case Interference Multiplier (WCIM).

As the configuration of interference rates needed for the WCIM

may not be the maximum of each interfering source, the simplest

way to do so is to search over the FBI model. Such a WCIM is

likely to be an over approximation due to configurations of

interference rates which do not appear in the deployed system, or

indeed are impossible to occur simultaneously. However, such a

WCIM is useful in parallel development, as it allows an

approximation of the WCET with interference even when the

contender tasks are unknown. Once contender tasks are available,

the WCIM can be refined based on the rates of interference those

tasks actually produce, and FBI still shows a benefit as it is not

necessary to repeat the tests on task under analysis; instead one

can search over the FBI model, but this time constrained to the

levels of interference observed from contender tasks. Even when

the contender tasks are available, FBI provides useful information

as it is not possible to test all post-deployment configurations of an

integrated system. In contrast, FBI provides a convenient means

for understanding how the system behaves given bounded ranges

on the rates of shared resource use.

3 EVALUATION

To test the FBI approach, various benchmarks (e.g. from

Taclebench suite [1]) and industrial software were deployed on the

AURIX platform and a small selection chosen for presentation here.

The ones selected were the more interesting cases, i.e. the ones

were interference was larger with more variability and hence less

predictable. Instrumentation was provided by using the Rapita

Verification Suite [24] to insert customised instrumentation points

before and after the execution of a task, which allows the PMCs of

the AURIX to be read. These were then processed to reveal the rate

at which the PMCs changed, providing the inputs to FBI. For

simplicity, non-preemptive tasks were used to simplify the

experimental setup (Note that the FBI method does not impose any

constraints that prohibit preemptive tasks.) As the AURIX

platform has two distinct types of core, each benchmark was run

on both the energy efficient Core 0 (labelled as C0) and the high

performance Core 1 (labelled as C1). To the best of the authors

knowledge FBI is the first technique which attempts to predict

interference multipliers, therefore we use the Nearest Neighbour

(NN) method for comparison. NN takes the same input as FBI, but

when queried NN returns the observed measurement closest to the

queried parameters. This is calculated as the minimum Euclidean

Distance between the desired PMC values and the PMCs for the

observed test data.

Interference was provided by synthetic contenders running on

all cores. The synthetic contenders were implemented by accessing

uncached memory addresses at a randomly selected frequency to

provide a range of interference values. Care was taken to ensure

repeatability between different configurations of contenders

(Section 2.2).

In each test, full instrumentation of all PMCs was supplied for

1000 samples, which were then used to determine which PMCs

should be gathered, for varying numbers of PMCs and whether or

not data gathering should be restricted to a single run of the task.

The sample size was set to 1000 as this was observed to

consistently return the same results from PMC selection as larger

samples, indicating the point of diminishing returns. Once the

relevant PMCs were determined, each FBI model was trained using

75 samples, with Ensemble models being composed of 3

sub-models formed by Keras models of the form given in Section

2.5; 75 samples was found to be the minimum number required to

achieve consistent results. The collection of all required samples

relies on an automated process which took less than 5 minutes per

test. This process requires a minimum of

(4× 1000)+ (75+ 1000) = 5075 runs of the target task. The number

of required runs to build a complete dataset depends on the

available PMCs (P ) and registers (R) on the platform and the

number P ′ < P of selected PMCs: ⌈(P/R)⌉ ∗ X + ⌈(P ′/R)⌉ ∗ X ′,

where X captures is the number of samples required for PMC

selection (Section 2.4), and X ′ the samples used to complete the

dataset for training (75 + 1000 on the AURIX).

The resulting models were then evaluated against 1000 unseen

observations, which enables sufficient statistical confidence, to

determine the following properties:

(1) Percentage Error: The distribution of the percentage errors

seen, including the minimum and maximum errors. These

results are used to find an appropriate margin for error,

defined such that the margin for error is the lowest value

that can be added to predictions made by the model which

guarantees that the results upper bound the unseen

observations (i.e. the data used to evaluate the model) with

a given statistical confidence.

(2) Execution Time Distribution: The execution time

distributions of No Interference (task run in isolation),

Observed Interference (task run with given interference

rates) and Max Interference (task run with maximum

possible interference), were compared to the results from

the FBI approach to determine the accuracy of the method.

Figure 3 summarises the forecast accuracy across all selected

benchmarks for varying configurations of the analysed core for both

FBI and NN. The y-axis is the error given by subtracting the actual

inteference multiplier from the predicted interference multiplier -

positive values are pessimistic and negative ones optimistic. The

labelling convention is analysistechnique − benchmark − core for

the x-axis, e.g. FBI − du f f − c0 is the FBI analysis results for the

duff benchmark running on core C0. As each experiment runs a

different task on a differently processor, PMC selection is performed

for each task and configuration2.

2PMC selection is discussed in Section 2.4 and in detail in [14].
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Figure 3: Error Distribution with FBI and NN

Across all benchmarks for the FBI approach, these results show

that a margin for error of 10% has a confidence of 95% associated

with it. It can be seen that for these benchmarks, the NN approach

has a much greater range of errors than FBI (meaning it is less

reliable), its median is further from zero (meaning its error tends to

be bigger) and it has more negative values than FBI (which means

its optimistic more often than FBI). It can also be observed that

the C0 core is less predictable than C1; this is due to the fact that

C0 is the energy-conserving core, and is therefore not designed

for predictable performance. As well as the optimisations in the

C1 core making its behaviour more predictable, there is also the

complicating factor that there are fewer PMCs available on C0,

whichmeans that theDLNNmodel is not able to take into account as

accurate observations and therefore will be inherently less precise.

We focus on theworst behaving benchmarkmatmult on C1 using

4 PMCs. C1 is chosen as even though it was more predictable than

C0, the energy-conserving technologymeans its harder to be certain

the changes in execution time are due to interference which could

affect the integrity of our findings. The PMCs, selected during the

PMC selection phase (Section 2.4), capture cache hits and memory

stalls suffered by the contending Core 0 and Core 2. Figures 4 and

5 give an overview of FBI analysis performance for the matmult

benchmark. Figure 4 presents the direct comparison of actual and

predicted interference multipliers across different experiment runs,

i.e. under randomised contenders and thus interferences. While

results vary in amplitude, it shows that FBI analysis is capable of

predicting the peaks and troughs of interference, e.g. between runs

5 to 10. Further, FBI provides a much closer estimate than NN, which

consistently underestimates the impact of interference making it

inappropriate for use in real-time systems.

To evaluate the accuracy with which FBI can convert a single

core execution time to a multicore execution time with

interference, each experiment was conducted with (A) no

interference and (B) randomised interference. This is accomplished

by taking PMCs from a measurement in (B), querying the FBI

model with these PMCs and applying the resulting interference

multiplier to the corresponding run of the task in (A), as per

Equation (1). This yielded the results shown in Figure 5, which

compares the distributions of observed execution times with

random interference, two fixed interference profiles and predicted

execution times from FBI. Under fixed interference, the task is

predictable, meaning that the variation in execution times is due to

multicore interference. As can be seen, when used to transform

single-core execution times (No interference) to multicore with

interference execution times (FBI + Margin for Error), FBI adds a

small amount of overhead due to its margin for error and hence

consistently upper bounds the actual observations; this is

necessary as just using the predictions from FBI (FBI ) can result in

underestimates of interference, due to the DLNN training process

minimising the absolute error.

An important result shown in Figure 5 is that theMax interference

does not always give the largest value. This is important as theMax

interference corresponds to the situation where the interferences

are the maximum possible, e.g. one of the interferences may be

the maximum possible rate of access to a shared bus. This means

simply stressing testing the software on a given platform may not

lead to either the maximum observed or the maximum calculated

interference multiplier.
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Figure 4: Comparison of Prediction and Actual results with

a margin for error of 10%

Figure 6 illustrates the effect of increasing the size of the training

data on the matmult benchmark. As one can see, increasing the

amount of training data increases the accuracy of both FBI analysis

and NN. Here, FBI analysis has a superior accuracy to NN; however,

for very simple programs which do not respond to interference this

may not be the case, if interference does not impact the execution

time then for sufficiently high numbers of observations NN can

saturate the range of observations. However, in the case that the

task is sensitive to interference (such as matmult), FBI consistently

provides a better estimate of the interference than NN.
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Figure 6: Effects of increasing the size of the training data

4 CONCLUSIONS

This paper applies Deep Learning Neural Networks to model the

link between the PMCs available on a processor and the rate of

interference a task suffers so that the maximum execution time of a

task can be determined allowing for multi-core interference. As the

exact nature of this link varies between processors and applications,

machine learning was used to determine the nature of this link in a

specific context. The evaluation demonstrates the approach on the

Infineon AURIX processor family producing a model of interference

multipliers along with the statistical confidence in their correctness.

This model can then be used to derive a maximum execution time

including interferences to a given level of statistical confidence.
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