
RESEARCH Open Access

Automated quantification of steatosis:
agreement with stereological point
counting
André Homeyer1*, Patrik Nasr3, Christiane Engel1, Stergios Kechagias3, Peter Lundberg3,4, Mattias Ekstedt3,
Henning Kost1, Nick Weiss1, Tim Palmer5, Horst Karl Hahn1, Darren Treanor2,5,6 and Claes Lundström2

Abstract

Background: Steatosis is routinely assessed histologically in clinical practice and research. Automated image
analysis can reduce the effort of quantifying steatosis. Since reproducibility is essential for practical use, we have
evaluated different analysis methods in terms of their agreement with stereological point counting (SPC) performed
by a hepatologist.

Methods: The evaluation was based on a large and representative data set of 970 histological images from human
patients with different liver diseases. Three of the evaluated methods were built on previously published
approaches. One method incorporated a new approach to improve the robustness to image variability.

Results: The new method showed the strongest agreement with the expert. At 20× resolution, it reproduced
steatosis area fractions with a mean absolute error of 0.011 for absent or mild steatosis and 0.036 for moderate or
severe steatosis. At 10× resolution, it was more accurate than and twice as fast as all other methods at 20×
resolution. When compared with SPC performed by two additional human observers, its error was substantially
lower than one and only slightly above the other observer.

Conclusions: The results suggest that the new method can be a suitable automated replacement for SPC. Before further
improvements can be verified, it is necessary to thoroughly assess the variability of SPC between human observers.

Keywords: Steatosis, Histology, Stereology, Stereological point counting, Automated image analysis, Agreement

Background
Hepatic steatosis denotes the excessive accumulation of
fat in the liver. It can be induced by different causes, in-
cluding alcohol misuse, obesity, or drug toxicity [1]. Stea-
tosis is the hallmark of fatty liver disease (FLD), the most
frequent liver disorder in Western countries [2]. Depend-
ing on the primary cause, it is common to distinguish
between alcoholic (AFLD) and nonalcoholic fatty liver
disease (NAFLD). Both share similar histological features
and, if left untreated, can progress into steatohepatitis, cir-
rhosis, hepatocelluar carcinoma and liver failure [1, 3].
NAFLD is expected to become one of the most common
indications for liver transplantation in the world [4].

The gold standard for the assessment of steatosis is the
visual analysis of histological sections taken from liver bi-
opsies or resections. Histological analysis of steatosis is
performed routinely to diagnose FLD or to decide about
the suitability of liver grafts for transplantation [5]. In
addition, it plays a vital role in research, and tissue sec-
tions are commonly analyzed for steatosis to understand
the cause and to improve the treatment of liver diseases.
Other research applications include the assessment of
drug toxicity, or the validation of non-invasive means for
analyzing steatosis [6].
Steatosis is usually assessed in paraffin-embedded,

Hematoxylin and Eosin-stained (HE) sections, where it
is visible as fat droplets in the cytoplasm of hepatocytes.
Since fat is dissolved during histological processing, fat
droplets appear as empty spaces in the tissue. Fat drop-
lets can be distinguished from other empty spaces, like
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vessels or tissue cracks, by their size and roundish shape
(see Fig. 1).
When cells are occupied by one large fat droplet,

which displaces the nucleus to the periphery, or multiple
small fat droplets one speaks of macrovesicular steatosis.
When cells are filled by innumerable tiny fat droplets,
that make the cytoplasm appear “foamy”, one speaks of
microvesicular steatosis [7, 8]. In this paper, we only
consider macrovesicular steatosis, which is most com-
mon and of main interest in the aforementioned applica-
tions [5, 7]. This includes small-droplet macrovesicular
steatosis, which is often erroneously referred to as
microvesicular steatosis [9].
It is standard practice to quantify macrovesicular stea-

tosis in terms of the proportion of hepatocytes that con-
tain fat droplets. The result is expressed as a semi-
quantitative grade from 0 to 3 (0 is <5%; 1 is 5%–33%; 2
is 34%–66%; 3 is >66%) [7]. A major problem of the cell-
based quantification is that, since individual cells are not
clearly delineated, the association between fat droplets
and cells is often arbitrary. Also, to save time, the
number of relevant cells is usually not counted, but
merely estimated. Both are reasons why the cell-based
estimation of steatosis is often only poorly reprodu-
cible [10, 11].
Stereological point counting (SPC) is an alternative

method for quantifying steatosis in histological sections.
In SPC, a region of interest is overlaid by a regular grid
of points. The points are counted as fat or no-fat de-
pending on whether they cover fat droplets or not (see
Fig. 2). The number of points covering fat droplets di-
vided by the total number of points yields an estimate of
the area fraction of fat droplets. It has been shown, that
the area-based quantification of steatosis by means of
SPC is highly reproducible [11–13]. However, since it is
much more time-consuming than the cell-based estima-
tion, it is only rarely performed in practice.
Automated image analysis can greatly reduce the

quantification effort. There are many previous publica-
tions on image analysis methods for quantifying steato-
sis. In most of them, the presented methods are

evaluated against other means for quantifying steatosis.
It is common to assess the correlation with cell-based
visual estimates by human observers. The correlation is
found to be strong in some publications [14, 15] and
weak in others [10, 16]. Many publications also assess
the correlation with biochemical analyses of the tissue
fat content. Here, the correlation is generally found to
be strong [12, 15–17].
For practical applications, it is essential that different

analysis methods agree on measured steatosis values.
Only then it is possible to define clinical diagnostic
thresholds or to compare research results. Virtually all
previous publications have only evaluated correlations
with other measurement methods. Correlation, however,
does not necessarily imply agreement [18].
Automated image analysis methods usually quantify

steatosis in terms of the area fraction of fat droplets.
This makes it impossible to assess agreement with cell-
based visual estimates or biochemical analyses, because
the methods measure different quantities [16]. For the
assessment of agreement, image analysis methods must

Fig. 1 Histological appearance of steatosis. Low-grade and high-grade steatosis are shown left and right, respectively. Fat droplets (a) and other
empty spaces (b) are marked by arrows

Fig. 2 Stereological point counting. A region of interest is overlaid
by a regular grid of points that are counted as fat (yellow) or
no-fat (gray)
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be evaluated against other area-based methods of meas-
urement, such as SPC. However, due to its high effort,
SPC-based measurements are only rarely available.
Sciarabba et al. [19] appears to be the only publication

that has evaluated the agreement between automated
image analysis and SPC. While the agreement is found
to be high, the results have limited generalizability be-
cause the evaluation was based on only a single analysis
method and four biopsies.
We have performed a comprehensive evaluation of dif-

ferent image analysis methods in terms of their agree-
ment with SPC performed by a hepatologist. The
evaluation was based on a large and representative data
set of 970 images from human patients with different
liver diseases. As described in the next section, we have
evaluated three methods built on previously published
approaches and one new method. To assess its practical
utility, we have compared the best performing method
with SPC by two additional human observers.

Methods
Data
The evaluation was based on histological images of liver
biopsies of human patients. The images were supposed
to be representative for clinical practice, both in terms
of quality and variability.
Liver biopsies were obtained from patients referred to

the Department of Gastroenterology and Hepatology at
Linköping University Hospital, Linköping, Sweden, for
evaluation of chronically (≥ 6 months) elevated levels of
serum alanine aminotransferase (ALT; elevated defined
as >71 U/L for men and >45 U/L for women) and/or as-
partate aminotransferase (AST; elevated defined as
>45 U/L for men and >36 U/L for women) and/or serum
alkaline phosphatase (ALP; defined as >106 U/L for both
sexes). A diagnostic work-up was performed and all pa-
tients who, on clinical indication, needed a liver biopsy
for diagnosis where asked to participate in our study.
The patients included in the study suffered from dif-

ferent liver diseases, such as non-alcoholic fatty liver dis-
ease (NAFLD), autoimmune hepatitis (AIH), and
hepatitis C virus infection (HCV). The biopsies, there-
fore, exhibited different degrees of steatosis, inflamma-
tion and fibrosis.
In total, 97 HE-stained slides were considered, with

each slide containing liver tissue from a different patient.
Exactly 10 field-of-view images were captured from
every slide, each measuring 0.59 mm × 0.47 mm. To be
representative for clinical practice, the images were cap-
tured using common laboratory equipment, consisting
of a Nikon Eclipse E800 microscope and Nikon DS-Ri1
digital camera.
All images were resampled to three resolutions. For sim-

plicity, we refer to each resolution by the magnification of

an objective lens that produces a similar visual impression
[20]. Table 1 lists the different resolutions and the corre-
sponding magnifications and image sizes.
In order to minimize selection bias, the positions of

the images within the slides were chosen according to a
system described by Franzén et al. [11]. The first image
was positioned at the outermost end of the biopsy. The
following images were positioned by iteratively moving
1.25 times the size of the field of view along the direc-
tion of the biopsy. In this manner any overlap between
individual fields of view was prevented.
The slides were randomly divided into disjoint training

and test sets. The images from the training slides were
used for training the analysis methods. The images from
the test slides were used for evaluating the resulting ana-
lysis performance. The training and test sets contained
25 and 72 slides, respectively, resulting in 250 training
and 720 test images.

Training set
In the 250 training images, examples of relevant image
structures were annotated for the training of machine-
learning classifiers in the analysis methods. The annota-
tion was performed by a computer scientist experienced
in histological image analysis.
Two sets of annotations were created. The first set,

called “pixel samples”, consisted of examples of fore-
ground pixels and background pixels. Foreground pixels
represent empty spaces, such as fat droplets, vessels, tis-
sue cracks or background. Background pixels represent
stained tissue. Approximately 6000 examples of each
class where annotated in total. Examples were selected
with the objective of covering the variability of colors as
much as possible, in particular, with regard to border re-
gions between fat droplets and stained tissue.
The second set, called “blob samples”, consisted of ex-

amples of fat droplets and other empty spaces, such as
vessels or tissue cracks. Approximately 500 examples of
each class were annotated. Examples were selected with
the objective of covering the variability of sizes and
shapes as much as possible.

Test set
The degrees of steatosis in the 720 test images were esti-
mated using SPC. The procedure was performed inde-
pendently by three human observers. The first counting
was performed by a resident hepatologist (Observer 1)

Table 1 Image resolutions and sizes

Magnification Resolution Image size

5× 1.84 μm/pixel 320 × 256

10× 0.92 μm/pixel 640 × 512

20× 0.46 μm/pixel 1280 × 1024
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and validated by another hepatologist with more than
14 years of experience in the morphometric quantifica-
tion of hepatic steatosis [6]. The second and third count-
ings were performed by a medical technical assistant
(Observer 2) and a computer scientist (Observer 3), who
were knowledgeable in the task and experienced in the
quantitative analysis of medical images.
SPC was performed as described by Franzén et al.

[11]. Every image was overlaid by a grid of 221 (17 × 13)
points with an equal spacing of 35 μm, so that most of
the larger vacuoles were covered by at least one point
(see Fig. 2). No distinction was being made between
small and large fat droplets. Hepatocytes in which indi-
vidual fat droplets could not be clearly distinguished
were omitted.
El-Badry et al. recommend to perform the evaluation

separately for low-grade and high-grade cases [10]. Since
low-grade steatosis covers only a small value range, its
acceptable error is smaller than that for high-grade stea-
tosis. In this regard, we have divided the test images into
a low-grade and high-grade set guided by semiquantita-
tive grades given by a liver pathologist. Absent or mild
steatosis (grade 0 or 1) was considered to be low-grade,
while moderate or severe steatosis (grade 2 or 3) was
considered to be high-grade [10].

Analysis methods
We have implemented four different automated image
analysis methods for quantifying steatosis in order to
compare their agreement with SPC.
All methods were based on a commonly employed,

unified framework of two successive pixel and blob clas-
sification steps (see Fig. 3). In the pixel classification
step, pixels are classified as foreground or background.

Foreground pixels represent bright empty spaces in the
tissue, background pixels represent the stained tissue it-
self. In the blob classification step, connected areas of
foreground pixels, called “blobs”, are classified as fat or
other empty spaces, such as vessels or tissue cracks.
The result is a map of the same size as the original

image in which pixels are labeled as either fat or no-fat.
The final steatosis score is computed as the relative frac-
tion of pixels labeled as fat.
For evaluation purposes, an additional SPC estimate of

the steatosis score is computed. This estimate is ob-
tained by sampling the map on the same grid as used by
the human observers, and then computing the relative
fraction of grid points labeled as fat. For brevity, we call
pixel-based steatosis scores “pixel scores” and point-
based steatosis scores “point scores”.
The four methods differ in their implementation of

the pixel and blob classification steps as described below.
The first three methods are built on previously pub-
lished approaches. The fourth method incorporates a
new pixel classification approach. Methods 1–4 become
successively more complex and computationally expen-
sive. All methods were implemented in C++ and run on
an Intel Xeon CPU E5430 with 8 GB working memory.

Pixel classification
Methods 1–3
Empty spaces are generally brighter and less saturated
than tissue areas. It is therefore common practice to
classify pixels by fixed thresholds to color values [12, 15,
17, 21–24] and to green channel values in particular [10,
14, 16]. Methods 1–3 employ a Random Forest Classifier
(5 trees) [25] for the pixel classification that

Fig. 3 Overview of the analysis framework. First, pixels are classified as foreground or background. Afterwards, blobs of foreground pixels are
classified as fat or other empty spaces
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automatically derives appropriate green channel thresh-
olds from the pixel samples in the training set.

Method 4
Histological images often vary so much that empty
spaces in one image appear darker or more saturated
than tissue areas in another image. In this case, the
application of fixed thresholds to color values produces
erroneous results. Method 4 incorporates a new pixel
classification approach that intends to be more robust to
such variability (see Fig. 4). This approach is based on
two common image processing operations and, there-
fore, simple to implement in software.
Instead of considering absolute pixel values, it makes

assumptions about relative pixel values with respect to
their surroundings. The first assumption is that fore-
ground pixels are generally less saturated than their sur-
rounding tissue area. In this respect, the classification
considers the difference of the saturation of individual
pixels and the mean saturation in a radius of ~60 μm
(128 pixels at 20× resolution).
The second assumption is that brightness values

within fat droplets are fairly constant. In this respect, the
classification considers the local derivative of the bright-
ness of individual pixels, computed with the 3 × 3 Sobel
operator. Again, a Random Forest classifier (5 trees) is
employed for the evaluation of both features that was
trained on the pixel samples in the training set.

Blob classification
Method 1
For simplicity, Method 1 assumes all blobs to be fat
droplets. This approach is typically used when no
specialized software for quantifying steatosis is avail-
able [12].

Method 2
Fat droplets tend to be differently sized and less elon-
gated than other empty spaces, such as vessels or tissue

cracks. It is, therefore, common practice to classify blobs
by shape features that quantify their size and their
eccentricity or roundness [14–16, 21–23]. Method 2
classifies blobs by their number of pixels and eccentri-
city. The classification itself is performed by a Random
Forest classifier (21 trees) that was trained on the blob
samples in the training set.

Methods 3 & 4
Squeezed or clustered fat droplets, compact artifacts or
cross-sectioned vessels can assume all kinds of shapes.
In these cases, fat droplets and other empty spaces can-
not be distinguished by size and eccentricity features
alone. In Homeyer et al. [26], adjacency statistics fea-
tures were shown to improve the distinction of complex
blob shapes. For this reason, Method 3 & 4 add adja-
cency statistics to the size and eccentricity features used
in Method 2. The classification itself is, again, performed
by a Random Forest classifier (21 trees) that was trained
on the blob samples in the training set.

Evaluation of agreement
We compare different image analysis methods in terms
of their error against SPC performed by a human obser-
ver. In addition to mean absolute error values, we
present success rate curves and Bland-Altman plots. The
results are presented separately for low-grade and high-
grade images.
For practical applicability, any new measurement

method must produce a smaller error than an acceptable
maximum error in a minimum percentage of cases. Two
inverse metrics are often considered in this regard: the
coverage probability (CP) and the total deviation index
(TDI) [27]. The CP describes the percentage of cases for
which the error is smaller than a given acceptable max-
imum error. The TDI describes the maximum error of a
given minimum percentage of cases.
There is no general definition of the acceptable max-

imum error or the minimum percentage of cases for the

Fig. 4 Robustness to image variability. Method 4 incorporates a new pixel classification approach to improve the robustness to image variability
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quantification of steatosis. For this reason, we present
plots where different TDIs are plotted on the x-axis
against their respective CPs on the y-axis (see Fig. 5).
Such plots depict the cumulative distribution of absolute
errors over all images. They are also called “success rate
curves” because they plot the rates of cases that succeed
in satisfying a certain quality criterion (the maximum ac-
ceptable error). Success rate curves enable the intuitive
comparison of the error of multiple measurement
methods. The superiority of one analysis method over
another is proportional to how much its success rate
curve lies left of the one of the other method.
Bland-Altman plots are another common way for

assessing agreement between two quantitative measure-
ment methods [18]. Bland-Altman plots visualize com-
bined measurements as dots. The mean of two
measurements is plotted on the x-axis against their dif-
ference on the y-axis. For easier interpretability, the me-
dian of all differences is drawn as a horizontal line. Two
further horizontal lines are drawn at the 2.5th and
97.5th percentiles, signifying the limits of agreement. If
normality can be assumed, the lines are drawn at the
mean of the differences and ±1.96 times the standard
deviation, respectively. Bland-Altman plots make it sim-
ple to assess whether there is any systematic bias in the
measurements and how the error relates to their
magnitude.

Results
Method evaluation
We have evaluated all four analysis methods in terms of
their error against SPC by Observer 1. For this, all ana-
lysis methods were trained and tested at 20× resolution.
The evaluation was based on point scores, so that the
sampling error of SPC could be ignored. Since the

practical value of any analysis method depends on both
its error and its runtime, we have measured the mean
runtime per image of all analysis methods. The results
are summarized in Table 2 and Fig. 5 (top row).
The simple threshold-based segmentation of Method 1

generally performed worst. Obviously, sorting out vessels
or tissue cracks is essential for accurate results. While
Method 2 and 3 performed similarly on high-grade im-
ages, Method 3 performed significantly better than
Method 2 on low-grade images. Here, its utilization of
adjacency statistics caused fewer vessels or tissue cracks
to be misclassified as fat droplets.
The best results on both image sets were produced by

Method 4. Its new pixel classification approach im-
proved the robustness to variability in the color values
(see Fig. 4), which had a substantial effect on the error
of high-grade images. However, the superior accuracy
came at the cost of computation time. While the mean
runtimes of Methods 1–3 were virtually the same, the
computation of two extra feature channels in Method 4
increased the runtime almost twofold.
The image resolution is a major factor in the runtime

of analysis methods. We have, therefore, additionally
evaluated two variants of Method 4 that were trained
and tested at 10× or 5× resolution. The results are sum-
marized in Table 2 and Fig. 5 (bottom row).
While all variants performed similarly on low-grade

images, the error increased substantially from 20× to
10× and from 10× to 5× on high-grade images. At
higher resolutions, the considered shape features proved
to be more discriminative for the complex blob shapes
encountered in high-grade images.
Since the pixel classification is the main contributor to

the computational costs, the mean runtime of Method 4,
along with the number of pixels in the image, was

Fig. 5 Success rate curves of different analysis methods. The x-axes show absolute error levels (in area fraction), the y-axes give the corresponding
percentage of images on which the absolute error was below or equal to that level
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divided by approx. four from 20× to 10× and from 10×
to 5× resolution.
The error of Method 4 at 10× was still lower than the

error of Method 3 at 20×. At the same time, the average
execution of Method 4 at 10× took only half as long as
Method 3 at 20× .

Observer evaluation
If SPC is considered the reference standard, then the
achievable accuracy is limited by the variability between dif-
ferent human observers. To assess the feasibility of further
improvements, we have compared the error of Method 4 at
20× resolution with the errors of Observer 2 & 3. The
evaluation was, again, based on point scores. The results
are summarized in Table 3 and in Fig. 6 (top row).
On low-grade images, the error was generally low and

Method 4 performed on par with the human observers.
On high-grade images, the error was notably higher and
more variable. Here, Method 4 was closer to the refer-
ence result than Observer 2, however, not as close as
Observer 3. Figure 7a–c visualizes the respective agree-
ment with Observer 1 as Bland-Altman plots. It be-
comes apparent that there was a general bias towards
underestimation of the steatosis scores. For Observer 2
and Method 4, this bias increased with the magnitude of
the values.
Upon visual inspection, it appeared, that neither of the

observers was systematically wrong, but that there was
often ambiguity in the classification of grid points. The
thickness of histological sections often prevents fat drop-
lets from being clearly delineated from tissue. Instead,

there is a gradient region, where tissue slowly fades into
empty space. Since the area of circular fat droplets grows
quadratically with their radius, a large portion of their
area is concentrated near the edge. Stereological grid
points are therefore very likely to lie in the gradient re-
gion. It turns out that much of the disagreement was
caused by observers being more or less restrictive in the
assignment of grid points in gradient regions to fat drop-
lets (see Fig. 8).

Sampling error evaluation
Stereological point counting considers only a subsample
of all image pixels, which naturally leads to some sam-
pling error. In the previous sections, the inherent errors
of different analysis methods and human observers were
evaluated on the basis of point scores. Here, the sam-
pling error was irrelevant because all steatosis scores
were computed on the same grid of points.
Automated analysis methods are generally unaffected

by the sampling error of SPC because they consider all
image pixels. To take this advantage into account, we
have estimated how the sampling error affects the total
error of the human observers.
Since the true sampling error of the human observers

was unknown, we have made the rough assumption that
their sampling error equals the one of Method 4 at 20×
resolution. The sampling error of Method 4 could be
easily computed by subtracting its pixel scores from its
point scores. The resulting sampling error distribution is
visualized in Fig. 7d. It turned out to be distributed sym-
metrically around 0 with its variance growing in propor-
tion to the magnitude of values. The mean absolute
sampling error amounted to 0.006 (±0.006) for low grade
and 0.015 (±0.012) for high-grade images.
The total error of the human observers equals their in-

herent error plus the sampling error of SPC. By adding
the estimated sampling error of every image to the
respective point scores of Observer 2 & 3, we have
obtained two estimates of their total error, denoted as
Observer 2 TE and Observer 3 TE. Both were compared
to the inherent error of Method 4 at 20×, under the as-
sumption that the inherent error of its point scores is a

Table 2 Method evaluation results

Method Mean Absolute Error
low-grade

Mean Absolute Error
high-grade

Mean Runtime

Method 1 20× 0.082 (±0.087) 0.083 (±0.059) 1.01 (±0.17)

Method 2 20× 0.032 (±0.037) 0.062 (±0.048) 1.01 (±0.17)

Method 3 20× 0.013 (±0.014) 0.060 (±0.052) 1.02 (±0.17)

Method 4 5× 0.011 (±0.012) 0.067 (±0.041) 0.15 (±0.01)

Method 4 10× 0.010 (±0.010) 0.050 (±0.029) 0.51 (±0.02)

Method 4 20× 0.011 (±0.011) 0.036 (±0.026) 1.90 (±0.08)

Mean absolute errors are given in area fraction and mean runtimes per image are given in seconds (± std. dev)

Table 3 Observer and sampling error evaluation results

Method Mean Absolute Error
low-grade

Mean Absolute Error
high-grade

Method 4 20× 0.011 (±0.011) 0.036 (±0.026)

Observer 2 0.010 (±0.011) 0.068 (±0.030)

Observer 2 TE 0.013 (±0.012) 0.066 (±0.036)

Observer 3 0.008 (±0.008) 0.024 (±0.017)

Observer 3 TE 0.010 (±0.010) 0.029 (±0.021)

Mean absolute errors are given in area fraction (± std. dev)
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good approximation for the inherent error of its pixel
scores. The results are summarized in Table 3 and in
Fig. 6 (bottom row).
The added sampling error caused a small but no-

ticeable increase in the total error of Observer 2 & 3.
Since the sampling error can be positive or negative
it can increase or decrease the total error on individ-
ual images. This explains the different effect on both
observers. When the sampling error was taken into
account, the total error of Method 4 was close to that
of Observer 3. However, it still was higher on both
low-grade and high-grade images.

Discussion
We have evaluated different automated image analysis
methods for quantifying steatosis in terms of their agree-
ment with SPC performed by a hepatologist. In this con-
text, we have presented a new method that intends to
improve the robustness to image variability. While most
methods had different merits for low-grade and high-
grade images, the new method achieved the best agree-
ment on both image groups.
The error of the new analysis method decreased when

it was applied to higher image resolutions. However, this
decrease came at the expense of runtime. Savings in

Fig. 6 Success rate curves of Observer 2 & 3 and Method 4. The top row compares the inherent error of Observer 2 & 3 and Method 4. The
bottom row compares the estimated total error of Observer 2 & 3, computed as the sum of the inherent error and the estimated sampling error
of SPC, with the total error of Method 4, which is unaffected by the sampling error

Fig. 7 Bland-Altman plots. a-c: Agreement with Observer 1 of Method 4 and Observer 2 & 3. d: Agreement between point scores and pixel
scores of Method 4 20×
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runtime are important when analyzing large whole slide
images. In this case, the slightly larger error at 10× reso-
lution can be more acceptable than the significantly
higher runtime at 20× resolution.
We have compared the new analysis method with SPC

performed by two additional human observers, who
were knowledgeable in the task and experienced in the
quantitative analysis of medical images. It turned out
that the error of the analysis method was substantially
lower than one observer and only slightly above the
other observer. This applied especially when the sam-
pling error of SPC was taken into account. The results
suggest that the new method can be a suitable auto-
mated replacement for SPC.
We have also seen that there is considerable vari-

ability between human observers, partly because of
general ambiguity about the edges of fat droplets due
to the thickness of tissue sections. Further reductions
in error, therefore, do not necessarily indicate actual
improvements, but can indicate over-fitting towards a
specific observer.
One limitation of the work is that, because of the high

effort of SPC, the evaluation was performed against only
one expert. Future work should be carried out to assess
the variability of SPC between multiple experts. Only if
automated methods are evaluated against this variability,
it will be possible to verify further improvements.
Another limitation is that the evaluation was per-

formed without consideration of the size of fat droplets.
The size distribution of fat droplets may hold important
diagnostic information [8, 14]. Therefore, it will also be
important to evaluate the agreement between human
observers and automated analysis methods with respect
to droplet sizes.

Conclusions
Automated image analysis methods for quantifying
steatosis should be evaluated against other area-based
measurement, such as SPC. We have presented a new
method that achieved the best agreement with SPC per-
formed by a hepatologist. The method is simple to im-
plement and showed a good trade-off between accuracy
and runtime. A comparison with additional human ob-
servers suggested that the new method can be a suitable
automated replacement for SPC. Before further improve-
ments can be verified, it is necessary to thoroughly
assess the variability of SPC between human observers.
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Fig. 8 Edge Ambiguity. Because of the thickness of tissue sections, it
is often ambiguous whether points lie within or outside of
fat droplets
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