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Abstract: We propose a distributed model predictive control approach for linear time-invariant
systems coupled via dynamics. The proposed approach uses the tube MPC concept for robustness
to handle the disturbances induced by mutual interactions between subsystems; however, the
main novelty here is to replace the conventional linear disturbance rejection controller with a
second MPC controller, as is done in tube-based nonlinear MPC. In the distributed setting,
this has the advantages that the disturbance rejection controller is able to consider the plans of
neighbours, and the reliance on explicit robust invariant sets is removed.
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1. INTRODUCTION

Model Predictive Control (MPC) is a mature and popular
control technique (Rawlings and Mayne, 2009; Mayne, 2014)
that excels in situations where it is prohibitively difficult to
design a control law off-line: for example, in the presence
of constraints. MPC is inherently, however, a centralized
control technique, and so its applicability to large-scale
systems is limited by the fact that the controller would
have to model, sense and control the whole plant. For
this reason, significant attention has been given to non-
centralized MPC, including decentralized, distributed and
hierarchical forms (Scattolini, 2009). The main challenge
is how to coordinate the control actions of independent
MPC-based controllers, in order that the overall system
is stable and satisfies constraints. Many proposals have
been made (see Scattolini (2009); Christofides et al. (2013)
for excellent surveys), and broadly differ according to
the nature or source of the coupling between subsystems
and the algorithmic approach taken to coordinate control
actions (Maestre and Negenborn, 2014).

The problem tackled in this paper is the fundamental one
of controlling dynamically coupled linear time-invariant
systems. The problem is challenging because the states and
inputs of one subsystem affect others too; therefore, the
straightforward application of MPC, even with terminal
conditions (Rawlings and Mayne, 2009), does not guarantee
constraint satisfaction and stability. A popular approach
is to decompose and distribute the MPC problem (or its
dual) among the different controllers, and solve the problem
iteratively at each time step—with information exchange
between controllers—until feasibility or optimality is ob-
tained (Maestre and Negenborn, 2014); however, the price
to pay is large amounts of communication, slow convergence
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(of iterates) in large systems, and a long time to solve to
MPC problem at each step.

In pursuit of iteration-free methods that still achieve desir-
able guarantees, a few authors (Farina and Scattolini, 2012;
Riverso and Ferrari-Trecate, 2012; Trodden et al., 2016;
Hernandez and Trodden, 2016) have exploited ideas from
robust MPC, and particularly tube-based MPC (Mayne
et al., 2005). The basic idea is—considering the mutual
interactions as exogenous disturbances—to augment the
conventional MPC control law with an ancillary, distur-
bance rejection term, computed off-line and based on the
theory of disturbance-invariant sets. The main drawback
is the conservatism induced by taking a robust approach
to what is a nominal problem, and research efforts have
focused on ways in which to reduce this and improve
performance: Farina and Scattolini (2012) employ reference
trajectories, and consider the disturbances as deviations
from these. Riverso and Ferrari-Trecate (2012) employ the
tube concept twice, designing two disturbance rejection
controllers: the first to minimize deviations between a
planned nominal trajectory and planned perturbed tra-
jectory, and the second to minimize deviations between
the latter and the true perturbed trajectory. Trodden
et al. (2016) propose a more straightforward design, with
only one disturbance rejection controller and no reference
trajectories, but optimize disturbance-invariant sets on-line
in order to reduce conservatism.

In this paper, we offer a new contribution to the family
of tube-based distributed MPC (DMPC) approaches. The
main development here is to replace the ancillary distur-
bance rejection controller—which is linear in each of Farina
and Scattolini (2012); Riverso and Ferrari-Trecate (2012);
Trodden et al. (2016)—with an ancillary MPC controller,
which operates in a nested fashion with the main controller.
This development is inspired by the approach of Mayne et al.
(2011) for tube-based nonlinear MPC, which introduced
the idea of an ancillary MPC controller; in that approach,



the controller is needed because of the non-linearity of
the system. Here we employ the second controller for
a different purpose, which also leads to two advantages
with respect to existing tube-based DMPC: the ancillary
controller is able to consider the plans of neighbouring
subsystems when optimizing the disturbance rejection
control action; perhaps more significantly, the need to
explicitly compute and employ disturbance-invariant sets—
which are prohibitively complex objects for high-dimension
subsystems—is removed.

The problem statement is defined in Section 2. In Section 3,
the nested DMPC approach is developed, including optimal
control problems and the distributed algorithm. Recursive
feasibility and stability are established in section 4. A
comprehensive off-line design method to select controller
parameters is given in Section 5, before an illustrative
example of the approach is presented in Section 6.

Notation: The sets of non-negative and positive reals are
denoted, respectively, R+

0 and R
+. AX denotes the image of

a set X ⊂ R
n under the linear mapping A : Rn 7→ R

p, and
is given by {Ax : x ∈ X}.For X,Y ⊂ R

n, the Minkowski

sum is X ⊕ Y , {x + y : x ∈ X, y ∈ Y }; for Y ⊂ X. For
X ⊂ R

n and a ∈ R
n, X ⊕ a means X ⊕{a}. A polyhedron

is an intersection of a finite number of half-spaces, and a
polytope is a closed and bounded polyhedron. A C-set is
a compact and convex set that contains the origin; in a
PC-set, the origin is within the interior. The C-set L is said
to be a summand of K if there exists a set M such that
K = L⊕M . A sequence is defined as x = {x(0), x(1), . . .},
the cardinality of which will be clear from the context. The
notation x−i indicates a sequence without the ith member.

2. PROBLEM STATEMENT

We consider the discrete-time dynamics

x+ = Ax+Bu (1)

where x ∈ R
n and u ∈ R

m are the state and control input,
and x+ is the state at the next time instance. This system
is partitioned or decomposed into M non-overlapping
subsystems, in the sense that the state and input may
be written x = (x1, . . . , xM ) and u = (u1, . . . , uM ), where
xi ∈ R

ni and ui ∈ R
mi are the state and input of subsystem

i,
∑

i∈M ni = n and
∑

i∈M mi = m, and the dynamics of

subsystem i ∈ M , {1, . . . ,M} may be written as

x+
i = Aiixi +Biiui +

∑

j 6=i

Aijxj +Bijuj . (2)

In this equation, Aij ∈ R
ni×nj , Bij ∈ R

ni×mj are the
relevant block elements of A and B. The summation term
represents the interaction of the states and inputs of other
subsystems (j 6= i) on the dynamics of subsystem i; without
loss of generality, the summation may be performed over
j ∈ Ni, where Ni , {j ∈ M : [Aij Bij ] 6= 0, j 6= i} is the
set of neighbours of i.

Assumption 1. For each i ∈ M, (Aii, Bii) is controllable.

Each subsystem i ∈ M is subject to local constraints on
its states and inputs

xi ∈ Xi, ui ∈ Ui. (3)

Assumption 2. For each i ∈ M, Xi and Ui are PC-sets.

The control objective is to steer the states of all subsystems
to the origin while satisfying the constraints and minimizing
the infinite-horizon cost

∞
∑

k=0

∑

i∈M

ℓi(xi(k), ui(k)) (4)

where ℓi(xi, ui) , (1/2)(x⊤
i Qixi + u⊤

i Riui) and Qi, Ri are
positive definite for all i ∈ M.

3. NESTED DISTRIBUTED MPC

The main challenge with respect to controlling the sys-
tem (1) with independent, decentralized controllers is how
to deal with the interactions, for the states and inputs of one
subsystem are affected by, and affect, others in the system.
The most direct approach ignores these interactions, and
employs the nominal prediction model

x̄+
i = Aiix̄i +Biiūi (5)

within an MPC optimization to provide the receding
horizon control law ui = κ̄i(xi), obtained by applying the
first control ū0

i (0;xi) in the optimized sequence. Ignoring
interactions in this way, however, can lead to constraint
violations and even instability, unless further actions
or design steps are taken to coordinate the actions of
controllers (Scattolini, 2009).

An alternative approach is to treat all interactions as
disturbances to be rejected. The dynamic coupling between
subsystems—arising from the decomposition of the large-
scale system—induces mutual disturbances upon each
subsystem; in fact, we may re-write (2) as the uncertain
dynamics

x+
i = Aiixi +Biiui + wi (6)

where wi ,
∑

j∈Ni
(Aijxj +Bijuj). This disturbance is, in

view of the constraints on each xj and uj , contained within
the set

Wi ,
⊕

j∈Ni

AijXj ⊕BijUj , (7)

which, because of Assumption 2, is bounded and at least
a C-set. The local control problem is then to regulate the
uncertain, constrained LTI system (6) which is subject to
bounded additive disturbances, and the direct application
of a robust MPC technique will (under suitable further
assumptions) lead to guaranteed feasibility and stability.
For example, one could employ the tube-based approach
to robust MPC (Mayne et al., 2005), which retains the
nominal model for predictions within an MPC problem
with restricted constraints (see the problem Pi(x̄i) in the
next subsection), but augments the implicit control law
with a linear, disturbance rejection control law:

ui = κ̄i(x̄i) +Ki(xi − x̄i).

The latter term corrects for the errors introduced by neglect-
ing the disturbance (the interactions) in the predictions.
The price to pay is conservatism, for the controllers are
designed to be robust to the whole space of possible states
and inputs of other subsystems: neither the nominal MPC
control law nor the linear disturbance rejection controller
take into account the planned states and/or inputs of
interacting subsystems. Hence, approaches that utilize
tubes (Farina and Scattolini, 2012; Riverso and Ferrari-
Trecate, 2012; Trodden et al., 2016) have focused on ways
in which the conservatism can be reduced.



In this paper, we present a third way to this problem, with
the aim of retaining the desirable guarantees that a robust
approach brings, but lessening the conservatism and other
drawbacks associated with this. In particular, we propose
a control law of the form

ui = κi(xi) = κ̄i(x̄i) + κ̂i(xi − x̄i; x̄−i, ū−i), (8)

which, inspired by Mayne et al. (2011), replaces the
linear disturbance rejection control law of tube MPC with
a second predictive control law. The second term still
acts on the error xi − x̄i between the true (perturbed)
state and the predicted (nominal) state, but takes into
account information shared by other subsystems about
their predicted states and inputs. These shared predictions
are the outputs of the first predictive controller; hence, the
controllers for a subsystem work in a nested fashion.

The remainder of this section presents the approach,
including the optimal control problems and the algorithm.
First, we require the following assumption about the
disturbance set, which is common in tube-based MPC,
but here effectively limits the strength of coupling between
subsystems:

Assumption 3. For each i ∈ M, Wi ⊂ interior(Xi).

3.1 Main optimal control problem

The main optimal control problem for subsystem i employs
the nominal model (5) to determine, in the presence of
tightened constraints, a nominal optimal control sequence
and associated nominal state predictions. Formally, this
problem is Pi(x̄i), defined as

V̄i
0
(x̄i) = min

ūi

N−1
∑

k=0

ℓi(x̄i(k), ūi(k)) (9)

subject to

x̄i(0) = x̄i, (10a)

x̄i(k + 1) = Aiix̄i(k) +Biiūi(k), k = 0, . . . , N − 1, (10b)

x̄i(k) ∈ αx
i Xi, k = 1, . . . , N − 1, (10c)

ūi(k) ∈ αu
i Ui, k = 1, . . . , N − 1, (10d)

x̄i(N) = 0. (10e)

In this problem, the decision variable ui is the sequence of
(nominal) controls

ūi = {ūi(0), ūi(1), . . . , ūi(N − 1)}.

The original state and input constraint sets, Xi and
Ui, are scaled by factors αx

i ∈ (0, 1] and αu
i ∈ (0, 1]

respectively, in order to preserve constraint satisfaction
despite the neglecting of the disturbance (interaction) in the
predictions. A detailed and comprehensive design procedure
for these scalars is given in Section 5.

Remark 4. For simplicity, we use the origin as terminal set;
less restrictive conditions are subject to current research.

The solution of Pi(x̄i) at nominal state x̄i yields the optimal
control and state sequences ū0

i (x̄i) = {ū0
i (0; x̄i), . . . , ū

0
i (N−

1; x̄i)} and x̄
0
i (x̄i) = {x̄0

i (0; x̄i), . . . , x̄
0
i (N ; x̄i)}. It also

defines the implicit control law

κ̄i(x̄i) = ū0
i (0; x̄i).

In the next section, we define the ancillary optimal control
problem that yields the second part of the control law (8).

3.2 Ancillary optimal control problem

The aim of the ancillary MPC controller is to reduce the
error between true states and predictions. This error is
ei , xi − x̄i, and evolves as

e+i = Aiiei +Biifi +
∑

j∈Ni

Aijxj +Bijuj

where fi , ui − ūi. In a conventional single tube MPC
controller approach, fi = Kiei, but here we wish to replace
this simple linear controller with a controller that can
account for predictions of neighbouring subsystems. The
above error dynamics are, however, not suitable for use as a
prediction model because of the dependency on true states
and inputs, xj and uj , rather than shared predictions.

To this end, therefore, we define a second nominal subsys-
tem model to use for predictions in the ancillary controller:

x̂+
i = Aiix̂i +Biiûi + w̄i. (11)

The disturbance term w̄i is composed of the predictions
(x̄j , ūj) gathered from each of the neighbours, j ∈ Ni,
of agent i such that w̄i =

∑

j∈Ni
Aij x̄j + Bij ūj and

w̄i , {w̄i(0), . . . , w̄i(N)}. From this model, we define

a nominal state error ēi , x̂i − x̄i, and control error
f̄i = ûi − ūi, whose dynamics evolve as

ē+i = Aiiēi +Biif̄i + w̄i

It is this model that is employed in the following, ancillary
optimal control problem, P̂i(ēi; w̄i):

V̂ 0
i (ēi; w̄i) = min

f̄i

H−1
∑

k=0

ℓi(ēi(k), f̄i(k)) (12)

subject to, for k = 0, . . . , H − 1,

ēi(0) = ēi, (13a)

ēi(k + 1) = Aiiēi(k) +Biif̄i(k) + w̄i(k), (13b)

ēi(k) ∈ βx
i Xi, k = 0, . . . , H − 1 (13c)

f̄i(k) ∈ βu
i Ui, k = 0, . . . , H − 1 (13d)

ēi(H) = 0. (13e)

In this problem, the decision variable is the sequence of
controls f̄i = {f̄i(0), . . . , f̄i(H − 1)}; the horizon is H.
The cost function is the same as in the main problem.
The parameter w̄i denotes the collection of disturbance
predictions for subsystems j ∈ Ni. The state and input
constraints are, similar to in the main problem, scaled by
factors βx

i ∈ (0, 1] and βu
i ∈ (0, 1]; detailed design steps are

given in Section 5.

The solution of P̂i(ēi, w̄i) defines an implicit control law

fi = f̄0
i (0; ēi, w̄i).

However, this alone is not sufficient to guarantee the
recursive feasibility and stability properties that we seek.
In particular, if ui = κ̄i(x̄i) + f̄0

i (0; ēi, w̄i) then

e+i − ē+i = Aii(ei − ēi) + (wi − w̄i),

which is unsatisfactory because the error dynamics here
depend on only the spectral radius of Aii: if Aii is unstable,
the mismatch between true error ei and planned error ēi
diverges. The next section describes how this problem is
overcome by adding an extra feedback term to the ancillary
control law.



3.3 Modified ancillary control law

We define êi , ei − ēi and ŵi , wi − w̄i; by definition,
xi = x̄i + ei = x̄i + ēi + êi, and thus we seek to regulate
x̄i, ēi and êi to zero. To this end, we add another control,

f̂i, to the ancillary control law, i.e., fi = f̄0
i (0; ēi, w̄i) + f̂i,

so that
ê+i = Aiiêi +Biif̂i + ŵi.

With an appropriate choice of feedback law f̂i = µi(êi),
then, this error can be regulated and guaranteed to remain
within an invariant set around the origin, despite the
disturbance ŵ. Therefore, the approach we take to designing
the additional feedback term is based on the concept of
robust control invariant (RCI) sets (Raković et al., 2007)
and their corresponding invariance-inducing control laws.

Definition 5. (RCI set). A set R is robust control invariant
(RCI) for a system x+ = f(x, u, w) and constraint set X,
U and W if (i) R ⊂ X and (ii) for all x ∈ R, there exists a
u ∈ U such that x+ = f(x, u, w) ∈ R, ∀w ∈ W.

Given a RCI set R, Definition 5 implies the existence of
a control law µ : Rm 7→ R

n, such that the set mapping
µ(R) , {µ(x) : x ∈ R} = {u ∈ U : x+ ∈ R, ∀w ∈ W} is

nonempty. Thus, given a RCI set, R̂i, for the dynamics
of the error êi, the respective control action is chosen as

f̂i = µi(êi). The existence, design and computation of
this invariant set and control law is discussed in detail on
Section 5. For now, we note that the modified ancillary
control law is

κ̂i(ēi, êi, w̄i) = f̄0
i (0; ēi, w̄i) + µi(êi),

comprising the ancillary MPC control law plus the ad-
ditional feedback term, and the overall control law for
subsystem i is

ui = κ̄i(x̄i)+κ̂i(ēi, êi; w̄i) = ū0
i (0; x̄i)+f̄0

i (0; ēi, w̄i)+µi(êi).

The structure of this three-term controller is worth remark-
ing upon: the first term regulates the nominal state x̄i, while
the second term regulates the planned error, accounting
for planned (nominal) states and inputs of neighbours. The
third term regulates the unplanned errors that arise from
using nominal, rather than true, dynamics in the optimal
control problems.

3.4 Distributed Control Algorithm

The optimization problems Pi(x̄i) and P̂i(ēi, w̄i) are used
in the following algorithm.

Algorithm 1. (NeDMPC for subsystem i).

Initial data: Sets Xi, Ui; matrices (Aij , Bij) for j ∈ Ni;
constants αx

i , αu
i , βx

i ,βu
i ; states x̄i(0) = xi(0), ēi = 0,

w̄i = 0, V̂ ∗
i = +∞.

Online Routine:

(1) At time k, controller state x̄i, solve Pi(x̄i) to obtain
ū
0
i and x̄

0
i .

(2) Transmit (x̄0
i , ū

0
i ) to controllers j ∈ Ni.

(3) Compute w̄
0
i = {w̄0

i (l)}l from received (x̄0
j , ū

0
j ), where

w̄0
i (l) =

∑

j∈Ni
(Aij x̄

0
j (l) +Bij ū

0
j (l)), l = 0 . . . N .

(4) At controller state ēi, solve P̂i(ēi; w̄
0
i ) to obtain f̄0

i :

if feasible and V̂ 0
i (ēi; w̄

0
i ) ≤ V̂ ∗

i , set w̄i = w̄
0
i and

V̂ ∗
i = V̂ 0

i (ēi; w̄
0
i ); else, solve P̂i(ēi; w̄i) for f̄0

i .

(5) Measure plant state xi, calculate êi = xi − x̄i − ēi,
and apply ui = ū0

i + f̄0
i + µi(êi).

(6) Update controller states as x̄+
i = Aiix̄i + Biiū

0
i and

ē+i = Aiiēi + Biif̄
0
i + w̄i—where w̄i = w̄i(0)—w̄

+
i =

{w̄i(1), . . . , w̄i(N), 0}, and V ∗+
i = V ∗

i − ℓi(ēi, f̄
0
i ).

(7) Set k = k+1, x̄i = x̄+
i , ēi = ē+i , w̄i = w̄

+
i , V ∗

i = V ∗+
i ,

and go to Step 1.

In step 4, the ancillary problem is solved using the new
disturbance sequence, w̄

0
i , formed from the state and

input sequences of other subsystems just optimized in
Step 1. If this problem is infeasible, or the optimal cost
does not decrease sufficiently with respect to the previous
solution, the problem is re-solved albeit with the previous
disturbance sequence, w̄i; as will be shown, this problem
remains feasible even when the new problem is not, and in
fact a feasible solution can be generated without solving
the problem.

Remark 6. Guaranteeing the recursive feasibility of the
ancillary problem is simple when the disturbance sequence
is unchanging, but when the latter changes it is a non-
trivial challenge. On the other hand, the feasibility of the
ancillary problem depends on the horizon H, and—in view
of the fact that w̄i is a sequence of N disturbances, with
w̄i(N) = 0 always—it is suggested that H ≥ N +1. In that
case, w̄i(k) = 0 for prediction step k ≥ N .

This completes the description of the approach, including
control problems and the algorithm. In Section 5, we present
a comprehensive approach to designing the invariance-
inducing controller µi and the set scaling parameters axi , aui ,
βx
i and βu

i . Before that, we establish recursive feasibility
and stability of the approach, which points to necessary
and sufficient conditions on the scaling parameters that
are useful later in developing the controller design process.

4. RECURSIVE FEASIBILITY AND STABILITY

Recursive feasibility is the main challenge for this approach.
In contrast to conventional tube MPC, which uses linear-
ity of the error dynamics and robust positive invariant
(RPI) sets to allow the exact determination of constraint
tightening margins for robustness, here the error dynamics
are nonlinear and the constraint tightening is via scaling
factors. In this section, we aim to establish conditions
under which the proposed control scheme is recursively
feasible and stable. Our approach here uses the notion of
robust control invariant (RCI) sets (Raković et al., 2007):
we show that, by suitable choices of scaling factors αx

i , αu
i ,

βx
i and βu

i , the error states of the controlled system evolve
within bounded RCI sets, which may be used to guarantee
constraint satisfaction and feasibility; however, we do not
seek to obtain an explicit representation of the RCI set, but
merely rely on its existence—an implicit form of invariance.

In order to establish robust constraint satisfaction, it is
sufficient to show that the state xi of subsystem i is
contained within a set, say Xi, that is robust positively
invariant for the dynamics x+

i = Aiixi + Biiui + wi

and constraint sets (Xi,Ui,Wi) under the control law
ui = κi(xi): that is, given xi ∈ Xi ⊆ Xi, Aiixi+Biiκi(xi)+
wi ∈ Xi and κi(xi) ∈ Ui. In our approach, however, the
true state satisfies xi = x̄i + ei = x̄i + ēi + êi, about which



the following is known: the nominal state x̄i resides within
X̄N

i , defined as the feasibility region of Pi(x̄i):

X̄N
i , {x̄i : Ū

N
i (x̄i) 6= ∅}, (14)

where ŪN
i (x̄i) , {ūi : (10a)–(10e) are satisfied}; the

planned error ēi, given w̄i, resides within ĒN
i (w̄i), the

feasibility region of P̂i(ēi; w̄i):

ĒN
i (w̄i) , {ēi ∈ Xi : F̄

N
i (ēi; w̄i) 6= ∅}, (15)

where F̄N
i (ēi; w̄i) , {fi : (13b)–(13e) are satisfied}; finally,

we suppose that the unplanned error êi resides within some
set R̂i. Then our task is to develop conditions under which
xi ∈ X̄N

i ⊕ĒN
i (w̄i)⊕R̂i implies (i) x+

i ∈ X̄N
i ⊕ĒN

i (w̄+
i )⊕R̂i,

(ii) all constraints are satisfied, and (iii) all MPC problems
remain feasible (i.e., x̄+

i ∈ X̄N
i and ē+i ∈ ĒN

i (w̄+
i )). To this

end, noting that X̄N
i ⊆ αx

i Xi by construction, we make the
following assumptions, which may also be interpreted as
design conditions that guide Section 5:

Assumption 7. The set R̂i is RCI for the system ê+i =

Aiiêi + Biif̂i + ŵi and constraint set (ξxi Xi, ξ
u
i Ui, Ŵi),

for some ξxi ∈ [0, 1) and ξui ∈ [0, 1), and where Ŵi ,
⊕

j∈Ni
(1 − αx

j )AijXj ⊕ (1 − αu
j )BijUj . An invariance

inducing control law for R̂i is f̂i = µi(êi).

Assumption 8. The constants (αx
i , β

x
i , ξ

x
i ) and (αu

i , β
u
i , ξ

u
i )

are chosen such αx
i + βx

i + ξxi ≤ 1 and αu
i + βu

i + ξui ≤ 1.

The following result establishes recursive feasibility and
constraint satisfaction under these assumptions. To aid
the statement of the result, we first make the following
definitions: W̄i =

⊕

j∈Ni
(αx

jAijXj ⊕ αu
jBijUj) is the set

of admissible disturbances arising from the solutions of the
main optimal control problems for j ∈ Ni; W̄

N
i , W̄i ×

W̄i × · · · × W̄i × {0} is the sequence of such sets. Given
a disturbance sequence w̄i = {w̄i(0), . . . , w̄i(N − 1), 0} ∈
W̄N

i , w̄+
i = {w̄i(1), . . . , w̄i(N − 1), 0, 0} is the tail of that

sequence.

Proposition 9. (Recursive feasibility). Suppose that As-
sumptions 7–8 hold. Then, for each subsystem i ∈ M,

(i) If x̄i ∈ X̄N
i then x̄+

i ∈ X̄N
i .

(ii) If ēi ∈ ĒN
i (w̄i), for some w̄i ∈ W̄N

i , then ē+i ∈
ĒN
i (w̄+

i ).
(iii) Given x̄i(0) = xi(0) ∈ X̄N

i , the subsystem x+
i =

Aiixi + Biiui + wi under the control law ui =
κ̄i(x̄i)+κ̂i(ēi, êi; w̄i) = ū0

i (0; x̄i)+f̄0
i (0; ēi, w̄i)+µi(êi)

satisfies xi ∈ Xi and u ∈ Ui for all time.

Proof. For part (i), because the nominal model is linear,
αx
i Xi and αu

i Ui are PC-sets, and the terminal constraint is
control invariant, the set X̄N

i is compact, contains the origin

and satisfies X̄N
i ⊇ X̄N−1

i ⊇ · · · ⊇ X̄ 0
i = {0}. Moreover,

X̄N
i is positively invariant for x̄+

i = Aiix̄i + Biiκ̄i(x̄i),
which is sufficient to prove the claim. (For a detailed proof,
see Rawlings and Mayne (2009, Proposition 2.11).) The
same arguments applied to Ēi(w̄) establish part (ii).

For (iii), suppose that at time k, x̄i ∈ X̄N
i , ēi ∈ ĒN

i (w̄i)

with w̄i ∈ W̄N
i , and êi ∈ R̂i. Then xi ∈ X̄N

i ⊕ ĒN
i (w̄i) ⊕

R̂i ⊆ αx
i Xi ⊕ βx

i Xi ⊕ ξxi Xi = (αx
i + βx

i + ξxi )Xi ⊆ Xi. The
applied control is ui = ū0

i (0; x̄i) + f̄0
i (0; ēi, w̄i) + µi(êi) ∈

αu
i Ui⊕βu

i U⊕ξui Ui ⊆ Ui. Then, because of parts (i) and (ii),

x+
i = Aiixi+Biiui+wi ∈ X̄N

i ⊕ĒN
i (w̄+

i )⊕R̂i. To complete

the proof, however, we must consider the possibility that the
disturbance sequence at the successor state is w̄

0
i 6= w̄

+
i :

in that case, if P̂i(ē
+
i ; w̄

0
i ) is feasible then x+

i ∈ X̄N
i ⊕

ĒN
i (w̄0

i )⊕R̂i, which is still within Xi by construction, and

ui = ū0
i (0; x̄

+
i )+ f̄0

i (0; ē
+
i , w̄

0
i )+µi(ê

+
i ) ⊆ Ui. If P̂i(ē

+
i ; w̄

0
i )

is not feasible, then P̂i(ē
+
i ; w̄

+
i ) is feasible (by the tail),

and ui = ū0
i (0; x̄

+
i ) + f̄0

i (0; ē
+
i , w̄

+
i ) + µi(ê

+
i ) ⊆ Ui. This

establishes recursive feasibility of the algorithm.

Finally, if, at time 0, x̄i = xi ∈ X̄N
i then ēi = 0. Moreover,

if w̄i = 0, then—trivially—ēi ∈ ĒN
i (0) and both the main

and ancillary problems are feasible. By recursion, feasibility
is retained at the next step, and the proof is complete. 2

Having established recursive feasibility and constraint sat-
isfaction, the main result follows. The following assumption
is supposed to hold.

Assumption 10. (Decentralized stabilizability). The RCI
control laws ui = µi(xi) asymptotically stabilize the system
x+ = Ax+Bu.

Theorem 11. (Asymptotic stability). For each i ∈ M, (i)
the origin is asymptotically stable for the composite
subsystem

x̄+
i = Aiix̄i +Biiκ̄i(x̄i)

ē+i = Aiiēi +Biif̄i(0; ēi, w̄i) + w̄i.

(ii) The origin is asymptotically stable for x+
i = Aiixi +

Biiκi(xi) + wi. The region of attraction is X̄N
i ⊆ αx

i Xi.

Proof. For (i), asymptotic stability of 0 for x̄+
i = Aiix̄i +

Biiκ̄i(x̄i) follows from the following facts: the value function
V̄ 0
i (x̄i) satisfies, for all x̄i ∈ X̄N

i ,

V̄ 0
i (x̄i) ≥ ℓi(x̄i, κ̄i(x̄i)),

V̄ 0
i (0) = 0,

V̄ 0
i (x̄

+
i )− V̄ 0

i (x̄i) ≤ −ℓi(x̄i, κ̄i(x̄i)).

Therefore {V̄ 0
i (x̄i)} → 0 and x̄i → 0, ūi → 0. Similar

arguments applied to V̂ 0
i (ēi; w̄i)—together with the fact

that because w̄i is a linear function of (x̄j , ūj) for j ∈ Ni,
then w̄i → 0 and w̄i → 0—establish that ēi → 0; the
possibility that V̂ 0

i (ēi; w̄i) does not attain the necessary
decrease between (ēi, w̄i) and (ē+i , w̄

0
i ) (where w̄

0
i 6= wi)

is eliminated by the checking step in the algorithm.

For (ii), because xi ∈ x̄i+ ēi+ êi and x̄i, ēi → 0, then xi →
êi and ui → µi(xi). Under the decentralized stabilizability
assumption, then x → 0 and so each xi → 0. 2

5. SELECTION OF THE SCALING CONSTANTS

In this section, a methodology is given for the design of
the scaling constants αx

i , αu
i , βx

i and βu
i for the main

and ancillary problems, and the RCI controller µi(·). The
approach we take is to employ the optimized RCI set design
proposed by Raković et al. (2007); however, we do not

explicitly construct the set R̂i, but use the optimization
to produce the scaling constants and the control law.

5.1 Revision of optimized robust control invariance

In Raković et al. (2007), the problem of computing an RCI
set for x+ = Ax+Bu+ w and (X,U,W), with W a C-set,



is posed as linear programming (LP) problem. The set, and
corresponding control set, are the polytopes

Rh(Mh) =

h−1
⊕

l=0

Dl(Mh)W, µ(Rh(Mh)) =

h−1
⊕

l=0

MlW,

where the matrices Dl(Mh), l = 0 . . . h are defined as

D0(Mh) = I, Dl(Mk) , Al +
l−1
∑

j=0

Al−1−jBMj , l ≥ 1

with Mj ∈ R
m×n and Mh , (M0,M1, . . . ,Mh−1), such

that Dh(Mh) = 0, h ≥ n. The set of matrices that satisfy

these conditions is given by Mh , {Mh : Dh(Mh) = 0}.
Constraint satisfaction is guaranteed if Rh(Mh) ⊆ ηX and
µ(Rh(Mh)) ⊆ θU, with (η, θ) ∈ [0, 1]× [0, 1].

The optimization problem defined to compute these sets is

P
R
h : min{δ : γ ∈ Γ}, (16)

where γ = (Mh, η, θ, δ), and the set Γ = {γ : Mh ∈
Mh,Rh(Mh) ⊆ ηX, µ(Rh(Mh)) ⊆ θU, (η, θ) ∈ [0, 1] ×
[0, 1], qηη + qθθ ≤ δ}; qη and qθ are weights to express
a preference for the relative contraction of state and input
constraint sets. Feasibility of this problem is linked to the
existence of an RCI set: if P

R
h is feasible, then Rh(Mh)

satisfies the RCI properties (Raković et al., 2007).

Remark 12. (Invariance inducing control law). The compu-
tation of the invariance inducing law, µ : Rh(Mh) → U,
does not require an explicit computation of the respective
set. The only required information is the structure of the
given set, i.e.,the solution of (16), from which a suitable
selection map is computed, see Raković et al. (2007).

5.2 Design procedure for each subsystem

Recall that in the control algorithm proposed in the previ-
ous section, the state error ei = xi − x̄i was decomposed
into planned error ēi = x̂i − x̄i and an unplanned error
êi = xi− x̂i; thus, ei = ēi+ êi. Our aim is to determine the

RCI control law f̂i = µi(êi) associated with the unplanned

error dynamics ê+i = Aiiêi + Biif̂i + ŵi. The principal
challenge here is that it is not possible, a priori, to define
the unplanned error set Ŵi. Instead, we consider that an
RCI problem P

R
h is associated with the error dynamics

e+i = Aiiei + Biifi + wi and constraint sets (Xi,Ui,Wi),

and call this problem P
Ri

h , with the set Ri,h defined by
adding appropriate i subscripts to its generating sets and
matrices. The rationale for this is as follows.

The disturbance wi =
∑

j∈Ni
Aijxj + Bijuj arising from

the state and input coupling, is decomposed into two terms:
wi = w̄i + ŵi. The first term, w̄i =

∑

j∈Ni
Aij x̄j + Bij ūj ,

is the planned disturbance obtained from the predictions,
while the second term, ŵi =

∑

j∈Ni
Aij(xj− x̄j)+Bij(uj−

ūj), is the unplanned disturbance. Since x̄j ∈ αx
jXj ,

ūj ∈ αu
jUj then W̄i =

⊕

j∈Ni
(αx

i AijXj ⊕ αu
i BijUj), In

addition, if we bound ej ∈ (1−αx
j )Xj and fj ∈ (1−αu

j )Uj ,

it is possible to write Ŵi =
⊕

j∈Ni
((1− αx

i )AijXj ⊕ (1−

αu
i )BijUj) and so, wi ∈ Wi = W̄i ⊕ Ŵi,i.e., W̄i and Ŵi

are summands of the known Wi. The next results follow
directly from the definition of RCI sets and the results
of Raković et al. (2007):

Proposition 13. Suppose Assumptions 1–3 hold. If PRi

h is
feasible for i ∈ M, then Ri,h(Mi,h) is an RCI set for
e+i = Aiiei +Biifi + wi and (Xi,Ui,Wi).

Proposition 14. Suppose W̃i ⊂ Wi is a PC-set and a
summand of Wi. If Ri,h(Mi,h) is an RCI set for e+i =

Aiiei + Biifi + wi and (Xi,Ui,Wi), then R̃i,h(Mi,h) =
⊕h−1

l=0 Dl(Mh)W̃i ⊂ Ri,h(Mi,h) is an RCI set for e+i =

Aiiei +Biifi + wi and (Xi,Ui, W̃i).

The implication of the second result is that it is possible
to first determine an RCI set for the known disturbance
set Wi, and then, from that, determine an RCI set (with

the same structure) for the set Ŵi, because the latter is a
summand. Therefore, the design is summarized as follows:

(1) The problem P
Ri

h associated with the known Wi is
solved to yield γi,h = (Mi,h, ηi, θi, δi), where ηi and θi
are scalings of Xi and Ui such that Ri,h ⊂ ηiXi and
µ(Ri,h) ⊂ θiUi respectively.

(2) Given that, under the RCI control law, ei ∈ Ri,h ⊂
ηiXi and fi ∈ µ(Ri,h) ⊂ θiUi, we select

αx
i = 1− ηi

αu
i = 1− θi.

Then xi = x̄i + ei ∈ αx
i Xi ⊕ ηiXi = Xi, as required,

with a similar expression for ui.
(3) The selection of suitable ξxi and ξui is done by

finding values such that the sets R̂i,h and µi(Ri,h)

corresponding to the unplanned disturbance set Ŵi =
⊕

j∈Ni
((1−αx

j )AijXj⊕(1−αu
j )BijUj) being contained

within ξxi Xi and ξui Ui. The set Ŵi is computed and the

RCI problem P
R̂i

h is solved for γ̃(i,h) = (Mi,h, η̃i, θ̃i, δ̃i)
to yield the scaling factors

ξxi = η̃i

ξui = θ̃i.

(4) The selection of the constants βx
i and βu

i follows from
Assumption 8 in order to satisfy constraint satisfaction

βx
i = 1− αx

i − ξii
βu
i = 1− αu

i − ξui .

(5) The control law f̂i = µi(êi) is computed from the
matrices Mi,h, using the minimal selection map
procedure described in Raković et al. (2007).

6. ILLUSTRATIVE EXAMPLE

To illustrate the feasibility of the design methodology, we
consider an example based on the system from Farina and
Scattolini (2012), which comprises four trucks, each with
dynamics

d

dt

[

ri
vi

]

= Ac
ii

[

ri
vi

]

+

[

0
100

]

ui + wi

where ri is the displacement of truck i from a datum, vi is
its velocity and ui is the control input (acceleration). The
disturbance wi arises via the coupling between trucks: truck
1 (mass m1 = 3 kg) is coupled to truck 2 (mass m2 = 2 kg)
via a spring (stiffness k12 = 0.5) and damper (h12 = 0.2).
Likewise, truck 2 (mass m3 = 3 kg) is coupled to truck
3 (mass m4 = 6 kg) via k34 = 1 and h34 = 0.3. Finally,



−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

0

0.5

r2

v
2

(1− αx
2 )X2

βx
2X2

R(2,10)

ξx2X2

R̂(2,10)

Fig. 1. For truck 2 (and h = 10), the different scalings
of the state constraint set X2 and the RCI sets R2,10

and R̂2,10: the main controller, ancillary controller and
RCI controller operate within the regions αx

i X2, β
x
i X2

and ηxi X2 respectively; the space (1−αx
2)X2 is divided

between the ancillary controller (βx
2X2) and the RCI

controller (ξx2X2) such that 1− αx
2 = βx

2 + ξx2 .

truck 3 is coupled to truck 4 via k23 = 0.75 and h23 = 0.25.
The initial conditions are x1 = (1.8,−2), x2 = (0.5, 5),
x3 = (−0.9,−5), and x4 = (−1.8, 2). The problem is to
steer the trucks to equilibrium while satisfying constraints
on displacement (|ri| ≤ 2), speed (|vi| ≤ 8) and acceleration
(|ui| ≤ 4 for i = 1, 2, 3, and |u4| ≤ 6). In each case, the
controllers are designed with Qi = I, Ri = 1 and horizon
N = 25. Before applying Algorithm 1 to the system we
obtain the scaling constants (αx

i , β
x
i , ξ

x
i ) and (αu

i , β
u
i , ξ

u
i )

for each truck i ∈ M—see Table 1 for the values obtained
through the procedure detailed in Section 5.

In Figure 1, the different scalings of the state constraint
sets are shown for truck 2, and also the corresponding
RCI sets. Thus, for truck 2, 92.28% of the state constraint
set is allocated to the the main optimal control problem,
which is concerned with regulating the nominal subsystem
(i.e., neglecting interactions). On the other hand, the
ancillary problem—which regulates the planned errors—has
7.36% of the original state constraint sets. The remaining
0.36% of the state constraint set is allocated to the RCI
control law to handle unplanned disturbances.

7. CONCLUSIONS

A distributed MPC algorithm for dynamically coupled
linear systems was proposed. Subsystem controllers solve
(once, at each time step) local optimal control problems
to determine control sequences and state trajectories, and
exchange information about these. The main feature of
the proposed algorithm is the use of a secondary MPC
controller for each subsystem, which acts on the shared

Table 1. Designed values of scaling factors.

Truck 1 Truck 2 Truck 3 Truck 4

αx
i

0.9784 0.9228 0.9342 0.9816
βx
i

0.0199 0.0736 0.0628 0.0172
ξx
i

0.0017 0.0036 0.0029 0.0012
αu
i

0.9921 0.9808 0.9759 0.9910
βu
i

0.0073 0.0183 0.0230 0.0084
ξu
i

0.0006 0.0009 0.0011 0.0006

plans of other subsystems and aims to reject the uncertainty
caused by neglecting interactions in the main problems.
Recursive feasibility and stability are guaranteed under
provided assumptions, and a design methodology was
given for the off-line selection of controller parameters
and illustrated with an example.

A key advantage of the proposed approach, in addition to
the guaranteed feasibility and stability and despite this
being a tube-based method, is the absence of invariant sets
in the optimal control problems. This makes the approach
potentially applicable to higher-dimensional subsystems.
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