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We present methods and results for the simulation of faceted and dendritic crystal growth. Using a ther-
modynamically realistic isothermal alloy model for AlSi we demonstrate, in confirmation of experimental
observations, a change in morphology from perfectly faceted hexagons at smaller undercooling to den-
dritic growth at larger undercoolings. We also demonstrate that there exists a cut off temperature which
separates the two distinct morphologies, and indeed hybrid morphologies. These results suggest that the
mechanism for morphology variation observed experimentally primarily lies in anisotropic surface free
energy modelling, which we adopt in preference to kinetic anisotropy.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

During solidification close to equilibrium crystal morphologies
adopt the Wulff shape, which is itself a reflection of the underlying
crystallography. However, at large departures from equilibrium
alternate morphologies are often adopted. One manifestation of
this is that crystals that are faceted at equilibrium become progres-
sively less faceted and more dendritic in character with increasing
growth velocity. Such a range of transitions was elegantly demon-
strated by [1] in respect of Si crystals growing from an Al-Si melt
solidified on a chill plate, with the transition also having been
widely studied in the semiconductors Si [2,3] and Ge [4,5] together
with Si-Ge [1] mixtures. Where measurements have been made of
the growth velocity [2,5] the transition from faceted to dendritic
growth is usually accompanied by an abrupt increase in growth
velocity. In recent experimental work [6] found, in Cu6Sn5, there
to be a change from faceted rods to non-faceted dendrites as the
cooling rate was increased.

To date the modelling of two-phase crystal growth has concen-
trated on either continuous dendritic morphology or faceted
growth. Here we present an approach to modelling facets that also
allows for a transition to a continuous (dendritic) morphology
under large departures from equilibrium and also accommodates
the intermediate morphology of faceted dendrites. Hence, we clar-
ify that the main mechanism for morphology change is in fact
undercooling (and not cooling rate).
In [1] solidified crystals on a chill plate are seen to exhibit a
range of morphologies. The observation is that of faceted crystals
forming from smooth nuclei at small undercoolings, near equilib-
rium, giving polyhedra. At greater undercooling dendritic instabil-
ity may set in before subsequently forming facets thereby giving
rise to a faceted dendritic morphology. Most phase field simula-
tions designed to simulate faceted growth only exhibit facets,
[8,10–14,18,19], and, of course, the vast majority of phase-field
simulations do not show facets at all.

The modelling of facets in phase field is done via a specification
of the surface energy, the mobility, or both. We focus on surface
energy anisotropy modelling. The link between the surface energy
anisotropy and the resulting morphology is discussed in [7]. Cru-
cially, though, the predicted morphology is only strictly valid at
small undercooling. The question to be asked is therefore: what
happens to the morphology of the solid as the undercooling in
increased? In [9] dendritic growth is observed for a pure metal
with four-fold symmetry, where, at the tip of the dendrite arms,
facets are exhibited. The difference between this and the present
work is that we simulate a given specific alloy (AlSi) using a full
thermodynamic description, and explore the dependency of mor-
phology on undercooling. We demonstrate that, indeed, facets
occur at small undercooling and dendritic growth patterns are
observed at high undercooling, with a continuous range of mor-
phologies in between. We model AlSi in two dimensions, with
the specification that hexagonal facets are to be formed at near
equilibrium. A comprehensive overview of modelling approaches
is given in [17], where in general anisotropy can be modelled in
both the interface and/or in the mobility. If the anisotropy is in
the mobility only, the effect vanishes (within phase-field at least)
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Fig. 1. Polar plot of the function, g ¼ 1þ � cosð4hÞ, with anisotropy varying from
zero (isotropic – red) to extreme anisotropy (blue). The blue curve exhibits concave
regions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. The Frank diagram of the 4-fold anisotropy function is a contour of c in the
space ½/x;/y�. Each contour is identical in shape and is conical for � ¼ 0.
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as V ! 0, so this does not give faceted growth during equilibrium
solidification. As a minimum, using a capillary anisotropy is there-
fore a computational expedient to simulating the faceted to contin-
uous growth transition.

We apply the computational techniques detailed in [20].

2. Facets and anisotropy modelling

Within the phase field model the surface features are modelled
using the gradients of the phase, r/ (the detailed phase model is
given in Section 3).

Much of the literature concerns 4-fold symmetric growth, so we
use this to illustrate the modelling. A 4-fold anisotropy used in the
literature to generate 4-fold dendrites is given by

A ¼ 1
2
d2½1þ � cosð4hÞ�2r/ � r/: ð1Þ

which is controlled by a parameter, �, which when zero give isotro-
pic growth. This can also be written

A ¼ 1
2
d2c2 ð2Þ

where, in general, for m-fold symmetry

c ¼ ½1þ � cosðmhÞ�jr/j: ð3Þ
c is also a function of the surface normal in the following sense

cos h
sin h

� �
¼ r/

jr/j � n: ð4Þ

and has the property cðanÞ ¼ acðnÞ1 for any function, a. It is also
convenient to consider the function, g, related to c by c ¼ gjr/j. This
function has the property gðanÞ ¼ gðnÞ. Fig. 1 plots g as a function of
h in a polar plot, where we see that the circle deforms with increas-
ing � to a point where there are concave regions, here illustrated for
� ¼ 0:1. Setting the locus of the curve

xðhÞ ¼ gðhÞ½cos h; sin h�T ; ð5Þ
a concave region occurs if

@

@h
jx0ðhÞj ¼ 0 ð6Þ

for some h, which gives the condition to avoid concavity as
g00ðhÞ þ gðhÞ > 0. For the case just considered this implies � < 1=15
to avoid concavity, and in general � < 1=ðm2 � 1Þ for m-fold sym-
metry. Another, more direct, way of illustrating the anisotropy func-
tion, c, is by way of a Frank diagram (or shape). Here we choose a
contour of c in the space ½/x;/y�, see Fig. 2. The problem of concavity
in the anisotropy function is that the resulting crystal shape can
develop discontinuities in these regions, which in turn presents
numerical difficulties.

By writing

cx �
@c
@/x

; cy �
@c
@/y

; ð7Þ

both of which are functions of /x and /y, a 2D space curve, WðtÞ,
can be produced by setting ½/x ¼ cosðtÞ;/y ¼ sinðtÞ� in functions cx
and cy to give WðtÞ ¼ ½cxðtÞ; cyðtÞ�. This is shown in Fig. 3 for the
four-fold symmetry case, where cusps, known as ‘‘ears”, form on
the � ¼ 0:1 > 1=15 curve, which correspond to the concavity in
the Frank diagram (Fig. 2). Formally the Wulff shape is the shape
enclosed by WðtÞ (without the ears). The 4-fold anisotropy dis-
cussed so far cannot produce facets, rather, as the parameter �
increases a sharp corner is produced on an otherwise rounded
1 Or cðar/Þ ¼ acðr/Þ.
shape (a bulging square). So we seek other forms that, ideally,
have rounded corners but perfectly flat sides. A number of
approaches to modelling facets in crystal growth are found in
the literature:



Fig. 3. The Wulff shape – see text for the construction.
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1. In [7]
g ¼ 1þ 2�j/x/yj
/2

x þ /2
y

¼ 1þ 2�j cos h sin hj
¼ 1þ �j sin 2hj ð8Þ

where [7] prefer to give the anisotropy in the form given in the
first line.

2. In [8]
g ¼
1þ � cosð4hÞ hm 6 jhj 6 p=4
gðhmÞ cos h

cos hm
jhj < hm

(
ð9Þ

This approach may be seen as regularising g ¼ 1þ � cosð4hÞ for
� > 1=15.

3. In [9] g ¼ 1þ �ðj sin hj þ j cos hjÞ is modified to remove cusps by
g ¼
1þ �= sin h0 � �ðcot h0 � 1Þ cos h h 6 h0
1þ �ðsin hþ cos hÞ h0 < h < p=2� h0
1þ �= sin h0 � �ðcot h0 � 1Þ sin h h P p=2� h0

8><
>:

ð10Þ
for 0 P h 6 p=2, and by symmetry the other quadrants.

4. In [11] a kinetic anisotropy is given (we denote this by gk to dis-
tinguish this from g). Kinetic anisotropy appears in the mobil-
ity, not the free energy.
2 We
gk ¼
1� �

2 � �
2 cos½pðh� p=2Þ=a� jh� p=2j < a

1 otherwise

�
ð11Þ
5. In [12–14] the anisotropy is modelled both in both kinetic and
surface energy form2
present a corrected version here.
gk ¼ 1þ 1� cosð4hÞ
2

� �d
" #n

ð12Þ

where [12] generalises the model (with values for d and n as 8
and 1 respectively) from [15] and use d ¼ 64 and n ¼ 10. A less
extreme illustration of this function is given in Fig. 4. This (kinetic

anisotropy) is combined with a surface anisotropy ðn4
x þ n4

yÞ
1=4,

equivalent to 3=4ð1þ � cos 4hÞ, with � ¼ 1=3 > 1=15, and
therefore has cusps. The combination appears in the reciprocal
of mobility so we have here simply plotted its reciprocal, where
we see its similarity with model 4.

6. In [10] two formulations are given, both kinetic anisotropy
forms (with the surface energy left isotropic)
g1
k ¼ 1þ �� 2�ð1� cos 4hÞn=2n ð13Þ

g2
k ¼ 1� �þ 2� tanh

k
j tan2hj ð14Þ

Here n typically takes the values n < 10 and 1 < k < 2. g1
k has

smoother minimums than g2
k .

A polar plot for each of these can be seen in Fig. 4. In models 4–6
anisotropy is included in the mobility, M, which we refer to as
kinetic to distinguish it from surface energy modelling. However,
as a sharp interface analysis shows, the velocity of the surface is
both influenced by mobility and free energy construction, see
[21]. A variant on the above approaches for the anisotropy function
is found in [22], which gives g as a maximum of the dot product of
the normal with the vector positions of the vertices. This function,
though equivalent to a piecewise function of angle as, for example,
in [11], has the merit of being easy to define for an arbitrary shape
in any dimension.

It has been observed in [16] that having kinetic and surface ani-
sotropy in proportion results in constant shape growth. The full
possibilities for modelling include, then, both an anisotropic term
in mobility and in free energy, which are not necessarily the same.
Thus, there is a range of approaches to modelling faceted growth to
choose from. We choose our approach to be closest to [9] and avoid
a mobility anisotropy. This allows the equilibrium (and also low
undercooling) shape to be the corresponding Wulff shape. We also
adopt a regularised version of model 1 closer to [9] than [8]
because we prefer to work with a model that allows control over
the curvature at the vertices, leaving the facets flat. We also found
that the extreme forms of anisotropy used in, for example, model 5,
are problematic for the implicit computational mechanism we
adopt [20]. Specifically, when the vertex radius can no longer be
resolved by the mesh, instabilities arise. We do find though, with
moderate anisotropic forms (that do not have ears), that similar
behaviour is observed when the anisotropy function is included
in the mobility (leaving the surface energy term isotropic) as when
included in the surface free energy. Though a full exploration of
combining each approach for a variety of undercoolings is left for
future work.

There is another characteristic of the transition from the ana-
lytic domain to computational phase field: the argument of c in
the literature is n, not r/. In fact, the normal is not well defined
away from the interface, and this problem is generally tackled in
computer code rather than in the mathematical model. One way
of dealing with this problem in the model is to define the
normal

n ¼ r/
r/ � r/þ q2 ; ð15Þ

for some small value, q.
The 6-fold anisotropy function we choose to work with, is a

convenient variant of that found in [7], i.e.



Fig. 4. Polar plots for models with 4-fold faceting in 2D found in the literature. On the left we also include the 4-fold continuous (non facet model) for comparison. On the
right the kinetic based models 4–6. Note that in models 3 and 4 the orientation vary from the others by p=4.

Fig. 5. Frank shape for c ¼ jr/j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �j cos 3hjp

.

P.C. Bollada et al. / Computational Materials Science 144 (2018) 76–84 79
g ¼ 1þ �j cos 3hj: ð16Þ

We adopt

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �j cos 3hj

p
; ð17Þ

which simplifies the function A, appearing in the surface free
energy:

A ¼ 1
2
g2r/ � r/

¼ 1
2
ð1þ �j cos 3hjÞr/ � r/: ð18Þ

The model, Eq. (17) produces ears if � > 2=7 (without the square
root the limit is � ¼ 1=8). Intuitively Eq. (17) behaves in a similar
way to Eq. (16) since, they are both zero degree homogeneous
functions and, for small �, the two are essentially the same. In
terms of components of r/ we find

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

j/3
x � 3/x/

2
y j

jr/j3

vuut : ð19Þ

We regularise this function using a single constant, q, which is
less than the maximum value of jr/j, as follows:

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/3

x � 3/x/
2
yÞ

2 þ q6

ð/2
x þ /2

y þ q2Þ3

vuuut
vuuuut : ð20Þ

We find such a regularisation necessary for our code. This is
because we employ an implicit solve at every time step, and as
we let q ! 0 the non-linearity of the derivatives of the modulus
function increases and our code becomes unstable. It may well
be that with other computational methods, e.g. weak form formu-
lation or explicit solvers, such regularisation may be unnecessary.
The parameter q regularises the function defined in Eq. (17) in a
similar manner to that in models [8,9] but avoids dealing with
piecewise functions or high exponents as in [12,10]. Unlike, the
regularisation of [9], we see that it also allows a continuous inter-
face stiffness, gðhÞ þ g00ðhÞ. The parameter, q < jr/jmax, is chosen to
be sufficiently small to ensure that the resulting growth rates are
independent of this parameter, but large enough to keep the sim-
ulation stable. Note that a choice of q > jr/j begins to affect the
results quantitatively. Adjusting � only affects the curvature at
the vertices, where, again, we find that growth rates are not
affected by this parameter even when the hexagon corners are vis-
ibly rounded. We illustrate the Frank shape in Fig. 5 for a variety of
anisotropy strengths, �, and the resulting Wulff shape, with and
without regularisation in Fig. 6 for anisotropy strength � ¼ 0:133.
To obtain the Wulff shape we obtain the locus

wðhÞ ¼ h ! @c
@/x

;
@c
@/y

" #
/x¼cos h

d ;/y¼sin h
d

ð21Þ

where d � 1=jr/j/¼0:5 ¼ 4. A value of q ¼ 0:2 is almost indistin-
guishable from that of q ¼ 0. Strictly speaking the theory of Wulff
shapes only applies to these functions when q ¼ 0, but it seems rea-
sonable to expect such an expression to capture the salient proper-
ties when q > 0. It is illuminating to compare the interface stiffness,
n ¼ gðhÞ þ g00ðhÞ, for q ¼ 0 and the value used in our simulations,
q ¼ 0:2. This is achieved by writing

gðhÞ ¼ g /x ¼
cosðhÞ

d
;/y ¼

sinðhÞ
d

� �
; ð22Þ



Fig. 6. Wulff shape for c ¼ jr/j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/3

y�3/2
x/y Þ

2þq6

ð/2
xþ/2

yþq2Þ3

svuut for � ¼ 0:133; d ¼ 4 ¼

1=jr/j/¼0:5, with q ¼ 0 (dashed red) and q ¼ 0:2 (solid blue). The Wulff shapes
are near indistinguishable, but with slight concavity in the sides for q ¼ 0:2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. The maximum value of the interface stiffness (at h ¼ p=2), n, as a function of
q given d ¼ 4; � ¼ 0:133. For q ¼ 0 the maximum value is nmax ¼ 1 but as q from
zero, nmax increases without bound. We choose q ¼ 0:2 for our simulations, which
gives the interface stiffness illustrated in Fig. 7. Values of q which depart too much
from q ¼ 0:2 lead to a n being substantially different from the q ¼ 0 case.

80 P.C. Bollada et al. / Computational Materials Science 144 (2018) 76–84
where d ¼ 4 for our simulation. Note that, because of the presence
of q the resulting curve is affected by the choice of d. A polar plot
of interface stiffness, n ¼ gþ g00, is shown in Fig. 7, where the
smoothing effect of the regularisation is clearly seen. For a fixed
�; d one can explore the (maximum) size of n as a function of q. This
Fig. 7. Polar plots of Eq. (20) at jr/j/¼0:5 ¼ 1=d ¼ 0:25 for both q ¼ 0 and q ¼ 0:2. (red
interfacial stiffness, gþ g00 , particularly at the outer extremes, e.g. h ¼ p=6. (For interpreta
version of this article.)
is seen in Fig. 8, which illustrates the effect of q on the size of inter-
face stiffness, nmax. For any value of q > 0;g0 is continuous, but at
q ¼ 0 there are values, for example, h ¼ p=2, where g0 is discontin-
uous, but has zero value either side of the discontinuity. This has the
consequence that g00 may be defined as zero at these points (and
consequently n ¼ 1 here). Thus when g is regularised with q, very
small values of q cause n to blow up without bound. Thus,
q ¼ 0:2, given �; d, is one of a narrow range of choices for q that
returns an interface stiffness similar to that of the q ¼ 0 case
(another option, for example, might be to choose q ¼ 1=d ¼ 0:25
and tune � to � 0:4). The general approach, then, is to choose an
dashed, solid blue respectively). The parameter, q, can be seen to regularise the
tion of the references to color in this figure legend, the reader is referred to the web
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g with q ¼ 0 that returns the desired Wulff shape and then, for a
given interface width d, choose a q which gives a smoother n, but
otherwise qualitatively similar in size and shape.

3. The phase field model

The equations for phase and concentration are given by:

_/ ¼ �M
dF
d/

; ð23Þ

and

_c ¼ �r � Dr dF
dc

ð24Þ

where M and D are the mobility and solute diffusion parameters
respectively, and defined as follows:

M ¼ MAlð1� cÞ þMSic; ð25Þ
whereMAl;MSi are the mobilities of each component separately, and

D ¼ Dliq/þ Dsolð1� /Þ
RT

cð1� cÞ; ð26Þ

where the diffusivity in the solid, Dsol � Dliq. The temperature is
given by T. The free energy F, is given in terms of free energy den-
sity, f,
nd (bottom left) T ¼ 1100 K. Each plot is a function of solute concentration, the solid
rea around the crystal indicates the depletion of Silicon close to the growing edge
end, the reader is referred to the web version of this article.)



Fig. 11. The top figure shows the evolution of K as a function of vertex position, x, for a range of temperatures, T. The lower figure (on a log-log scale) shows the evolution of
dK=dt, revealing a series of minima and maxima (please see text for further observations).
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F ¼
Z
X
f d3x: ð27Þ

The two key components of f are the surface free energy density
and the bulk free energy: f ¼ f S þ f B. The bulk free energy density
is built in terms of the bulk free energies of the separate compo-
nents for each phase

f B ¼ gð/Þf liqðc; TÞ þ ð1� gð/ÞÞf solðc; TÞ; ð28Þ
Here we use the interpolating function gð/Þ ¼ /2ð3� 2/Þ. The
quantities f liqðc; TÞ and f solðc; TÞ may be found, for example, in
[23]. See Fig. 9 for an equilibrium phase diagram for AlSi. This mate-
rial allows significant undercooling in the mixed phase region, e.g.
c ¼ XSi ¼ 0:6, has a temperature range of DT > 400 K. The surface
energy density contains terms to control the interface width and,
in particular, the anisotropy, discussed in the previous section.

f S ¼ W½Aðr/Þ þ Bð/Þ�: ð29Þ



Fig. 12. The morphology change in position (and time) at the lowest temperature simulated, T ¼ 1000 K. The crystal shapes are shown on a one sixth domain and each
snapshot is taken near the key points, dK=dt, with the exception of the red curve which is simply the final snapshot. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Here W ¼ WAlð1� cÞ þWSic, is a linear combination of the alloy

components, B ¼ 8/2ð1� /Þ2 is a double well potential used to con-
trol the interface width, and A, controls the interface width and ani-
sotropy. The isotropic case is given by A ¼ 1

2 d
2r/ � r/. A 1D

solution to dFS
d/ ¼ 0

/ ¼ 1
2

1þ tanh
2x
d

� �� �
: ð30Þ

defines the interface width, where note that we implicitly adopt
d ¼ 1=jr/j.

4. Results

In order to discuss and interpret the simulation results we
introduce a dimensionless measure of faceting, K. The measure is
invariant under scaling and is normalised so that a circle returns
a value of unity. Any other closed shape will have a value K > 1.
We define

K ¼ Perimeter2

4p� Area
ð31Þ

We also find that the quantity dK=dt is very sensitive to chang-
ing morphology in the growth in time. Broadly speaking, dK=dt 	 0
indicates a self similar expanding shape. A regular hexagon has

K ¼ 36
4p3

ffiffiffi
3

p
=2

	 1:10 ð32Þ

and a square K 	 1:27, etc. We find, in agreement with [1] that
small undercooling produces a growing self similar (in this case
hexagonal) facet, but for large undercoolings we see facet breaking
and ultimately dendritic structures. For the latter case we broadly
expect the value of K to increase from unity (the initial condition
of a circular seed) in time, perhaps monotonically. In fact we also
find that in the early stages a regular hexagon develops for all under
cooling considered. Thus, we are not just interested in the change in
morphology, between different undercoolings, but also within the
growth cycle of each single under cooling.

Fig. 10 shows the evolution of crystal shape as a function of
temperature, chosen at the same position (apart from T = 1300 K
which had not attained that size). Fig. 11 shows plots of K (top)
and _K � dK=dt against vertex position, x, for a range of tempera-
tures, T ¼ 1000 K; 1050 K; 1100 K; 1150 K; 1200 K; 1300 K. Fol-
lowing K for the largest undercooling, at T ¼ 1000 K, we see that
K is largest for this, lower, temperature, and also exhibits a series
of minima and maxima. A large value of K indicates the largest
departure from a circle/hexagon, and thus a large positive value

for €K (and @
@x

_K) at the first minimum ( _K ¼ 0) indicates facet break-
ing. Thus an insight into the relation between facet breaking and
temperature is found by finding the trend between the occurrence
of this first minimum for each temperature. This forms a trend
shown by the brown solid straight line passing through these first
minima (indicating a power law between the facet breaking posi-
tion and temperature). With larger temperature the minima
become shallower and by T ¼ 1300 K appear to disappear and
thus, for this temperature (and for 1300 K < T < TM), is predicted
to remain hexagonal. The other observation in Fig. 11 is that the
position of the first minima dK=dt are all near hexagonal and the
position of the first maxima for each undercooling have the same
morphology (loosely described as a faceted hexagonal star shape
– see top right in Fig. 10). This correlation between different under-
cooling is shown by the vertical dashed arrow lines joining the
upper and lower figures at the first maxima for a selection of four
undercoolings (the first minima also coincide with a value of
K � 1:1 indicating a faceted hexagon). Fig. 12 illustrates the
changes in morphology for a single undercooling (T = 1000 K). All
the shapes, at different undercooling, in Fig. 10 are present also
within different stages of the single simulation T = 1000 K. In
Fig. 12 the stages chosen are the minima and maxima points of
dK=dt plus the final shape attained in the simulation at the end
(i.e. minimum, maximum, minimum, maximum, final shape,
respectively). Clearly, following the first minimum the rapid
change of morphology is due to the formation of the six arms along
the vertices. Following the second minimum the rapid change is
due to the flattening out of the sides of dendrite (compare green
with brown). Finally, we consider the relationship between facet
length and velocity. Specifically: what is the relation betweenmax-
imum length of the hexagonal side and velocity just before break-
ing? By looking at Fig. 11 we can extract the breaking positions,
and therefore facet length, L ¼ x, the tip position at the minima.
Using tip speed, V, at this point and linear regression we found
the power law relation for this data.
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Qualitatively larger facets are produced with lower growing
speeds according to this rule for all temperatures we studied below
T ¼ 1300 K.
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