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Upon Cryptococcus neoformans infection of the host lung, the fungus enters a nutrient 

poor environment and must adapt to a variety of host-specific stress conditions 

(temperature, nutrient limitation, pH, CO2). Fungal spores enter this milieu with limited 

nutritional reserves, germinate, and begin proliferating by budding as yeast. Although 

relatively little is known about the initial stages of infection, recent work has characterized 

changes that occur upon germination[1, 2]. This program and subsequent yeast-phase 

proliferation progress in a dynamic environment as host nutrient immunity responds to 

the infection via toxic accumulation or sequestration of essential micronutrients (reviewed 

in[3]) and innate immune cells are recruited to the site of infection[4]. Adaptation to the 

host environment and evasion of the immune response through pathogenicity factor 

expression allows proliferation and dissemination to multiple sites throughout the body, 

including, most significantly for human disease, the central nervous system. Here we will 

discuss recent insights into mechanisms underlying Cryptococcus neoformans 

interactions with the host during infection. 

  

Initiation of infection by cryptococcal spores 

C. neoformans infection occurs via inhalation of desiccated yeast or spores, which 

germinate in the host lung (reviewed in [5-7]). Two recent studies from the Hull lab have 

significantly improved overall understanding of this transition[1, 2]. Barkal et al developed 

a high throughput, computational method for in vitro spore germination and analysis[2]. 

They show that C. neoformans germination, defined as a switch from ovoid spores to 

round yeast, is a synchronous process characterized by change in overall shape followed 

by isotropic growth. Germination requires microtubule reorganization, chromatin 

remodelling, and protein turn-over, and is slow relative to the typical yeast cell cycle, 

occurring over 12 hours[2]. Germination is triggered by nutrient availability rather than 

surface contact or temperature shift, and although human body temperature (37°C) 

modestly reduces spore viability, sensitivity appears to be strain dependent[2, 8]. 

Importantly, germination is a conversion from a metabolically inactive to active state, 

similar to Saccharomyces cerevisiae germination (reviewed in [9]). Consistent with this, 

whole proteome analysis of spore vs. yeast-enriched proteins identified proteins involved 

in carbohydrate metabolism, mating, and sporulation, rather than a specific germination 



program[1], and germination was delayed in the absence of micronutrients[2]. Spore 

germination in the host lung therefore depends on nutrient acquisition, including carbon, 

nitrogen, and micronutrients (iron, copper, zinc). This is particularly relevant given recent 

insight into host nutritional immunity mechanisms for the sequestration of copper in the 

host lung[3, 10].  

 

Cell cycle control in yeast phase virulence 

While the importance of capsule and melanin for host evasion, immunomodulation, and 

stress resistance is well established, an emerging theme is the role of the cell cycle in 

regulating pathogenicity factor expression. The fundamental observation that, unlike 

model yeast, C. neoformans bud emergence can be uncoupled from DNA synthesis 

during host stress or nutrient limiting conditions (summarized in [11]) has clear 

morphological consequences. For example, Fu et al showed that G2 arrested cells (which 

accumulate in response to 37°C or during nocodazole treatment) are primed for hyphal 

growth and monokaryotic fruiting[12]. Data from the Casadevall lab suggest yeast-phase 

relevance of cell cycle in the host with the observation that capsule size is proportional to 

cell size[13]. Moreover, the cryptococcal G1/S cyclin CLN1 influences capsule and 

melanin production[14, 15], and the dramatic conversion via endoreduplication of 

proliferating haploid yeast to large, highly polyploid Titan cells is an in vivo-specific 

phenomenon that, like capsule and melanin, is regulated via cAMP/PKA signal 

transduction[16]. These observations are now supported by genetic and genomic 

analyses that reveal specific cell cycle regulation of pathogenicity factors via cAMP-

dependent and -independent pathways.  

 

A global transcriptional analysis of elutriated C. neoformans cells revealed that 40 

virulence-related genes have periodic expression profiles linked to cell cycle control [17]. 

This omics-level observation is validated in several detailed analyses connecting C. 

neoformans stress response, capsule and melanin regulation to cell cycle events [11, 14, 

15, 18]. The sole C. neoformans G1 cyclin Cln1 is not essential, however the cln1D mutant 

exhibits delayed DNA synthesis and bud emergence[11]. This delay may be exacerbated 

under stress conditions: the Cncln1D mutant is temperature sensitive at 37°C, but 



thermotolerance is rescued by sorbitol [15]. Consistent with correlation between cell and 

capsule size, large, G2 accumulated cln1D cells have more capsule than CLN1 cells[14] 

and exhibited cell wall organization defects[15]. Loss of CLN1 also abrogates LAC1 

expression[15]. In a separate study, Gish et al characterised the cell-cycle regulated 

transcription factor Usv101, a paradoxical negative regulator of capsule that, in response 

to capsule inducing conditions, specifically represses the GAT201 transcription factor and 

the UXS1 UDP-xylose synthase, both required for capsule. Usv101 also induces the 

CTR1 copper transporter. Ctr1 protein degradation is adaptive to the high copper 

environment of the host lung[19]. Despite the apparently contradictory roles of Usv101 in 

pathogenicity factor elaboration and host adaptation, loss of USV101 reduces 

pathogenicity, preventing proliferation in the host lung[18].  Network analyses suggest 

that Usv101 is itself regulated by the cell cycle transcription factor Swi6/Mbs2 

(CNAG_01438) independent of cAMP/PKA regulation[18, 20]. All together, these data 

suggest that the temporal regulation of pathogenicity factor expression during proliferation 

is essential to host adaptation and pathogenicity.  

 

Host condition dependent changes in C. neoformans 

The question of how pathogenicity factor expression became integrated into cell cycle 

control remains unexplored, however the conserved role of Usv101 in regulating cell wall 

synthesis genes (AGS1 (a-glucan), CHS5 (chitin), and SKO1 (b-gucan)) in C. neoformans 

and the distantly related, non-periodic S. cerevisiae Usv1 suggest that Usv101 is a cell 

wall transcription factor that has co-opted pathogenicity factor expression pathways and 

been incorporated into cell cycle regulation. This link may facilitate changes associated 

with pathogenesis. For example, Usv101 itself regulates Rim101[18], which also 

influences capsule, the cell wall, and tetanisation [16] Ost 2017). In fact, USV101 was 

originally identified in a microarray-based screen for regulators of cryptococcal 

capsule[21]. 

 

New insights have revealed the impact of capsule structure on host interaction. 

Proteomic analysis identified the enzyme lactonohydrolase (Lhc1) as a capsule 

component[22]. Loss resulted in only small changes capsule composition but 



significantly increased capsule thickness. Intriguingly, cryoelectron microscopy of lhc1D 

mutants suggest that larger capsules have a more open structure, and a corresponding 

increase in antibody mediated phagocytosis was observed[22].  

 

The effect of a potentially more open capsule structure on pattern recognition receptor-

mediated phagocytosis was not investigated, but the finding is reinforced by the 

observation that deletion of USV101 resulted in increased capsule thickness and 

enhanced phagocytosis by macrophage-like cells in vitro[18, 22]. Likewise, CLN1 

deletion increased the amount of capsule containing vesicles and resulted in increased 

capsule thickness in liquid culture and decreased phagocytosis by macrophages[14].  

 

It is clear that interaction with the host is influenced by both capsule secretion and 

composition[23-25].  Newly synthesized polysaccharide is added to the existing capsule 

via secretion of extracellular vesicles [24, 25]]. Deletion of the flippase Apt1 alters Golgi 

morphology (where capsule biosynthesis occurs) and limits growth of the capsule in the 

mouse lung but not liquid culture[26]. Polysaccharide modification may contribute to the 

increased virulence of some C. gatti strains[25]: decreased O-acetylation of capsule in 

the C. gatti VGIIc isolate JP02 was associated with lower pro-inflammatory cytokine 

production, a result recapitulated by deacetylation of C. neoformans H99 capsule. C. 

gatti capsule prevents dendritic cell maturation independent of internalisation, and this 

can be overcome by co-stimulation with tumour necrosis alpha[27]. Thus, it may be 

reduced internalisation of the JP02 strain that causes reduced cytokine release by DCs.  

 

Surviving the warm-blooded host 

Thermotolerance is essential to C. neoformans virulence, and recent findings have 

emphasized the requirement for calcineurin-Crz1 signalling[28], the unfolded protein 

response[29], and amino acid permeases[30]. Capsule synthesis induction by 

differences in temperature varies between C. neoformans strains[31]. Analysis of the 

signalling networks responsible for the increased thermotolerance of the SCH9 protein 

kinase mutant identified the heat shock transcription factor HSF1 to have both 

transcriptional repressing and activating activities with thermal stress[32]. Interestingly, 



C. gattii strains exhibit reduced thermotolerance in comparison to C. neoformans, apart 

from the VGII group containing the Vancouver Outbreak strains[33]. However, 

environmental VGII C. gatti growth in Vancouver Island was positively correlated with 

temperate conditions[34]. C. neoformans is associated with bird guano, and analysis of 

growth within bird macrophages identified that incubation at bird body temperature of 

42°C, but not 37°C, was sufficient to supress intracellular growth of cryptococci but not 

extracellular growth[35]. 

 

The immune response and interaction with cryptococci 

How the different aspects of the host immune system protect against cryptococcal 

infection is highly complex, and our understanding of normal immunity, and the defects 

in immuno-compromise, are still incomplete (reviewed in [36]). A critical area of 

investigation is pro-inflammatory activation of macrophages. Recent clinical studies 

have highlighted the complexity of the immunology associated with cryptococcal 

meningitis in HIV positive patients (reviewed in [37]) and increased clarity on the vital 

requirements for protective pro-inflammatory responses[38]. While there is a clear role 

for Th2 responses to cryptococci in mouse models, how this corresponds to human 

disease is not known [37, 39]). Pro-inflammatory macrophage activation by interferon 

gamma requires STAT1 activity in macrophages [40, 41]. Ex vivo analysis 

demonstrated reduced macrophage iNOS expression and activity in the absence of 

STAT1. STAT1 deficiency was also associated with a higher intracellular burden of 

cryptococci in lung macrophages but the relative contribution of phagocytosis, 

intracellular proliferation, macrophage lysis and vomocytosis was not determined. 

Deletion of the cryptococcal inositol hexaphosphate kinase KCS1 resulted in a 

persistent weak infection in mice with reduced inflammatory responses in the lung, and 

perhaps due to a reduced capsular mannoprotein content[42].  

 

Great progress has been made in understanding the different aspects of macrophage 

interactions with Cryptococcus. Direct in vivo imaging has demonstrated how 

phagocytosis of cryptococcal yeast very early in infection is critical for control of 

cryptococcosis prior to protective immunity [43]. However, the phagocytic receptors 



required for uptake of yeast or spore cryptococcal cells are not known, despite extensive 

testing of the requirements for the known fungal receptors Dectin 1 and 2, Mincle, and 

mannose receptor[44, 45]. One possible explanation is that capsule masks the C. 

neoformans cell wall, leaving fungal PAMPs (b-glucan, mannans) largely inaccessible 

(reviewed in[4]). However, an investigation of the capsule-deficient rim101D mutant 

revealed condition-dependent cell wall remodelling[46]. The mutant elicited significantly 

more TNF-a than wildtype cells, and loss of capsule masking alone was insufficient to 

explain increased TNF-a, as the rim101D cap59D mutant was more immunostimulatory 

than cap59D alone[46]. Instead, Rim101 appears to play a condition-specific role in the 

organization of chito-oligomoers in the cell wall during interaction with the host[46]. 

Relative to other fungi, the C. neoformans cell wall contains high levels of acetylated 

(chitin) and deacetylated (chitosan) N-acetylglucosamine polymers. Chitin has been 

identified as a possible determinant of the non-protective TH2 immune response elicited 

upon C. neoformans lung infection, and chitin content increases during endoreduplication 

and titanisation [39].  

Of interest is the recent investigation of the binding of cryptococcal spores, where, despite 

the presence of antibody-accessible b-1-3 glucan on the spore coat surface, very limited 

evidence for recognition by such fungal receptors was found[44]. How cryptococcal 

spores are recognised remains unclear: recognition through an unknown receptor and 

the impact of steric factors (distribution of ligands on spore surface, in vivo constraints on 

spores), are two possible mechanisms. The scavenger receptor MARCO has been shown 

to influence cryptococcal phagocytosis and subsequent progression of the immune 

response via monocytic cell recruitment and proinflammatory cytokine expression[47]. 

Inactivating mutations in the inhibitory Fc gamma receptor IIb, which are associated with 

Systemic Lupus Erythaematosus [48], were correlated with C. neoformans dissemination 

in a mouse model, and macrophages showed increased phagocytosis in vitro. The in vivo 

effect could be partially reversed by depletion of macrophages following infection[48].  

Different phagocytosis rates of clinical isolates in vitro associated high uptake with higher 

fungal burden in the cerebral spinal fluid of patients[49]. In addition, laccase expression, 

independent of melanin production, was also positively correlated with fungal burden, 

perhaps indicating a role for fungal eicosanoids in virulence of C. neoformans[50]. 



 

Deletion of all three C. neoformans high-affinity phosphate transporters 

(PHO84, PHO840, and PHO89) reduced proliferation within macrophages, although 

whether this is due to a nutritional defect or reduced capsule and melanin production is 

unknown[51]. C. neoformans phospholipase B is also required for survival and growth 

within macrophages, and the deletion mutant forms a greater number of titan cells in 

vivo[52]. Intracellular proliferation appears critical to the virulence of the Vancouver 

Island Outbreak (VIO) C. gattii strains, but through a ‘division of labour’ mechanism 

between proliferating and non-proliferating yeasts within macrophages. VIO strains 

exhibit a high proportion of tubular mitochondria within macrophages, fungal cells with 

tubular mitochondria do not proliferate themselves, but seem to promote a permissive 

environment for their non-tubular, proliferating neighbours, a phenomenon that is 

dependent on host reactive oxygen species production[53]. 

 

The mechanism of non-lytic exocytosis/vomocytosis is unknown[54]. Annexin A2 is a 

calcium responsive phopspholipid binding protein that is associated with diverse cellular 

processes including pro-inflammatory cytokine release and inflammasome activation in 

macrophages [55, 56]. Deletion of Annexin A2 reduced vomocytosis from mouse 

macrophages and increased host cell lysis, but how these two effects are related and if 

macrophage inflammatory cytokines are involved was not determined[57]. The atypical 

kinase Erk5 was identified in a compound screen to be a negative regulator of 

vomocytosis[58]. Specific inhibition of Erk5 increased rates of vomocytosis and this was 

associated with reduced macrophage actin dynamics and increased inflammatory 

markers. 

 

Initiation of cryptococcal meningitis 

Cryptococcal meningitis is the life-threatening form of cryptococcosis and requires the 

invasion of the central nervous system (CNS) by cryptococcal yeast. Three different 

mechanisms for CNS invasion have been identified: 1) disruption of the blood vessel 

endothelium integrity, 2) uptake and expulsion by blood vessel cells and 3) Trojan horse 

invasion via host macrophages. The cryptococcal matrixmetalloprotease MPR1 has 



been implicated in CNS invasion and adherence to endothelia in vitro, but the 

mechanism is currently unknown. Host inositol increases brain invasion in vivo, and free 

fungal cell transfer, but not macrophage mediated crossing of endothelia, in vitro[59, 

60]. Identification of Erk5 as a regulator of vomocytosis provided the first opportunity to 

identify the relationship between vomocytosis and dissemination. In vivo analysis of 

infection progression in the presence of an Erk5 inhibitor increased rates vomocytosis 

and reduced dissemination, via reduced opportunities for Trojan horse mediated 

dissemination[58]. The role of proinflammatory cytokines is difficult to dissect in initiation 

of cryptococcal meningitis; inflammatory cytokines increased the traversal on endothelia 

in vitro but are clinically associated with better outcomes in cryptococcal meningitis and 

associated with lower dissemination following Erk5 inhibition [38, 58, 60].  

 

The diverse studies of cryptococcal and host biology by the field has led to great 

progress in recent years in understanding the interactions of Cryptococcus with the 

host. We now possess a good working knowledge of the immune response and 

cryptococcal factors involved, as well as a growing understanding of fungal behaviour 

upon interaction with the host. There is much to be learnt in investigating very early 

interactions during infection and the interactions of late disease during cryptococcal 

meningitis. Out of necessity many experimental models are initiated with high fungal 

inocula, but this does not recapitulate cryptococcosis as we understand it and the study 

cryptococcal meningitis remains challenging. Progress in genetic tools, genomic and 

RNA sequencing, in vivo imaging and using the widest diversity of experimental models 

will be vital in the next phase of cryptococcal research. 
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Figure 1. Host and pathogern determinants of cryptococcal interactions with the 

host. A. Cryptococcal spores are inhaled and germination is initiated via nutrient 

signals. B. Following germination cryptococci are able to proliferate in the host. 

Phagocytosis of cryptococci (D) is associated with preventing early high fungal burden, 

although cryptococci are able to proliferate intracellularly in macrophages (F). The 

requirements and timing of extracellular growth in the host are still unclear. C. In 

addition to proliferation in the host, cryptococcal cells can exhibit a number of 

phenotypes that modulate their virulence e.g, titan cell formation, melanisation and 

increased polysaccharide capsule thickness. Recent work has provided further 

evidence for the importance of protein kinase A and cAMP in these phenotypes, as well 

as roles for G1/S cyclin, USV101 and RIM101. D. Cryptococcal capsule is associated 

with reduced phagocytosis (dashed arrow). Deletion of the G1/S cyclin increased 

capsule thickness in in vitro culture and reduced phagocytosis by macrophages. The 

importance of capsule structure has been highlighted by the identification of two 

cryptococcal mutants (DLHC1 and DUSV1) that had increased capsule thickness but 

with a potentially more open structure and an associated increase in phagocytosis (solid 

arrow). E. The intracellular environment of the macrophage exhibits many potential 

stresses including temperature, nutrient limitation, pH and CO2 stress. F. Despite the 

stresses of the intracellular environment cryptococcal cells can proliferate in 

macrophages, an ability dependent on phosphate transport (PHO84, 840 and 89) and 

the activity of phospholipase B (PLB1). G. Vomocytosis is the ability of cryptococci to 

escape non-lytically from macrophages. Annexin A2 is a potential regulator of 

vomocytosis as its deletion reduces the rate of expulsion. In contrast, Erk5 is a negative 

regulator of vomocytosis. H. Classical activation of macrophages is required for 

protective immunity to cryptococcal infection. Cryptococcal chitin content stimulates T-

helper cell Th2 polarisation of macrophages and alternative activation of macrophages. 

I. Trojan horse mediated dissemination of Cryptococcus relies on infected macrophages 

crossing the epithelial and endothelial barriers. Stimulating vomocytosis by inhibition of 



Erk5 reduced dissemination. J. Cryptococci can cross tissue barriers directly, and 

binding of cryptococci is modulated by MPR1 and inositol.   


