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Abstract 1 

Child undernutrition is a major adverse public health burden in developing countries, 2 

specifically in sub-Saharan Africa and South Asia. Nutrition interventions such as 3 

micronutrient supplementation, as well as complementary feeding targeting the major 4 

micronutrient deficiencies have only reduced the burden of child undernutrition to a certain 5 

extent, indicating that others factors may play a role. Aflatoxin exposure, which is also highly 6 

prevalent in developing countries, may be considered to be an aggravating factor for child 7 

undernutrition. Increasing evidence suggests that aflatoxin exposure can occur in any stage of 8 

life including in utero through a trans-placental pathway and in early childhood (through 9 

contaminated weaning food and family food). Early life exposure to aflatoxin is associated with 10 

adverse effects on low birth weight, stunting, immune function suppression, and liver function 11 

damage. The mechanisms underlying impaired growth and aflatoxin exposure are still unclear 12 

but intestinal function damage, reduced immune function and alteration in the insulin-like 13 

growth factor axis caused by liver damage, are suggested hypotheses. Given the fact that both 14 

aflatoxin and child undernutrition are common in sub-Saharan Africa, effective interventions 15 

aimed at reducing undernutrition cannot be satisfactorily achieved until the interactive 16 

relationship between aflatoxin and child undernutrition is clearly understood and an aflatoxin 17 

mitigation strategy has taken effect in those vulnerable mothers and young children.   18 

 19 

Keywords: Aflatoxin, child undernutrition, stunting, kwashiorkor, micronutrient deficiencies 20 

 21 

Introduction  22 

Child undernutrition including stunting, wasting and micronutrient deficiencies is a major 23 

public health problem for low-income countries. The short- and long-term health consequences 24 

of child undernutrition can be severe and irreversible and include impaired cognitive 25 
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development, increased vulnerability to infectious diseases, and reduced educational outcomes 26 

and economic productivity in adulthood (1). Furthermore, undernutrition is responsible for 27 

approximately 3.1 million child deaths each year, with 45% of all child deaths in 2011 having 28 

been attributed to this cause (1).  29 

 30 

It is recognised that there is a window of opportunity for reducing the burden and the lasting 31 

impact of child undernutrition, in particular impaired growth. This critical period is defined as 32 

the first 1000 days of life from conception to 24 months of age (2, 3). Bhutta et al., (4) reviewed 33 

the potential effect on child undernutrition outcomes of interventions such as breastfeeding 34 

promotion, micronutrient supplementation and diversified complementary feeding during this 35 

critical period and up to 36 months in the 36 counties with the highest burden of child stunting. 36 

By modeling the survival and linear growth status of the annual birth cohort from birth to 36 37 

months, these authors concluded that existing interventions could potentially reduce stunting at 38 

36 months by 36%; mortality by 25% (from birth to 36 months); and stunting, wasting, fetal 39 

growth restriction and micronutrient deficiencies disability-adjusted life-years by 40 

approximately 25%. Although, these outcomes are encouraging, there are likely to be other 41 

underlying determinants of undernutrition that need to be addressed.  42 

 43 

There is increasing evidence that exposure to aflatoxin could be one of the underlying factors. 44 

Aflatoxin is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticus that 45 

contaminate staple crops in many of the countries where child stunting is also prevalent. 46 

Although Aspergillus molds occur in soil across a wide geographic distribution, hot and humid 47 

conditions are favourable for aflatoxin production, with stress to crops caused by drought 48 

conditions promoting the contamination of susceptible crops (such as maize and groundnuts) 49 

in the field (5). Further growth of the fungus and production of aflatoxin is enhanced by post-50 
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harvest storage conditions that involve high humidity (6). There are four main types of 51 

aflatoxin, namely aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and 52 

aflatoxin G2 (AFG2). AFB1 is the most potent toxin and is the most prevalent, accounting for 53 

an average of 70% of the total aflatoxin content in food, although this may vary depending on 54 

the strain of the fungus and local conditions. Aflatoxin M1 (AFM1) is a toxic metabolite of 55 

aflatoxin B1, which can be found in milk of lactating mothers, and milk and meat of animals 56 

exposed to aflatoxin. 57 

 58 

Human exposure to contaminated food is highest in countries with high consumption of 59 

susceptible staple crops grown and stored under optimal fungal growth conditions. Aflatoxin 60 

exposure often causes acute outbreaks and sometimes fatal liver toxicity (7). Chronic exposure 61 

can increase the risk of liver cancer (8), in particular through an interaction with the hepatitis B 62 

virus. There is increasing evidence that aflatoxin plays a role in other health effects such as 63 

hepatomegaly (9), immune suppression (10-12) and growth faltering in children (13, 14). 64 

Chronic aflatoxin exposure is evident throughout life, including the critical first 1,000 days 65 

(15).  66 

 67 

With the increasing evidence that aflatoxin can exacerbate the effects of undernutrition, and 68 

contribute to growth faltering, it is likely that aflatoxin exposure has inhibited the expected 69 

growth improvement predicted for nutritional intervention programs. In this review we will 70 

summarise the burden of childhood undernutrition and the current achievement of nutritional 71 

specific interventions for improving child growth, review the evidence for aflatoxin exposure 72 

exacerbating undernutrition and reflect on the necessity for considering aflatoxin exposure in 73 

nutritional intervention programs.  74 

  75 
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Child undernutrition and nutrition specific interventions in the developing world  76 

 77 

Protein energy malnutrition  78 

Protein energy malnutrition (PEM), considered to be the leading form of childhood malnutrition 79 

in developing countries, includes the disorders kwashiorkor, marasmus and marasmus- 80 

kwashiorkor, which are differentiated by the balance between inadequate protein intake and 81 

other energy sources (16). PEM is often a consequence of suboptimal breastfeeding, delayed 82 

and/ or inadequate supplementation of appropriate complementary foods, lack of diet diversity 83 

and infection that can lead to decreased absorption of essential nutrients.  84 

 85 

In 2000, the WHO estimated that 26.7% of children < 5 years of age in developing countries 86 

had PEM (17). There is a lack of recently conducted population based studies that have 87 

investigated the prevalence of the different types of PEM in developing countries. Kwashiorkor, 88 

oedematous malnutrition, has been included within the estimates for the prevalence of, and 89 

deaths attributable to, severe acute malnutrition (SAM) (weight-for-height (WHZ) below -3, 90 

according to WHO standards (18)). In 2011 the global prevalence of SAM in children < 5 years 91 

was 3% (19 million) with higher percentages observed in central Africa (5.6%) and south-92 

central Asia (5.1%) (1).  93 

 94 

A recent systematic review evaluated the effectiveness of inpatient management for SAM using 95 

the WHO protocol, as well as community-based treatments in low- and middle-income settings 96 

(19). The authors found that case fatality rates for inpatient management of SAM, following 97 

the WHO protocol, which involves fluid management and micronutrient supplementation, 98 

ranged from 3.4% to 35%. Only two studies reported nutrition recovery rates, which were 99 

79.7% and 83.3%. For the community-based treatment of SAM that involves the use of ready-100 
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to-use therapeutic food (RUTF), 51% of children were more likely to achieve nutritional 101 

recovery than a standard care group. Although, this systematic review was limited in the 102 

availability of high quality studies, the nutritional recovery rates of the interventions reviewed 103 

were advantageous. The authors have concluded that future studies are warranted to compare 104 

approaches to managing SAM and this includes identifying and tackling other aggravating 105 

determinants of SAM.  106 

 107 

Growth faltering 108 

Stunting (height-for-age Z score (HAZ) < 2), wasting (weight-for-height Z score (WHZ) < 2) 109 

and underweight (weight-for-age Z score (WAZ) < 2) (18) are major indicators of child 110 

undernutrition. Severe undernutrition is considered when Z sores are <3. In 2011, 111 

approximately 165 million (25.7%) children under the age of five years globally had stunted 112 

growth, 52 million (8%) were classified as wasting and 100 million (16%) were underweight 113 

(20). South-central Asia (36% stunted, 15% wasting and 30% underweight) as well as East 114 

(42% stunted) and West Africa (36% stunted and 22% underweight) had the highest prevalence. 115 

Growth faltering in early life is a predisposing risk factor for poor cognitive development, 116 

reduced educational outcomes and economic productivity, as well as reduced survival in 117 

adulthood (1). Micronutrient deficiencies alongside recurring infections are some of the well-118 

recognised causes of child growth faltering in developing countries. There are three 119 

micronutrient deficiencies of public health concern in developing countries; vitamin A, Iron 120 

and zinc deficiency. Interventions (supplementation) targeting these specific micronutrients and 121 

their impact on growth outcomes are summarised in table 1. 122 

 123 

Zinc deficiency  124 
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A recent analysis conducted by Wessells and Brown (21) estimated the global prevalence of 125 

zinc deficiency (ZD) as 17% in 188 countries, using zinc intake obtained from FAO food 126 

balance sheets, with zinc and phytate contents calculated using a nutrient composition database 127 

(table 1). Low-income countries such as those in sub-Saharan Africa and South Asia were most 128 

at risk with a ZD prevalence of over 25% (21). ZD is primarily caused by low intake of animal 129 

products and exacerbated by persistent diarrhoea (22, 23). ZD can negatively impact the 130 

immune system, thereby enhancing susceptibility to infectious diseases such as diarrhoea, 131 

malaria and pneumonia, especially in children (22). It may also aggravate intestinal 132 

permeability and chronic inflammation, both pathways that underlie environmental 133 

enteropathy, which is a sub-clinical condition involving reduced intestinal function that can 134 

affect micronutrient absorption (23). Zinc has a fundamental role in cell division and growth; 135 

thus, it can result in decreased concentrations of circulatory Insulin-like Growth Factor 1 (IGF-136 

1), a possible pathway for slowed child growth in Zinc deficient children (24).  137 

 138 

ZD in developing countries coincides with the high prevalence of stunted growth in children 139 

observed in these countries (1, 21). In fact, assessing the number of children < 5 years old that 140 

have stunted growth has been considered to be a proxy for zinc deficiency (21, 25), although 141 

this is an indirect method of measuring ZD, and consequently is subject to confounding factors. 142 

It would be expected, therefore, that zinc supplementation would have a positive effect on 143 

growth. Four meta-analyses (26-29) have been identified that have investigated the impact of 144 

zinc supplementation on growth indices in childhood (table 1). Three meta-analyses found that 145 

zinc supplementation had a significant positive effect on linear growth (26, 27, 29) and two 146 

found it had a positive effect on weight gain (26, 27). In contrast, Ramakrishnan et al. (28) 147 

found no effect of zinc supplementation on linear growth or weight change but did find a 148 

significant positive effect on change in WHZ score. Although it is apparent from the 149 
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aforementioned evidence that zinc can have a positive impact on growth, it is important to 150 

highlight that its effect is only marginal. 151 

 152 

Iron deficiency  153 

Iron deficiency (ID) is the leading cause of anaemia (haemoglobin < 110g/L) and accounts for 154 

~50% of all cases (30). For this reason anaemia is typically used as a proxy for ID. Stevens et 155 

al. (31) estimated the global prevalence of total and severe anaemia in three population groups 156 

known to be most vulnerable to these conditions; women of child bearing age (15-49 years), 157 

children (6-59 months) and pregnant women. Using representative population based data 158 

collected from 107 countries, it was evident that anaemia is of epidemic proportions worldwide 159 

(table 1). Regional analysis showed Central and West Africa as having the highest prevalence 160 

of anaemia and severe anaemia in children aged < 5 years in 1995 (80% and 9.7%) and 2011 161 

(71% and 4.9%). The high prevalence observed in developing parts of the world is mostly likely 162 

due to diets low in iron rich foods alongside poor absorption and diets high in phytate 163 

compounds that inhibit iron absorption (32). Parasite infections as well as tuberculosis and HIV 164 

are also thought to be risk factors. 165 

 166 

Poor growth and cognitive development during childhood have been suggested as major 167 

consequences of iron deficiency; although, the evidence supporting these suggestions is 168 

inconclusive. For example, several systematic reviews and meta-analyses of randomized 169 

controlled trials (RCTs) have failed to discover a positive effect of iron supplementation on 170 

different growth parameters in children (table 1) (33-36). However, a recent systematic review 171 

and meta-analysis (37), found a small positive effect on growth (HAZ) in children that were 172 

aged between 5 and 12 years. Likewise, systematic reviews have reported that iron 173 

supplementation can have an impact on cognitive development especially in older children (37, 174 
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38) but appears to be ineffectual in young children and infants (35, 36, 38, 39). This evidence 175 

indicates that iron supplementation may have more of an impact on growth performance and 176 

cognitive development during mid-childhood. Of course, this may challenge the view that 177 

interventions targeting growth should occur in the first 1,000 days of life (2, 3), as beyond this 178 

timeframe interventions are considered to be ineffectual. Nevertheless, it is noticed that the 179 

positive effect on growth reported in these studies (37) was only marginal, indicating that iron 180 

supplementation targeting mid childhood may only have limited success as a public health 181 

intervention.  182 

 183 

Vitamin A deficiency 184 

According to a WHO (40) report, vitamin A deficiency (VAD), defined as having serum 185 

(plasma) retinol concentrations less than < 0.70 μmol/l or having a history of night blindness in 186 

more severe cases, is considered a major public health problem in developing countries, 187 

specifically in Asia and sub-Saharan Africa. In that report, the global prevalence of VAD 188 

measured between 1995 and 2005 in pregnant women was 15.3% and when stratified according 189 

to WHO regions, Africa and Asia had the highest rates (14.3% and 18.4%). This trend was also 190 

observed in children under 5 years old. Global prevalence was 33.3%, with Africa (41.6%) and 191 

Asia (33.5%) having higher rates than other parts of the world. 192 

 193 

The developing fetus and preschool aged children are considered to be at-risk populations, 194 

owing to the rapid growth and subsequent increased nutritional requirements during these 195 

stages of the life course. In developing countries these additional nutritional requirements are 196 

frequently not met owing to the lack of diet diversity, as well as the affordability of foods high 197 

in vitamin A such as animal products, citrus fruits and dark green vegetables.  198 

 199 



10 

 

Over the past decade, some observational studies have found that maternal VAD was associated 200 

with lower birth weight (41, 42). In contrast, according to a recent systematic review and meta-201 

analysis vitamin A supplementation during pregnancy had no positive effect on birth weight 202 

(43). Furthermore, vitamin A supplementation during childhood showed little or no effect on 203 

growth performance in several RCTs (33, 44-47).  204 
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Table 1: Major micronutrient deficiencies of public health concern: prevalence, supplementation and growth outcomes in children 

Micronutrient Prevalence Micronutrient supplementation on 

growth. Evidence from systematic 

reviews and meta-analyses 

Effects on physical growth (95%CI) 

Zinc Wessells and Brown (21) 

Using country specific FAO food balance 

sheets 

All ages (> 6months) 

Global: 17.3 ± 11.1% 

sub-Saharan Africa: 25.6 ± 12.2% 

South Asia: 29.6 ± 3.6% 

Prevalence of inadequate zinc intake was 

correlated with the prevalence of stunting in 

children < 5 years (r = 0.48; p <0.001) 

Brown et al. (26) 

Meta-analysis of RCTs 

Children <12 years or prepubertal 

Zinc supplementation ≥ 8 weeks
  

Zinc supplementation had a positive 

effect on change in height (effect size 

= 0.35; 95% CI: 0.19-0.51) and 

change in weight (effect size = 0.31; 

95% CI: 0.18-0.44). There was no 

significant effect on WHZ. 

  Brown et al. (27) 

Meta-analysis of RCTs 

Infants, pre-schooler and older pre-

pubertal 

Zinc supplementation 2 weeks to 15 

months 

 

Zinc supplementation had a positive 

effect on change in height (effect size 

= 0.17; 95% CI: 0.08-0.26), change in 

weight (effect size = 0.12; 95% CI: 

0.05-0.19) and a small marginal effect 

on change in WHZ score (effect size = 

0.06; 95% CI: 0.00-0.12) compared 

with control groups. 

   

Ramakrishnan et al. (28) 

Meta-analysis of RCTs  

Children ≤5 years 

Zinc supplementation ≥ 8 weeks 

 

Zinc supplementation had no 

significant positive effect on change 

height or weight gain but did have a 

small positive effect on WHZ score 

(effect size = 0.06; 95% CI: 0.01-0.11) 

in comparison with placebo-controlled 

groups. 
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Imdad and Bhutta (29) 

Meta-analysis of RCTs  

Children < 5 years 

Zinc supplementation ≥ 8 weeks 

 

Zinc supplementation had a positive 

effect on linear growth (effect size = 

0.19; 95% CI: 0.08-0.30) compared to 

placebo-controlled group. 

 

Iron Stevens et al., (31) 

Iron deficiency anaemia (haemoglobin <110 

g/L) 

Children < 5 years 

Global: 43% (95% CI: 38-47) 

Central and West Africa: 71% (95% CI: 

67-74) 

South Asia: 58% (95% CI: 44-69) 

Ramakrishnan et al. (33) 

Meta-analysis of RCTs 

Children < 18 years 

Iron supplementation ≥ 8 weeks 

Iron supplementation had no 

significant effect on height or weight 

compared to a control group. 

  Sachdev et al. (34) 

Meta-analysis of RCTs 

Children < 14 years 

Oral Iron supplementation duration 

2 months to 12 months 

Iron supplementation had no 

significant effect on WAZ, WHZ, 

HAZ, mid upper arm circumference, 

skinfold thickness or head 

circumference compared to control 

groups. 

   

Low et al. (37) 

Meta-analysis of RCTs 

Children 5 to 12 years 

Oral iron supplementation ≥ 5 days 
per week 

 

Iron supplementation had no 

significant effect on absolute height or 

absolute weight or WHZ score but did 

have a significant but small positive 

effect on HAZ score compared with a 

control group (effect size = 0.09; 95% 

CI: 0.01-0.17). 

   

Pasricha et al. (35) 

Meta-analysis of RCTs  

Children aged 4-23 months 

 

Iron supplementation had no 

significant effect (P > 0.05) on final 

weight, WAZ scores, change in 
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Daily oral iron supplementation weight, final length, HAZ scores, 

change in length or weight for length z 

score in comparison with the control 

group. 

   

Thompson et al. (36) 

Meta-analysis of RCTs 

Children 2 to 5 years 

Oral iron supplementation ≥ 5 days 
per week 

 

Iron supplementation had no positive 

effect on final height, final weight, 

change in height and change in weight 

compared to a control group 

 

Vitamin A 

 

WHO (40) (Serum retinol <0.70 µmol/L) 

Children < 5 years 

Global: 33.3% (95% CI: 31.1-35.4) 

Africa: 44.4% (95% CI: 41.3-47.5) 

South East Asia: 49.9% (95% CI: 45.1-

54.8) 

 

Ramakrishnan et al. (33) 

Meta-analysis of RCTs 

Children < 18 years 

Vitamin A supplementation ≥ 8 
weeks 

 

Vitamin A supplementation had no 

positive effect on absolute height 

change or weight change 
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It is clear from the evidence above that supplementation interventions targeting the main 205 

micronutrients of public health concern in developing countries are not entirely effective in 206 

improving child growth. Vitamin A supplementation markedly has no impact on child growth, 207 

whereas zinc and iron supplementation seem to have peripheral effects. This suggests that there 208 

are other underlying determinants of child growth faltering that need to be addressed. 209 

 210 

Aflatoxin related undernutrition issues in the developing world 211 

Aflatoxin exposure and its relationship with growth faltering. 212 

The development and application of the AF-alb biomarker has enabled a number of 213 

epidemiology studies examining human health effects of aflatoxin exposure (48). This 214 

biomarker, which is usually measured by an ELISA method (49) has shown a good correlation 215 

with aflatoxin intake in adults through a groundnut based diet in The Gambia (50), as well as 216 

in children through a maize-based weaning diet in Tanzania (51). Compared to other available 217 

short term (for previous 1-2 days exposure) biomarkers such as the aflatoxin DNA adduct, 218 

AFM1 and aflatoxin metabolites in urine, this biomarker reflects the previous 2-3 months 219 

exposure at the individual level, and is therefore more appropriate for assessing chronic 220 

exposure related health outcomes.  221 

 222 

There is mounting evidence that aflatoxin exposure occurs from gestation onwards throughout 223 

life (15). Exposure occurs in utero through the transfer of aflatoxins from the mother to the 224 

foetus via the placenta. Several studies have investigated this route of exposure and have found 225 

detectable levels of aflatoxin or AF-alb in cord blood samples (52-56). Only a few studies have 226 

examined the impact of exposure in utero on birth weight (57-59). All have reported a 227 

significant inverse relationship with higher exposure in utero corresponding to lower weight at 228 
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birth. A study by de Vries et al (57) conducted in rural Kenya, examined aflatoxin levels in 229 

maternal and cord blood samples. Aflatoxin was detected in over half of the maternal samples 230 

and 37% of the cord blood samples. Females born to aflatoxin positive mothers had a mean 231 

birth weight that was 225g lower than those born to mothers free from aflatoxin exposure. 232 

Similar results were observed in a study conducted in the Middle East by Abdulrazzaq et al., 233 

(58), where high aflatoxin levels in maternal and cord blood samples were significantly related 234 

to lower birth weights (r = -0.654, P = 0.0001 and r = -0.565, P = 0.001, respectively). More 235 

recently, a cross-sectional study of 785 pregnant Ghanaian women, after adjusting for socio-236 

demographic variables and other factors, found increased odds of delivering a baby with a low 237 

birth weight in the highest quartile (59). The highest quartile represented the highest levels of 238 

aflatoxin exposure measured in blood during pregnancy (OR, 2.09; 95% CI: 1.19–3.68).  239 

 240 

Aflatoxin exposure in utero may also play a role in stunted growth in early childhood (up 24 241 

months). Only one study to date has explored this temporal relationship (56), and found that 242 

higher levels of AF-alb in maternal blood were significantly associated with lower weight (P = 243 

0.012) and height (P = 0.044) gain, after adjusting for potential confounding factors. 244 

Furthermore, the authors predicted that a reduction in maternal AF-alb level from 110 pg/mg 245 

to 10 pg/mg would lead to a 2 cm increase in height and a 0.8 kg increase in weight within the 246 

first 24 months of life. 247 

 248 

Usually studies that have examined exposure in utero by measuring maternal blood only 249 

obtained measurements at one point in time. A recent study conducted by Castelino et al., (60) 250 

explored the effect of season and gestation stage on aflatoxin exposure in pregnant women from 251 

Gambia. Results showed that mean AF-alb levels were higher during the dry season than the 252 
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rainy season. AF-alb levels increased marginally from early to later gestation during the dry 253 

season (41.8 vs 34.5 pg/mg; P < 0.05). Although early pregnancy has been considered a period 254 

when the foetus is most vulnerable, later pregnancy marks the fast growth period of the foetus, 255 

which may exert a profound adverse impact on growth. Further research is warranted to 256 

determine the longer term health effects of aflatoxin exposure during both early and late 257 

pregnancy. 258 

 259 

Weaning is the transition from breast milk to solid food, and typically commences between 3 260 

and 6 months. It is often a period in developing countries when children are most susceptible 261 

to PEM, specifically, kwashiorkor. Because weaning foods such as maize are prone to aflatoxin 262 

contamination, there may also be high aflatoxin exposure during the weaning period. This was 263 

evident in a study conducted by Gong et al., (61) in Benin and Togo, as children that were fully 264 

weaned had approximately 2-fold higher mean AF-alb levels than children who were still 265 

partially breastfed. Although breastfeeding is a period of lower aflatoxin exposure, there is still 266 

some exposure from breast milk, with aflatoxin M1 having been found in breast milk samples 267 

in many studies (62). Nevertheless, AFM1, which is the hydroxylated metabolite of aflatoxin 268 

that is found in milk, is less toxic than AFB1 that is found in food; therefore extending the 269 

breastfeeding period may help reduce the negative health impacts, such as growth faltering, that 270 

are associated with aflatoxin exposure. 271 

 272 

The impact of aflatoxin exposure on growth is considered the most prominent during the first 273 

two years after birth. One of the first studies examining the association between aflatoxin 274 

exposure and child growth performance was a cross-sectional study of 480 children from Benin 275 

and Togo aged between 9-months and 5 years (13). Prevalence of aflatoxin was high in this 276 
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sample with 99% of the children having detectable levels and a reported geometric mean of 277 

32.8 pg/mg. Undernutrition was also evident as 33%, 6 % and 29% of the children were 278 

classified as having stunted growth (HAZ <-2), wasting (WHZ <-2) and being underweight 279 

(WAZ <-2); respectively. Significant negative correlations between AF-alb and each of the 280 

growth parameters were observed (P = 0.001 for stunting; P = 0.047 for wasting and P = 0.005 281 

for underweight). Another cross-sectional study by Turner et al., (10) found that AF-alb levels 282 

were weakly associated with wasting (P = 0.034) but not with stunting or underweight. 283 

 284 

These earlier studies were the first in determining the association of aflatoxin dietary exposure 285 

with growth impairment in human subjects, and generated hypotheses for further investigations. 286 

Cross-sectional studies are the best way to measure prevalence (63); however, they do have 287 

limitations, as they cannot be used to establish the temporal sequence of the relationship 288 

observed. A subsequent study using a longitudinal design, examined the effects of aflatoxin 289 

exposure on growth in a cohort of 200 children from Benin (16-37 months) followed up over 290 

8-months (14). High prevalence of aflatoxin exposure was found across the cohort with almost 291 

all samples being positive for aflatoxin at each time point and with mean AF-alb levels of 37.4 292 

pg/mg (February), 38.7 pg/mg (June) and 86.8 pg/mg (October). Results showed that both AF-293 

alb levels measured in February and the mean AF-alb level from the three time points, were 294 

inversely correlated with HAZ and WHZ growth parameters that were measured at the end of 295 

the study. This relationship remained after adjusting for potential confounding factors such age, 296 

sex, height, weaning status, SES and geographical location, although only for the HAZ growth 297 

parameter (P < 0.001). Furthermore, there was a difference in height of 1.7 cm between the 298 

highest and lowest AF-alb quartile over the 8 month period. This study has helped to show the 299 

temporal relationship between aflatoxin exposure and impaired child growth. Although 300 

additional longitudinal studies conducted in different geographical locations and populations 301 
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will strengthen the evidence on the likelihood of this effect being cause and effect. Furthermore, 302 

plausible mechanisms that link aflatoxin exposure with impaired child growth should be 303 

investigated. 304 

 305 

Aflatoxin exposure and protein-energy malnutrition  306 

It has been proposed that the development of kwashiorkor may be partly attributable to aflatoxin 307 

exposure, although the evidence is circumstantial. Both aflatoxin exposure and kwashiorkor are 308 

prevalent in hot and humid tropical countries where maize and rice are staples, both affect 309 

children in early life and both are associated with impaired child growth (15, 64). In addition, 310 

the clinical and metabolic manifestations of kwashiorkor are somewhat similar to those of 311 

aflatoxin exposure, such as fatty liver and immunosuppression (65). 312 

 313 

As shown in table 2, the association between the exposure to aflatoxin and kwashiorkor has 314 

been investigated in a plethora of studies since the 1980’s (65-78). The typical study designs 315 

employed by the majority of these studies were case-control or cross-sectional, and involved 316 

measuring the prevalence and concentration of aflatoxin in blood and urine samples. In most 317 

studies it was found that aflatoxin was detected more frequently or concentrations were higher 318 

in blood samples of children with kwashiorkor in comparison with children with marasmus, 319 

and healthy children (65, 68, 69, 76-78). Furthermore, aflatoxin was detected more often in 320 

liver specimens from children who had died from kwashiorkor compared to other diseases and 321 

other protein malnutrition disorders (66). 322 

 323 
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Although evidence suggests that aflatoxin exposure may be related to kwashiorkor prevalence, 324 

a causal relationship has not been established. Furthermore, most of the studies did not measure 325 

AF-alb levels in serum of exposed children, which has been shown to be a more reliable 326 

biomarker. A fundamental step in unravelling any link between aflatoxin and kwashiorkor is to 327 

understand the possibility that the metabolic manifestations of kwashiorkor affect the way that 328 

aflatoxins are metabolised and excreted from the body, or vice versa. Future studies, 329 

undertaking a longitudinal design are required to determine if aflatoxin exposure plays an 330 

aetiological role in the causation of kwashiorkor. 331 
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Table 2. The relationship between protein energy malnutrition and aflatoxin exposure 

Study Country/ study population  Aflatoxin Exposure 

  Blood – detection (%) and 

mean concentration  

Urine – detection (%) and 

mean concentration  

Other – detection (%) and 

mean concentration  

Hendrickse et 

al. (65) 

 

 

Country: Sudan 

252 children 

K (n = 44) 

MK (n = 32) 

M (n = 70) 

AM controls (n = 106) 

177 samples (total aflatoxin 

pg/ml). 

K (36.4%) (GM: 706)  

MK (21.9%) (GM: 412) 

M (19.3%) (GM: 211) 

AM controls (15.9%) (GM: 77) 

The difference between the 

groups approached significance 

(P = 0.05). 

Kwashiorkor group mean 

aflatoxin concentration was 

significantly higher than the 

control group (P = 0.01). 

 

250 samples (total aflatoxin 

pg/ml). 

K (36.4%) (GM: 706)  

MK (21.9%) (GM: 412) 

M (19.3%) (GM: 211) 

AM controls (15.9%) (77) 

No significant differences 

between the groups identified. 

 

Lamplugh and 

Hendrickse, 

(66) 

Country: Nigeria and South 

Africa 

8 children (aged between 9 

months and 24 months) 

K (n = 3) 

MK (n = 3) 

M (n = 1) 

Control (n = 1) 

 

  8 autopsy liver specimens. 

K (all three of the liver samples 

contained AFB1: 2000, 4900 

and 1400 pg/g). 

MK (1 liver sample had no 

aflatoxins; one contained a 

small quantity of aflatoxin M1 

(15 pg/g) and in the third 

sample aflatoxicol was found 

(8500 pg/g). 

M (no aflatoxins found) 

Control (no aflatoxin found) 
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Apeagyei et al, 

(67) 

Country: Ghana 

22 children (aged between 5 

months and 48 months) 

K (n = 22) 

 

  22 autopsy liver specimens 

Aflatoxin B1 was detected in 20 

of the samples (90.9%). The 

remaining 2 samples contained 

aflatoxicol (9.1%). 

Coulter et al., 

(68) 

Country: Sudan 

584 children 

K (n = 141) 

MK(n = 152) 

M (n = 152) 

AM controls (n = 180) 

457 samples (total aflatoxin 

pg/ml) 

K (37.7%) (GM:154) 

MK (28.6%) (GM: 82) 

M (26.3%) (GM: 77) 

AM controls (21.3%) (GM: 81) 

Difference between the number 

of positive samples found in 

each group was significant (P 

<0.05). 

No differences between the 

groups in concentrations of 

aflatoxin identified. 

 

463 samples (total aflatoxin 

pg/ml) 

K (27.2%) (GM: 308) 

MK(39.0%) (GM: 490) 

M (26.1%) (GM: 438) 

AM controls (28.4%) (GM:258) 

No significant difference 

between the numbers of positive 

samples found in each group.  

No significant differences 

between the groups in 

concentrations of aflatoxin 

identified. 

 

deVries et al., 

(69) 

Country: Kenya 

41 children 

K (n = 14) 

MK (n = 6) 

M (n = 11) 

Controls (n = 10) 

 

39 samples (total aflatoxin 

(pg/ml) 

K (64%) (mean: 6666) 

MK (50%) (mean: 386) 

M (36%) (mean: 3412) 

Controls (30%) (mean: 759) 

 

36 samples (total aflatoxin 

pg/ml) 

K (42%) (mean: 324) 

MK (60%) (mean: 1294) 

M (45%) (mean: 261) 

Controls (75%) (mean: 759) 

No differences in detection 

rates.  

 

 

de Vries et al., 

(70) 

Country: Kenya 

13 children 

K (n = 5) 

 K (4 out of 5 children excreted 

aflatoxin via urine).  

K (all 5 of the children excreted 

aflatoxin in their stools). 
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MK (n = 7) 

Underweight (n = 1) 

 

MK (5 out of 7 children 

excreted aflatoxin via urine).  

The underweight child’s urine 
samples tested negative for 

aflatoxin. 

Total aflatoxin excreted (urine 

and stools) ranged from 0.08 

ug/kg to 4 ug/kg body weight).  

MK (3 out of 7 children 

excreted aflatoxin in their 

stools).  

Total aflatoxin excreted (urine 

and stools) ranged from nil to 

1.5 ug/kg body weight).  

The underweight child’s stools 
tested negative for aflatoxin. 

 

Househam and 

Hundt (71) 

 

Country: South Africa 

320 children (mean age of 

38 months) 

K (n = 47) 

M (n = 17) 

Controls (n = 256) 

 

  

448 urine samples 

Aflatoxin B1, B2, G1, G2 and 

aflatoxicol were not detected in 

any of the samples. 

 

Ramjee et al., 

(72) 

Country: South Africa 

109 children aged between 

6 months and 2 years 

K (n = 45) 

M (n = 13 

Underweight (n = 16) 

AM controls (n = 35) 

 

109 samples 

K (56%) 

M (31%) 

Underweight (56%) 

AM controls (49%) 

No differences among the 

groups in the number of 

aflatoxin positive results. 

50 samples 

K (16%) 

M (10%) 

Underweight (no samples 

tested) 

Age matched controls (25%) 

No differences among the 

groups in the number of 

aflatoxin positive results. The 

serum/ urine ratio was 

significantly higher in the 

kwashiorkor group than in the 

other groups (P = 0.001). 
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Adhikari et al., 

(73) 

Country: South Africa 

36 children aged between 6 

months and 2 years 

K (n=36) 

36 samples 

Aflatoxin was detected in 21 

samples (58%) 

  

 

Oyelami et al., 

(74) 

 

Country: Nigeria 

40 children (aged between 4 

and 168 months) 

20 children who died from 

kwashiorkor  

20 children who died of 

other diseases  

 

   

40 lung specimens 

K (90%) 

Other diseases (65%) 

No significant differences 

among the groups in the number 

of aflatoxin positive results. 

 

Oyelami et al., 

(75) 

Country: Nigeria 

45 children  

24 children who died from 

kwashiorkor (aged between 

6 months and 72 months) 

21 children who died of 

other diseases (aged 

between 4 months and 168 

months) 

  45 kidney specimens (total 

aflatoxin pg/g) 

K (58%) (mean: 3851) 

Other diseases (62%) (mean: 

1271) 

No significant differences 

among the groups in the number 

of aflatoxin positive results. 

No differences among the 

groups in mean concentrations 

of total aflatoxins. 

 

Hatem et al., 

(76) 

 

Country: Egypt 

70 children (aged between 6 

and 24 months) 

K (n = 30) 

M (n = 30) 

AM controls (n = 10) 

 

 

30 samples (total aflatoxin 

ng/ml) 

K (80%) (mean: 70.58) 

Ma (46.7%) (mean: 25.21) 

AM controls (0) 

Aflatoxins were detected more 

frequently in blood samples of 

 

30 samples (total aflatoxin 

ng/100ml) 

K (80%) (mean:  

M (46.7%) 

AM controls (0) 

Aflatoxins were detected more 

frequently in urine samples of 
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the kwashiorkor group than the 

marasmus group (P = 0.007).  

Mean serum levels of total 

aflatoxin were significantly 

higher in the kwashiorkor group 

relative to the marasmus group 

(P <0.001). 

the kwashiorkor group than the 

marasmus group (P = 0.007). 

Mean levels of total aflatoxin 

excreted in urine were 

significantly higher in the 

kwashiorkor group relative to 

the marasmus group (P = 

0.052). 

 

 

Tchana et al., 

(77) 

 

Country: Cameroon 

78 children (aged between 

13 months and 12 years) 

K (n = 31) 

MK (n=11) 

AM controls (n = 36) 

  

42 samples (aflatoxin B1) 

K (35.5%) 

MK (45.5%) 

AM controls (11.1%) 

Detection levels of AFB1 

excreted in urine were 

significantly higher in the 

kwashiorkor and marasmus 

kwashiorkor groups relative to 

the control group (P <0.05). 

 

 

Onyemelukwe 

et al. (78) 

Country: Nigeria 

111 children (aged between 

7 months and 60 months) 

K (n = 36) 

MK (n = 29) 

M (n = 13) 

AM controls (n = 33) 

111 samples (total aflatoxin 

ug/L) 

K (88.9%) (median: 165.6) 

MK (93.1%) (median: 228.4) 

M (76.9%) (median: 234.3) 

AM controls (63.6%) (median: 

20.7) 

Median serum levels of total 

aflatoxin were significantly 

higher in each protein energy 

malnutrition group relative to 

55 samples (total aflatoxin 

ug/L) 

K (84.6%) (median: 79) 

M (60%) (median: 43.8) 

Ma (81.8%) (median: 14.4) 

AM controls (90.9%) (median: 

42.6) 

No differences among the 

groups in the number of 

aflatoxin positive results. 
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the control group (kwashiorkor 

vs. control P <0.001, marasmic 

kwashiorkor vs. control P 

<0.001, marasmus vs. control P 

= 0.031). There were no 

significant differences between 

the protein malnutrition groups. 

Median total aflatoxin levels in 

urine samples were significantly 

higher in the kwashiorkor group 

relative to the marasmus group 

(P = 0.011). No other 

significant differences were 

identified between the groups. 
Abbreviation: AM, age-matched; GM, geometric mean; K, kwashiorkor; M, marasmus; MK, Marasmic kwashiorkor 
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Aflatoxin exposure and micronutrient deficiencies 332 

It has been hypothesized that aflatoxin exposure mediates intestinal damage resulting in 333 

reduced nutrient absorption and increased intestinal permeability resulting in faltered growth 334 

(79, 80). It is, therefore, possible that aflatoxin exposure exacerbates micronutrient deficiencies 335 

and by reducing aflatoxin exposure the incidence of micronutrient deficiencies may be reduced 336 

correspondingly. Previous research has established the relationship between aflatoxin exposure 337 

and the effect on these micronutrients in feeding experiments in animal studies as reviewed by 338 

Williams et al., (81). Increasing levels of aflatoxin in feed were significantly related to 339 

decreasing concentrations of vitamin A in poultry (82); vitamin D concentrations in chickens 340 

(83); vitamin A and E in swine (84) as well as zinc in piglets (85). 341 

 342 

Owing to the species difference, it is difficult to directly apply these findings to humans. Only 343 

a few studies have been identified that have examined the relationship between micronutrient 344 

concentrations and aflatoxin exposure in humans. Two of these studies were conducted in 345 

children (10, 14). As part of their investigation into the effect of aflatoxin exposure on immune 346 

function in Gambian children aged between 6 and 9 years Turner et al. (10) investigated the 347 

correlation between vitamins A (a- and b-carotene and lycopene) and C with AF-alb levels. 348 

Vitamin C was the only micronutrient that demonstrated an inverse relationship with AF-alb (P 349 

= 0.01). A study conducted by Gong et al. (14) that examined the relationship between aflatoxin 350 

exposure during the post weaning period and growth faltering, measured vitamin A and zinc 351 

levels to assess if they were potential confounding factors. No significant correlations between 352 

vitamin A and zinc with AF-alb levels were observed. A more recent cross-sectional study (86) 353 

of 147 Ghanaian adults found a significant negative correlation between AF-alb levels and 354 

vitamin A concentrations in plasma samples (-0.20; p<0.05). Participants with high AF-alb 355 



27 

 

levels (>0.80 pmol/mg albumin) had a 2.6-fold greater risk of having lower vitamin A levels 356 

after adjusting for potential confounding factors (odds ratio = 2.61; CI = 1.03- 6.58; P = 0.04). 357 

Tang et al., (87) found similar results in another sample of 507 Ghanaian adults. A correlation 358 

analysis revealed significant negative correlations between AFB1-albumin adducts and vitamin 359 

A (r = -0.110; p = 0.013) and vitamin E (r = -0.149; p <0.001). 360 

 361 

It is very difficult to draw specific conclusions based on the above evidence. Firstly, only a 362 

small number of studies have been identified that have examined the relationship between 363 

aflatoxin exposure and micronutrient deficiency in human subjects. Secondly, two studies 364 

found no associations between vitamin A and AF-alb levels, whereas two studies did, indicating 365 

that this relationship is not consistent across studies. Furthermore, the temporal relationship has 366 

not yet been investigated as the above studies were cross-sectional; although Gong et al. (14) 367 

was a longitudinal study, the micronutrients measured were only considered as potential 368 

confounding factors for the relationship between aflatoxin exposure and impaired child growth, 369 

and further explorations of these variables were not carried out. It is, consequently, still 370 

unknown whether aflatoxin exposure exacerbates micronutrient deficiencies and if this 371 

contributes to impaired child growth, which previous researchers have advocated (80). Future 372 

studies opting for a longitudinal or experimental (RCT) design are warranted to help establish 373 

whether a temporal relationship exists.  374 

 375 

Possible mechanisms for aflatoxin’s effects on growth 376 

It has been hypothesized that aflatoxin may affect child growth through one or more of three 377 

mechanisms; 1) by contributing to enteropathy, 2) immune suppression and 3) modulating the 378 

insulin-like growth factor (IGF) pathway through liver toxicity (79, 80). Enteropathy is a 379 
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frequent condition observed in babies in Africa, and may be partly attributable to aflatoxin 380 

related toxic damage to the intestine epithelium, which leads to further “leak” of nutrients, i.e. 381 

aflatoxin exacerbates the reduction of nutrient uptake in an environment where undernutrition 382 

is already rife. The immune suppression effect of aflatoxin, for which there is a lot of evidence 383 

in animal species (88), and increasing evidence in humans (10-12), could enhance susceptibility 384 

to infections such as those causing diarrhoea, which would reduce nutrient uptake. Liver 385 

toxicity due to chronic aflatoxin exposure may damage the production of Insulin like Growth 386 

Factor pathway proteins (IGFs) in the liver, leading to reduced IGFs in circulation and an 387 

adverse impact on child growth. A recent in vitro study using human liver cells demonstrated 388 

that aflatoxin down-regulated IGFs genes and protein levels in a dose-dependent manner (89). 389 

In agreement with this result, both IGF1 and IGFBP3 levels were found to be inversely 390 

correlated with AF-alb biomarker in Kenyan schoolchildren. Although the effect of aflatoxin 391 

on IGFs only explained about 16% of total effect of aflatoxin on child growth, given the 392 

complex causes of child stunting, the data provides preliminary evidence that aflatoxin-induced 393 

changes in IGFs could contribute to growth impairment where aflatoxin exposure is high (89).  394 

 395 

Aflatoxin co-exposure with other mycotoxins on child undernutrition 396 

Many countries in sub-Saharan Africa have a largely maize-based diet for both weaning food 397 

and family food. It has been noted that groundnuts, although often having higher incidence and 398 

levels of aflatoxin contamination than maize, rarely cause aflatoxicosis. Major aflatoxicosis 399 

often occurs in populations with high maize consumption. This is partly because maize is a 400 

major component of the diet and is consumed in much larger amounts than groundnuts. Another 401 

possibility is that another mycotoxin, fumonisin, often co-occurs with aflatoxin in maize in 402 

these regions (90-92) and it is hypothesized that the co-exposure may greatly enhance aflatoxin 403 
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toxicity, both acute (aflatoxicosis), and chronic such as the childhood hepatomegaly reported 404 

in Kenya (9).  405 

Weaning food was found to be frequently co-contaminated with aflatoxin and fumonisin in 406 

Tanzania, and fumonisin exposure by dietary assessment has been reported to be associated 407 

with child stunting and linear growth in Tanzania (93). One hundred and sixty-six children 408 

(aged 6-14 months) from representative regions in Tanzania were studied longitudinally over 409 

one year to examine exposure to both mycotoxins and its impact on child growth. AF-alb levels 410 

tripled during the first 6 months, and further doubled during the second 6 months, with mean 411 

levels of 4.7, 12.9 and 23.5 pg/mg, respectively. Fumonisin exposure measured using urinary 412 

FB1 biomarker was exceedingly high at both maize harvest seasons but with a lower level 413 

observed at 6 months after harvest, reflecting a field mycotoxin contamination pattern (92). 414 

Urinary FB1 at recruitment were negatively associated with HAZ at both 6 months and 12 415 

months from recruitment. Mean levels of urinary FB1 had an inverse association with HAZ at 416 

12 months from recruitment and length velocity. The negative association between AF-alb and 417 

HAZ was not significant, possibly owing to study power limitation. These data show that 418 

fumonisin may contribute to child growth impairment and highlight the potential role of co-419 

contamination with aflatoxin and fumonisin. More recently, Srey et al. (94) reported exposure 420 

to dietary deoxynivalenol (DON), another mycotoxin with known growth inhibition in animals, 421 

also occurs in these children, in agreement with food based exposure analysis in Tanzania (95).  422 

This suggests that the children are frequently exposed to the three mycotoxins, all of which may 423 

have an impact on growth faltering. 424 

 425 

An increasing number of recent studies have reported multi-mycotoxin exposure in different 426 

populations including some African groups (96-98). The methodology applied in these studies 427 
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typically involves simultaneous measurement of multiple mycotoxins using advanced LC-428 

MS/MS technique, and this offers great advantages as it gives useful data on multi-mycotoxin 429 

exposure in a population. At present validation of the approach when applied to health outcomes 430 

is in its infancy.  It was evident from these studies that firstly, multiple mycotoxins co-exist in 431 

staple foods such as maize and their by-products (96) and secondly, human populations in 432 

Africa are co-exposed to proportionally high levels of multi-mycotoxins (97, 98). Ediage et al. 433 

(97) cross-sectional study found no association between stunting, wasting or underweight in 434 

children aged under five, although multiple mycotoxins were found in urine samples. Whilst 435 

the multi-mycotoxin measurements require further validation, these studies provide a preview 436 

of the co-exposure issue and with time more will be revealed, adding further complexity to the 437 

health risk studies. How to assess the health outcomes associated with multiple toxins will thus 438 

be a critical challenge ahead and this will lead to a new era of multiple toxins exposure 439 

assessment methodology development.   440 

 441 

Conclusions 442 

Aflatoxin exposure is highly prevalent in developing countries; often this co-exists with 443 

malnutrition, enteropathy, and infectious disease in young children. The fact that over 90% of 444 

samples from young children from West Africa had detectable AF-alb, in contrast to less than 445 

1% in the developed world clearly demonstrates a huge public health burden associated with 446 

aflatoxin in sub-Saharan Africa. The greatest challenge ahead is not only to understand how 447 

these problems may interactively impact on child stunting, but more importantly to explore the 448 

most effective intervention method for child undernutrition, and eventually to reduce child 449 

mortality. Many supplementation trials targeting the major micronutrient deficiencies aimed at 450 

improving child growth have failed to produce a significant positive effect. We believe that the 451 
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high levels of aflatoxin exposure in these populations are likely to be exacerbating the problems 452 

posed by child undernutrition and that future nutrition interventions should take aflatoxin 453 

exposure into account. The most effective outcomes are likely to be produced by an attack on 454 

two fronts- reduction of aflatoxin exposure and improvement in nutritional status. 455 
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