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Left localizations of left Artinian rings

V. V. Bavula

Abstract

For an arbitrary left Artinian ring R, explicit descriptions are given of all the left denom-
inator sets S of R and left localizations S™'R of R. It is proved that, up to R-isomorphism,
there are only finitely many left localizations and each of them is an idempotent localization,
ie. ST'R ~ S;'R and ass(S) = ass(Se) where S. = {1, e} is a left denominator set of R and ¢
is an idempotent. Moreover, the idempotent e is unique up to a conjugation. It is proved that
the number of maximal left denominator sets of R is finite and does not exceed the number
of isomorphism classes of simple left R-modules. The set of maximal left denominator sets of
R and the left localization radical of R are described.

Key Words: Goldie’s Theorem, the left quotient ring of a ring, the largest left quotient ring
of a ring, a maximal left denominator set, the left localization radical of a ring, a maximal
left localization of a ring, a left localization maximal ring, a left Artinian ring.
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Rings with left Artinian left quotient ring.

1 Introduction

In this paper, module means a left module, and the following notation is fixed:

e Ris aring with 1, R* is its group of units and Inn(R) := {w,, |u € R*} is the group of inner
automorphisms of R where w,(r) := uru=" for r € R, rad(R) is the Jacobson radical of R;

e Ore(R) :={S5|S is a left Ore set in R};
e Den(R) := {5 |S is a left denominator set in R};

e Loc(R) := {[ST!R]|S € Den;(R)} is the set of R-isomorphism classes [S™'R] of left lo-
calizations of the ring R; [ST'R] = [S""'R] iff the map S™'R — S"7'R, s7'r —» s7risa
well-defined isomorphism. We identify S~!R with [ST'R]. So S™'R = S’~!R iff the rings
S~'R and S’"'R are R-isomorphic;

o Assi(R) := {ass(S)|S € Deny(R)} where ass(S) := {r € R|sr =0 for some s = s(r) € S};
e Deny(R,a) := {S € Den;(R) | ass(S) = a}.
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In brief, for an arbitrary left Artinian R, this paper presents a complete picture of how left
localizations and left denominator sets of R look like, and the situation is so ‘simple’ and natural
that one cannot image a better/simpler one, see below.

Every left localization of left Artinian ring is an idempotent left localization. We
say that a left localization A = S™1R of a ring R is an idempotent left localization of R if there is
an idempotent e € R such that S, = {1, e} € Den;(R) and the rings S, 'R and A are R-isomorphic
(equivalently, the map A = S™'R — S;1R, s~!r + s71r, is an isomorphism).

The following theorem shows that every left localization of a left Artinian ring is an idempotent
left localization.

e (Theorem [A.5]) Let R be a left Artinian ring and S € Den;(R,a). Then there exists a
nonzero idempotent e € R such that S. := {1,e} € Den;(R,a) and the rings ST'R and
SR are R-isomorphic. The idempotent e is unique up to conjugation.

There are only finitely many left localizations for a left Artinian ring. Let R be a
left Artinian ring, rad(R) be its radical, R := R/rad(R) = [[;_, R; — a direct product of simple
Artinian rings R;, 1; be the identity element of the ring R;. So, 1 = 37 1, is the sum of
orthogonal central idempotents of R, 1 = >7_1 1; is a sum of orthogonal idempotents of R such
that 1; is a lifting of 1; (see (I3))). For each non-empty set I of {1,...,s}, let ef := 3", 1;,

| == T{(R) :={er|esR(1 — 1) = 0} and |T}| < oc.

The following theorem shows that for a left Artinian ring R there are only finitely many left
localizations. Moreover, it gives explicit descriptions of the sets Loc;(R) and Ass;(R).

e (Theorem[4.6]) Let R be a left Artinian ring. Then the map Z](R) — Loci(R), e — S;1R =
R/(1—e)R, is a bijection. The map I](R) — Ass;(R), e — (1 — e)R, is a bijection.

Classification of denominator sets of a left Artinian ring. A subset S of a ring R is
called a multiplicative set if 1 € S, S C § and 0 ¢ S. The next theorem gives a criterion for
a multiplicative set of a left Artinian ring to be a left denominator set and provides an explicit
description/classification of all the left denominator sets of R.

e (Theorem [T.6]) Let R be a left Artinian ring and S be a multiplicative set of R. The
following statements are equivalent.

1. S € Deny(R).

2. There is a nonzero idempotent e € R such that eR(1 —e) =0, S C i U and
Ro1 Ra
Rii O

there is an element s € S such that s = w 0 where R =
v Ro1 Rao

0
ring associated with the idempotent e (see (@)).

) is the matrix

3. There is a unit A € R*, and idempotent e € I/(R) and an element s € S such that

ASATE C (Rll RO ) and A\sA\™1 = (Z 8) where R = (211 RO ) is the matrix
21 22 21 22

ring associated with the idempotent e.

4. There is an element s € S such that Ss € Denj(R) where Ss = {s'|i € N} and the
images of all the elements of S in the ring Sy R are units.

If one of the equivalent conditions holds then ass(S) = kerg(s-) in all three cases regardless
of the choice of s.

So, in order to obtain all the left denominator sets of a left Artinian ring R we have to choose

an element e € Z/(R), a multiplicative set S of ( no U

that contains an element of the form
Ra1 Roo



(:j 8) Then S is a left denominator set of R and an arbitrary left denominator set of R is of

the type ASA~! for some X € R*.

The maximal left denominator sets of a left Artinian ring R. In [2], the concept of
maximal left denominator set of ring was introduced and it was shown that the set max.Den;(R)
of maximal left denominator sets of a ring R is a non-empty set. For a left Artinian ring R, the
finite set (Z], >) is a partially ordered set where ey > e iff I D J. Let minZ] be the set of minimal
elements of Z’. The next theorem provides a description of the maximal left denominator sets of
a left Artinian ring.

e (Theorem [L.TQ) Let R be a left Artinian ring. Then

1. max.Den;(R) = {T.|e € minZ/(R)} where Te = {u € R|u+(1—e)R € (R/(1—e)R)*}.
2. |max.Den;(R)| < s where s is the number of isomorphism classes of left simple R-

modules.

3. |max.Den;(R)| = s iff R is a semisimple ring.

The maximal left denominator sets of a ring with left Artinian left quotient ring.
The next theorem shows that a ring with left Artinian left quotient ring has only finitely many
maximal left denominator sets.

e (Theorem [9.7]) Let R be a ring such that Q;(R) is a left Artinian ring and s be the number
of iso-classes of simple left Q;(R)-modules. Then

1. the map max.Den;(R) — max.Deni(Q;(R)), S — SQi(R)*, is a bijection with the
inverse T — T N R. In particular, |max.Den;(R)| = |max.Den;(Q;(R))| < s < 0.

2. |max.Den;(R)| = s iff Qi(R) is a semisimple ring iff R is a semiprime left Goldie ring.

Recall that the largest left quotient ring Q;(R) of R is a left Artinian ring iff the (classical) left
quotient ring Q.(R) := Cp' R is a left Artinian ring, and in this case S;(R) = Cg, [3].

Criterion for the powers of an element to be a left denominator set. For a left

Artinian ring R, the following theorem is an explicit criterion for the powers of a non-nilpotent
element of R to be a left denominator set.

e (Theorem [T.4) Let R be a left Artinian ring, Z/(R) be as above, s € R be a non-nilpotent
element of R, e = e(s) be the idempotent associated with the element s (see (9)), S. = {1,e}
and Ss = {s'|i € N}. The following statements are equivalent.

1. S5 € Den(R).
2. S. € Deny(R) and (1 —e)s(1 — e) is a nilpotent element.
3. eR(1—e) =0 and (1 —e)s(1 —e) is a nilpotent element.

If one of the equivalent conditions holds then ass(Ss) = (1—e)R and S; 'R~ S; 'R~ R/(1—
e)R, the core Ss.. of the left denominator set Ss is equal to {s"|i > 1,(1 —e)s'(1 —e) = 0}.

Duality between left and right localizations of an Artinian ring. The sets of left and
right localizations of a ring R, (Loc;(R), —) and (Loc,(R),—), are partially ordered sets where
[A] — [B] if there is a ring R-homomorphism A — B. In general, the left and right localizations of
a ring R are almost unrelated but for each Artinian ring R there is a duality between the partially
ordered sets (Loc;(R),—) and (Loc,(R), —).

e (Theorem [L12) Let R be an Artinian ring. Then the map
Loc;(R)\[R] — Loc,(R)\[R], [R/(1—er)R] — [R/R(1 —ecy)],

is an anti-isomorphism of posets (i.e. an order reversing bijection). In particular, |Loc;(R)| =

|Loc,-(R)]|.



2 Preliminaries

In this section, we collect necessary results that are used in the proofs of this paper. More results
on localizations of rings (and some of the missed standard definitions) the reader can find in [7],
[9] and [8]. In this paper the following notation will remained fixed.

Notation:

o Sy = Sa(R) = Si.a(R) is the largest element of the poset (Den;(R,a),C) and Qq(R) :=
Q1.a(R) := SR is the largest left quotient ring associated to a, S, exists (Theorem 2.1, [2]);

e in particular, So = Sp(R) = Si,0(R) is the largest element of the poset (Den;(R,0),C) and
Qi(R) := Sy 'R is the largest left quotient ring of R, [2];

e Loc(R,a) :={S7'R € Loc;(R) | S € Deny(R, a)}.

In [2], we introduce the following new concepts and prove their existence for an arbitrary ring:
the largest left quotient ring of a ring, the largest reqular left Ore set of a ring, the left localization
radical of a ring, a maximal left denominator set, a mazximal left quotient ring of a ring, a (left)
localization maximal ring. Using an analogy with rings, the counter parts of the three concepts:
a maximal left denominator set, the left localization radical and a maximal left quotient ring, for
rings would be a left maximal ideal, the Jacobson radical and a simple factor ring, respectively.

The largest regular left Ore set and the largest left quotient ring of a ring. Let R be
aring. A multiplicatively closed subset S of R or a multiplicative subset of R (i.e. a multiplicative
sub-semigroup of (R, -) such that 1 € S and 0 ¢ .S) is said to be a left Ore set if it satisfies the left
Ore condition: for each r € R and s € S, Sr(Rs # (). Let Ore;(R) be the set of all left Ore sets
of R. For S € Ore;(R), ass(S) := {r € R|sr =0 for some s € S} is an ideal of the ring R.

A left Ore set S is called a left denominator set of the ring R if rs = 0 for some elements
r € R and s € S implies tr = 0 for some element ¢t € S, i.e. r € ass(S). Let Den;(R) be the
set of all left denominator sets of R. For S € Den;(R), let ST'R = {s7r|s € S,r € R} be the
left localization of the ring R at S (the left quotient ring of R at S). Let us stress that in Ore’s
method of localization one can localize precisely at left denominator sets.

In general, the set C of regular elements of a ring R is neither left nor right Ore set of the ring
R and as a result neither left nor right classical quotient ring (Q.«(R) := C™ 'R and Q, «(R) :=
RC™!) exists. Remarkably, there exists the largest regular left Ore set Sy = S;o = Si0(R), [2].
This means that the set S;o(R) is an Ore set of the ring R that consists of regular elements (i.e.,
S10(R) C C) and contains all the left Ore sets in R that consist of regular elements. Also, there
exists the largest regular (left and right) Ore set S;,o(R) of the ring R. In general, all the sets
C, Si,0(R), Sro(R) and S;,0(R) are distinct, for example, when R = I; = K(x, 9, [) is the ring
of polynomial integro-differential operators over a field K of characteristic zero, [1]. In [I], these
four sets are found for R = 1.

Definition, [1, [2]. The ring
Qi(R) == Sio(R)"'R
(respectively, Q.(R) := RS,o(R)™* and Q(R) := Si,0(R)"'R ~ RS, ,o(R)™!) is called the
largest left (respectively, right and two-sided) quotient ring of the ring R.

In general, the rings Q;(R), Q,(R) and Q(R) are not isomorphic, for example, when R = Iy,
[1]. The next theorem gives various properties of the ring @Q;(R). In particular, it describes its
group of units.

Theorem 2.1 [/
1. So(Qi(R)) = Qi(R)* and So(Qi(R)) N R = So(R).



2. Qi(R)* = (So(R),So(R)™1), i.e. the group of units of the ring Q;(R) is generated by the
sets So(R) and Sp(R)~™! :={s71|s € So(R)}.

3. Qi(R)* = {s~!t|s,t € So(R)}.
4. Qu(Qu(R)) = Qu(R).

The maximal left denominator sets and the maximal left localizations of a ring.
The set (Den;(R), C) is a poset (partially ordered set). In [2], it is proved that the set max.Den;(R)

of its maximal elements is a non-empty set.

Definition, [2]. An element S of the set max.Den;(R) is called a mazimal left denominator set
of the ring R and the ring S™'R is called a mazimal left quotient ring of the ring R or a mazimal
left localization ring of the ring R. The intersection

g :=Llrad(R) := ﬂ ass(9) (1)
Semax.Den; (R)

is called the left localization radical of the ring R, [2].

For a ring R, there is the canonical exact sequence

0>l —=R> 11 S7IR, o= 11 os, (2)
Semax.Den; (R) Semax.Den; (R)

where 0g : R — S7'R, r — 7. For a ring R with a semisimple left quotient ring, the left
localization radical Ig coincides with the prime radical ng of R, [2]. In general, [ # ngp and
[r # rad(R), Theorem [L131(4).

The maximal elements of Ass;(R). Let max.Ass;(R) be the set of maximal elements of the
poset (Ass;(R), C) and
ass.max.Den; (R) := {ass(S) | S € max.Den;(R)}. (3)
These two sets are equal (Proposition [2.4)), a proof is based on Lemma 2.2 and Corollary 23] For
an non-empty set X or R, let r.ass(X) := {r € R|rz =0 for some x = x(r) € X }.

Lemma 2.2 [2] Let S € Den;(R,a) and T € Den(R,b) be such that a C b. Let ST be the
multiplicative semigroup generated by S and T in (R,-). Then

1. r.ass(ST) C b.
2. ST € Den(R,¢) and b C c.

Corollary 2.3 Let R be a ring, S € max.Deny(R) and T € Deny(R). Then T C S iff ass(T) C
ass(9).

Proof. (=) If T C S then ass(T) C ass(S).
(<) If ass(T") C ass(S). then, by Lemma [Z2] ST € Den;(R) and S C ST, hence S = ST, by
the maximality of S. Then T'C S. O

Proposition 2.4 [2] max.Ass;(R) = ass.max.Den;(R) # (0. In particular, the ideals of this set
are incomparable (i.e. neither a € b nora 2 b).

Properties of the maximal left quotient rings of a ring. The next theorem describes
various properties of the maximal left quotient rings of a ring, in particular, their groups of units
and their largest left quotient rings.



Theorem 2.5 [2] Let S € max.Den;(R), A = S™'R, A* be the group of units of the ring A;
a:=ass(S), ma: R— R/a,a—a+a, and o : R— A, r— L. Then

1. S=84(R), S=7,1(So(R/a)), ma(S) = So(R/a) and A= So(R/a)"'R/a= Q;(R/a).
SQ(A) = A* and So(A) n (R/O.) = SQ(R/U.)
S =o71(A").

o

A* = (1q(S), 7a(S)™1), d.e. the group of units of the ring A is generated by the sets mq(S)
and m;1(9) := {ma(s)"1 | s € S}.

5. A* = {ma(s) " tma(t) ] s,t € S}.
6. Qi(A) = A and Ass;(A) = {0}. In particular, if T € Den;(A,0) then T C A*.

Let max.Loc;(R) be the set of maximal elements of the poset (Loc;(R),—) where A — B
for A, B € Loc;(R) means that there exist S,T € Den;(R) such that S C T, A = S7!'R and
B = T7'R (then there exists a natural ring homomorphism A — B, s~'r — s7!r). Then (see

2),
max.Loc;(R) = {S™'R| S € max.Den;(R)} = {Q:(R/a) | a € ass.max.Den;(R)}. (4)

The maximal left quotient rings of a finite direct product of rings.

Theorem 2.6 [J] Let R = [[_, R; be the direct product of rings R;. Then for eachi=1,...,n,
the map

max.Den;(R;) — max.Den;(R), S;+— Ry X -+ X 8; X+ X Ry, (5)
is an injection. Moreover, max.Den;(R) = [[;_, max.Den;(R;) in the sense of (), i.e.
max.Den;(R) = {5;]S; € max.Deny(R;), i =1,...,n},

S;'R~ S;'R;, assgr(S;) = Ry x -+ x assg,(S;) X -+ x R,,. The core of the left denominator set
S; in R coincides with the core of the left denominator set S; in R;, i.e.

(Ry X+ X8 x - XRp)e=0x:-+x8 % x0.
Corollary 2.7 Let R =[], R; be the direct product of rings R;. Then g =[]\, lr,.
A Dbijection between max.Den;(R) and max.Den;(Q;(R)).

Proposition 2.8 [J]] Let R be a ring, S; be the largest reqular left Ore set of the ring R, @ :=
SflR be the largest left quotient ring of the ring R, and C be the set of reqular elements of the
ring R. Then

1. 5, C S for all S € max.Deny(R). In particular, C C S for all S € max.Den;(R) provided C
is a left Ore set.

2. Fither max.Den;(R) = {C} or, otherwise, C ¢ max.Den;(R).
3. The map
max.Den;(R) — max.Den;(Q;), S+ SQf ={c 's|ce S,se S},

is a bijection with the inverse T + o~ Y(T) where 0 : R — Q, r 1, and SQy is the
sub-semigroup of (Qy,-) generated by the set S and the group Q; of units of the ring Q;, and
STIR = (SQ;)~ Q.

4. If C is a left Ore set then the map
max.Den;(R) — max.Den;(Q := C *R), S+ SQ* ={c 's|ceC,s€ S},

is a bijection with the inverse T + o~ Y(T) where ¢ : R — Q, r 1, and SQ* is the

sub-semigroup of (Q,-) generated by the set S and the group Q* of units of the ring Q, and
STIR=(SQ")7'Q.



3 Idempotent left denominator sets

Theorem [l states that every left localization of a left Artinian ring is an idempotent localization.
In this section, several results on idempotent left denominator sets are given that are used in
proofs of the subsequent sections.

Let R be aring and e € R be a nonzero idempotent. Then 1 = e3 + e is the sum of orthogonal
idempotents where e; = e and e3 = 1 — e;. The ring R can be seen as the matrix ring associated
with the idempotent e,

- Ry R

R= @ R;; = (R21 R22> where R;; :=e;Re;. (6)
i,j=1

For an element r € R, let - : R — R, x — rx, and -r : R — R, x — xr. The next proposition is a

criterion for an idempotent multiplicative set S, = {1,e} to be a left denominator set of the ring

R.

Proposition 3.1 Let e be a nonzero idempotent of a ring R. We keep the notation as above.
Then S, = {l,e} € Deny(R) iff Ri2 = 0. In this case, ass(S.) = ker(e:) = (1 — e)R and
SR~ R/ass(Se) ~ R/(1 — e)R ~ Ry;.

Proof. (=) If S, € Den;(R) then a := ass(S,) = ker(e;:) = eaR. Since Rize; = 0, we must
have Ri2 C a = eaR = Roj + Raa, hence Rip = 0. Clearly, S;'R ~ R/a ~ Ry since ez € a and
1=e; mod a.

(<) Suppose that Ria =0, i.e. R= <gll RO > Then S, € Ore;(R) since for any element
21 22
_ (™1 0 _fru1 O\ _(ri1 O . . N . .
r= (7"21 7’22) €ER, er= ( 0 0) = ( 0 O) e. The inclusion ker(-e) = Raz C a implies that

Se € Deny(R). O

Proposition Bl means that the idempotent multiplicative set S, is a left denominator set of R
iff the ring R is left triangular (as the matrix ring associated with the idempotent e), i.e.

Ry O
R= .
<R21 R22>
This fact is the most vivid demonstration of the fact that very often a left denominator set fails
to be a right denominator set. Recall that Den(R) is the set of (left and right) denominator sets of

a ring R. The next corollary demonstrates that the condition being a left and right denominator
set is a strong one.

Corollary 3.2 Let e be a nonzero idempotent of a ring R. Then S. = {1,e} € Den(R) iff
Ri2 =0 and R21 = 0 iff e is a central idempotent. In this case, ass(S.) = ker(e-) = (1 — e)R and
S;IR~R/(1—e)R~ Ry;.

Proof. The first ‘iff” is due to Proposition Bl The second ‘iff’ is obvious. O

Let Aut(R) be the group of automorphisms of the ring R and Inn(R) := {w, |u € R*} be the
group of inner automorphisms of the ring R where w,(r) := uru=! for r € R. The group Inn(R)
is a normal subgroup of Aut(R) (since for o € Aut(R) and w, € Inn(R), ow,o ™! = wWy(w))-

Let e € R be an idempotent. If S = {1,e} € Den;(R) then the set S, is called an idempotent
left denominator set of the ring R and the idempotent e is called a left denominator idempotent
of R. Let IDen;(R) be the set of all the idempotent left denominator sets of the ring R and let
Z; = Z;(R) be the set of all left denominator idempotents of the ring R. By Proposition 1]

Ti(R) ={e€ R|e?* =e, eR(1 —¢) = 0}. (7)



The map
Zi(R) — IDen;(R), e+ S.={1,e}, (8)

is a bijection. The groups Aut(R) and Inn(R) act in the obvious way on the sets Z;(R) and
IDen;(R). A ring R is called a local ring if the factor ring R/rad(R) is a division ring,.

Corollary 3.3 Let R be a ring and e € R\{0,1} be an idempotent.
1. The following statements are equivalent.

(a) The idempotents e and 1 — e are left denominator idempotents.
(b) The idempotent e is a central idempotent.

(¢) The idempotents e and 1 — e are right denominator idempotents.
2. The following statements are equivalent.

(a) All the idempotents of R are left denominator idempotents.
(b) All the idempotents of R are central idempotents.
(c) All the idempotents of R are right denominator idempotents.

3. Let R be a left Artinian ring. Then the following statements are equivalent.

(a) All the idempotents of R are left denominator idempotents.
(b) The ring R is a direct product of finitely many local left Artinian rings.

(c¢) All the idempotents of R are are right denominator idempotents.

Proof. 1. Statement 1 follows from Proposition B}

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statement 2 and the fact that 1 is the only nonzero idempotent of
a local left Artinian ring (in such a ring, every nonzero idempotent e is a primitive one, hence is
conjugate to 1,i.e. e=1). O

A set (X, >) is called a pre-ordered set if

(i) x > «x,

(ii) z > y and y > z implies = > z.

In general, the conditions z > y and y > x do not imply = y. If this property holds the
pre-ordered set X is called a partially ordered set, a poset, for short. The set Z; is a pre-ordered
set (Z;,>) where

€1 2 €9 iff €9€1 = €9 iff (1 — 62)(1 — 61) =1- €1 iff (1 — el)R g (1 — 62)R.

The last ‘iff” follows from the fact that the inclusion (1—e;)R C (1 —e3)R implies the inclusion
ea(l —e1)R C ea(l —ea)R = 0, and so ese; = ez. Via the bijection (8], the set IDen;(R) is a
pre-ordered set (IDen;(R),>) where S., > S,, iff e1 > eo.

Definition. We say that a left localization A = S™'R of a ring R is an idempotent left local-
ization of R if there is an idempotent e € R such that S. = {1,e} € Den;(R) and S, 'R = A in
Loci(R), i.e. themap A= S"'R — S, 'R, s~1r +— s~ !r, is an isomorphism, i.e. ass(S) = ass(S,)
and s + ass(S.) € (R/ass(S.))* for all s € S. Let ILoc;(R) := {S;'R|e € Z;(R)}, the set of all
the idempotent left localizations of R.

Remark. In general, even for Artinian rings, it is not true that the condition S~™*R ~ S, 1R
or even SR = SR in Loc¢;(R) for some S € Den;(R) and S, € IDen;(R) implies that the set
S contains an idempotent element distinct from 1.



Example: Let R = Q 0 2 0> S_{l,si_<2 0

(Q Q),e—Eu,a—(l—e)R,s—<l o) gi—1 0)|12
1}. Then S. = {1,e} € Den;(R,a) (by Proposition Bl and S € Den;(R,a) (by Corollary [4.4]),

SR ~ R/a ~ SR (by Proposition B1] and Corollary 4]). Clearly, 1 is the only idempotent
of the set S and S;'R = S!'R in Loc;(R). For all i > 1, s‘a =0 and as’ # 0.

Lemma 3.4 Let e1,es € Zj(R). The following statements are equivalent.

1. €1 Z €9.

2. 5 is a unit in the ring Se_;R; equivalently, G+ =1 € Se_;R.

3. The map S’e_llR — Se_le, eir — elr, where i = 0,—1, is well-defined.
4. ass(Se,) C ass(Se, ).

Proof. (1= 2)1If e; > eq, i.e. ese; = ey then 24 =%in SeglR, and so § =1 = £ since ¢
is the identity element of the ring S’e_;R.

(2 = 3) If & is a unit of the ring S 'R then the map e}r — e}r exists by the universal
property of left localizations.

(3 = 1) If the map in statement 3 is well-defined then - =1 =< in S_ 'R and so e; — ez €
ass(Se,) = kerg(ea-), i.e. ea(er — e2) = 0. This means that e; > es.

(1 = 4) The equality eze; = e2 implies that ass(Se,) = ker(eq-) C ker(es-) = ass(Se, ).

(4 = 2) Notice that S;'R = R/ass(S.,), S;,'R = R/ass(Se,) and e; € 1+ ass(Se,). If
ass(Se, ) C ass(Se,) then S;'R 5 & =14 ass(Se,) is a unit. O

Let us define an equivalence relation ~ on Z;(R) by the rule e; ~ e iff 1 > €3 and ey > €.
Let [e] := {f € Z;(R) | f ~ e} be the equivalence class of e € Z;(R). Then set Z;(R)/ ~:= {[e] | e €
Z;(R)} of equivalence classes is a poset (Z;(R)/ ~, >) where [e1] > [e2] if e1 > es.

Lemma 3.5 Let e1,eq € Z)(R). The following statements are equivalent.
1. e1 ~eo.
2. e1 =1 mod ass(Se,) and ez =1 mod ass(Se,) (i.e. S;'R=S;'R in Loc(R)).
3. The map Se_llR — Se_;R, eir v elr, where i = 0,—1, is an isomorphism.
4. ass(Se,) = ass(Se,)-

Proof. The lemma is an easy corollary of Proposition B and Lemma B4 O

Notice that every ideal is invariant under the inner automorphisms. By Lemma [B.5] the group
of inner automorphisms Inn(R) of the ring R acts on the set Z;(R)/ ~ by the rule: for any v € R*
and [e] € Z)(R)/ ~, ule]lu™! := [ueu™1].

o R11 0
FEzxample. Let R = (R21 Rao

and Ro; be an arbitrary (Raz, Ri1)-bimodule. Let ey = Eq1. By Proposition Bl Se, = {1,e1} €

Deny(R, a) where a = FasR. Clearly, R* = <R11 (1 > and Inn(R) -e; = < ! 0> since for all

units u = (a 0) € R,
B~

) be any triangular ring where R1; and Rso are arbitrary rings

1 1 0
ueju - = Ba-l 0)°

Therefore, for any element a € Ra1, e, := (i 8) is an idempotent of R, S., € Den;(R,a) and
S;'R~R/a=S_'R.



4 Left localizations of left Artinian rings

Throughout this section, R is a left Artinian ring if it is not stated otherwise. The aim of this
section is to prove, for a left Artinian ring R, that every left localization of R is an idempotent
left localization (Theorem 1), there are only finitely many left localization rings of R and to give
a classification of all of them (Theorem [, to classify the maximal left denominator sets of R
(Theorem AI0), to give an explicit description of the left localization radical [ of R (Theorem
MI3). The ideals in Ass;(R) have many interesting/unexpected properties (Corollary [ 1T]).

An element r of a ring R is called a left regular if the map -r : R — R is an injection, i.e.
xr = 0 implies x = 0. Recall that every left Artinian ring is left Noetherian.

Lemma 4.1 Let R be a left Artinian ring.
1. Every left reqular element of the ring R is a unit.
2. Let S € Deny(R,a). Then ST'R~ R/a (an R-isomorphism).
3. Let s€ R and -s: R — R, r— rs. Then R = Rs @ ker(-s) iff Rs Nker(-s) =0.

4. Let S € Deny(R,a) and T € Den;(R,b). Then the rings ST*R and T~ R are R-isomorphic
iffa=0b.

Proof. 1. Trivial.

2. Statement 2 follows from statement 1. Let 7 : R — R/a, r — 7 = r + a. Then n(5) €
Den;(R/a,0) and S7™'R ~ 7(S)~!(R/a). By statement 1, the set of regular elements 7(S) of the
left Artinian ring R/a consists of units, and so 7(S)~1(R/a) ~ R/a.

3. (=) Trivial.

(<) if RsNker(-s) = 0 then Rs @ ker(-s) C R. It follows from the short exact sequence of
R-modules 0 — ker(-s) — R -3 Rs — 0 that the left R-modules Rs® ker(-s) and R have the same
length. Then, Rs @ ker(-s) = R.

4. Statement 4 follows from statement 2. [

Statement 4 does not hold for non-Artinian rings, eg, R = Z, S; = {1} and S = {2%]i € N}.
Statement 4 does not hold if the condition ‘R-isomorphic’ is replaced by ‘isomorphic’, eg, if R =
K x K,1=ej+es, K is afield then S;'R~ K ~ S 'R but ass(S,,) = (1 —e1)R = {0} x K #
K x {0} = (1 — e3)R = ass(S, ).

The idempotent e(s) associated with s € R. Suppose that R is a left Artinian ring.
Then for each element s € R there is the least natural number n = n(s) such that Rs" = Rs’
for all ¢ > n. By Lemma [11(3), the number n = n(s) is the least natural number n such that
Rs' Nker(-s') = 0 for all i > n or equivalently R = Rs® @ ker(-s%) for all i > n (equivalently,
ker(-s') = ker(-s") for all i > n). So, for all i > n, Rs" = Rs" and ker(-s") = ker(-s’). For each
i>n, let

1=c[s'] +¢'[s'] (9)

be the sum of orthogonal idempotents that corresponds to the decomposition R = Rs® @ ker(-s?).
Then e[s"] = e[s'] and ¢[s"] = €[s] for all i > n. These common values are denoted by e(s) and
€'(s), respectively. The idempotent e(s) of the ring R is called the idempotent associated with the
element s. The element s is a nilpotent iff e(s) = 0. The element s is a unit iff e(s) = 1. The
element s is neither a nilpotent element nor a unit iff e(s) # 0, 1.

Orthogonal idempotents. The ring R is a left Artinian ring. Its radical rad(R) is a nilpotent
ideal, and so it coincides with the prime radical ng of the ring R, and

R := R/rad(R) ~ H M, (D;) (10)

WEGYG R; = n; (D) is the ring of n; x n; matrices with _entries from a division ring D;. Let
{Epq(i)|pyg = 1,...,n;} be the matrix units of the ring R;. Since the radical rad(R) is a nil
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ideal (even a nilpotent ideal) of R, the decomposition of 1 in R as a sum of primitive orthogonal

idempotents
1= "> "E;() (11)

i=1 j=1

can be lifted to a decomposition of 1 € R as a sum of primitive orthogonal idempotents

1= ZX:EJ‘J‘(Z') (12)

i=1 j=1

and any such a lift is unique up to conjugation (i.e. up to inner automorphism) and order of
idempotents (i.e. permutation of the idempotents), (Proposition 18.23.5, [6]). The sum 1; :=
>S5, Ejj(i) is the identity of the ring R; and let 1; := 77", Fj;(i). Then 1 = 377_, T; is the sum

of central orthogonal idempotents of the ring R, and

1= Z 1 (13)

is the sum of orthogonal idempotents of the ring R (in general, not necessarily central). For each
non-empty subset I of the set {1,...,s}, let

ey = 1] = le (14)

icl

Since the idempotents 1; are central, the sum ([I3)) is unique up to inner automorphism of R, i.e.
if 1 = Y27, 1/ is another lifting with T, = T, then 1, = ul;u~" for all i and some unit u € R*. Let
a be an ideal of the ring R such that a Z rad(R). Then (a +rad(R))/rad(R) is a nonzero ideal of
the semisimple ring R, and so

(a +rad(R))/rad(R H M, = Rlj(a) (15)
i€l(a)

for a unique non-empty subset I(a) of the set {1,...,s} where Tl(a) = Eiel(a) T; is the central
idempotent of the ring R. The set I(a) is a proper subset of {1,...,s} iff a # R.

Every left localization of a left Artinian ring is an idempotent left localization.
Proposition L2 and Corollary 3] are about lifting (in many different ways) left denominator sets
of a factor ring of a ring to the ring (under certain conditions).

Proposition 4.2 Let R be an arbitrary ring, a be its ideal, R := R/a and S be a multiplicative
set of the ring R such that for each element a € a there is an element s € S such that sa = 0. Let
7:R— R, r=7F=r+a, and S :=7(9).

1. If S € Orey(R,b) then S € Orey(R,b) where b = 71(b).
2. If S € Den;(R,b) then S € Den;(R,b) where b =7~1(b) and S™'R ~ SR

Proof. 1. (i) S € Ore(R): For given elements s € S and r € R, we have to find elements
s’ € S and v € R such that s'r = 7's. Since S € Ore;(R), 5;7 = 715 for some elements s; € S
and 71 € R. Then s;7 — r1s € a, and so s2(s17 — r18) = 0 for some element sy € S. It suffices to
take s’ = s951 and r = s977.

(ii) ass(S) = b: Let sr = 0 for some elements s € S and r € R. Then 37 = 0 in R, and so
7 € Db, hence r € b, i.e. ass(S) C b.

Let b € b. Then 5b = 0 for some element s € S. Then sb € a, and so s15b = 0 for some element
s1 € S. Hence b C ass(5).

11



2. (i) S € Deny(R,b): In view of statement 1, it suffices to show that rs = 0 for some elements
s € S and r € R implies s'r = 0 for some element s’ € S. We have the equality 7s = 0 in the ring
R. Then 5,7 = 0 for some element s; € S since S € Den; (R, E). Then s1r € a, hence sys17 =0
for some element s, € S. It suffices to take s’ = so57.

(i) SR ~ S 'R By the universal property of left localizations, the map S™'R — g_lﬁ,
s7'r +— 577, is a ring homomorphism which is obviously an epimorphism. Suppose that an
element s~'r € S™!R belongs to the kernel of the epimorphism. Then 7 = 0 in gilﬁ, and so
5.7 = 0 in R for some element s; € S. This means that s;r € a, and so ses17 = 0 for some
element s € S. Therefore, T =0 and s~ = 0. The epimorphism is an isomorphism. []
Corollary 4.3 Let R be a ring and S € Deny(R, a) (respectively, S € Ore;(R,a)). Then S+ a €
Den; (R, a) (respectively, S+ a € Ore)(R,a)) and (S +a) 'R~ S™'R.

Proof. Since SNa = (), the set S+ a is a multiplicative set. We keep the notation of Proposition
Since S € Den;(R,a) (respectively, S € Ore;(R,a)), we have that S+a = S € Den(R,0)
(respectively, S € Ore;(R,0)). By Proposition 2] S + a € Den;(R,a) (respectively, S + a €

Orei(R,a)) and (S +a) 'R~S 'R~ S 'R. O

Corollary 4.4 Let R be a ring, a be an ideal of R such that a # R, an element s € R be such
that the element s+ a is a unit of the ring R/a and |J;5, kerg(st-) = a. Then Sy := {s'|i € N} €
Den;(R,a) and S;'R ~ R/a.

Proof. We keep the notation of Proposition The set S, := {5'|i € N} (where 5 = s + a)
consists of units of the ring R = R/a, and so S5 € Den;(R,0). By Proposition[d.2] Ss; € Den;(R, a).
Now, it is obvious that S; R ~ R/a (since S, C R'). O

Let S be a nonempty subset of a ring R. The set ker;(S) = {ker(-s) | s € S} of left ideals of the
ring R is a poset with respect to C. Let max.ker;(S) be the set of maximal elements of the poset
ker;(S). The set max.ker;(S) is a non-empty set provided the ring R satisfies the a.c.c. for left
annihilators. Similarly, the set ker, (S) = {ker(s-)|s € S} of right ideals of the ring R is a poset
with respect to C. Let max.ker,(S) be the set of maximal elements of the poset ker,(S). The set
max.ker, (R) is a non-empty set provided the ring R satisfies the a.c.c. for right annihilators.

The first statement of the following theorem shows that every left localization of a left Artinian
ring is an idempotent left localization.

Theorem 4.5 Let R be a left Artinian ring and S € Den;(R,a). Then

1. There exists a nonzero idempotent e € R such that Se := {1,e} € Deny(R,a) and the rings
STIR and S;'R are R-isomorphic.

2. (a) If a =0 thene=1.

(b) If a # 0 then a = (1 — e)R = 1qR < rad(R) and the idempotent e is conjugate to
Ler(a) = 1 = 15(ay where the set I(a) is defined in (13).

(c)
Rll 0 0 0 Tl 0
R = = d SC 16
(RQI R22>7 ¢ (RQI R22> o - (R21 Ry ) (16)

where R;; = e;Rej, e1 =e andea =1 —ey.

Proof. 1. If a =0 then S C R* (Lemma[Il(1)) and so S™'R = R. It suffices to take e = 1.
We can assume that a # 0. Then necessarily a # R, i.e. a is a proper ideal of the ring R
and S ¢ R*. By Corollary 3] S + a € Den;(R,a) and (S + a) 'R ~ S~!R (an R-isomorphism).
Without loss of generality we may assume that S 4+ a C S (replacing S by S + a, if necessary).
The ring R is a left Artinian ring. Therefore, we can fix an element s € S such that ker(-s) €
max.ker;(S), and so ker(-s) # 0 (since S € R* and by Lemma T1(1)). Then necessarily Rs N
ker(-s) =0, and so
R = Rs @ ker(-s) (17)
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is the direct sum of left ideals of the ring R, by Lemmal[LTl(3). Let 1 = e; 4¢3 be the corresponding
decomposition of 1 as a sum of orthogonal idempotents. Then

: Riu R
— L — 11 12 e e— . .
R=(P Rij = (R21 R22> where R;; := e;Re;,

ij=1

Rs = Re; = (g; 8) and ker(-s) = Reg = (8 g;z) . Since s € Rs, the element s has the form

o S11 0
5= < 0) , (18)
the ring Ry is a left Artinian ring and the map -s : R11 — Ry is an injection, by (I7). By Lemma
41l s11 is a unit of the ring Ry, i.e. s11 € Rjy.

. 0 0 _ 0 0 . _ [ S11 0
Since s- (521 0) = 0, the element (521 O) belongs to the ideal a. Then s1; = ( 0 O) es
since S +a C S, and ker(-s11) = 8 212 since s11 € Rj;. Since s11R21 = 0, we have the
22

inclusion
0 Ry
Ca
<R21 R22> -
Hence, R12R21 Ca.

(i) R12R21 = 0: Suppose that RiaRa1 # 0, we seek a contradiction. Fix a nonzero element

o € Ri2R21. Then, for some element t = ba -tz €8s,
00 ta1  tao

0=taq — tll t12 a 0 o t11a 0
o _tgl t22 00_t21a0'

In particular, t17a = 0. Since (tO §12> € a, the element ¢1; € S. The kernel kerg,, (-t11) of the
21 22

map -t11 : R11 — Ry is nonzero (otherwise t1; € R}, since Ry; is a left Artinian ring but 174 =0
and 0 # a € Ry1, a contradiction). Then

0 R 0 R
kerR(~t11) D kear(-tu) @ (O R;z) 2 (0 R;;) = kerR('S)'

This contradicts to the maximality of kerg(-s). Therefore, R12Ro1 = 0.

(i) S C (g“ 212): Suppose that this inclusion does not hold, i.e. there exists an element
21 Roo

a

/ /
s = ( 1 ,12> € S with s}, € R}, we seek a contradiction. Then s}; € S since S+ a C S and

S91  Sho
0 s 0 R
, /12 c 12 ga
Sa21 S22 Ro1 R

By Lemma 11 (3), kerg,, (-s}1) # 0 (since s}; € Rf;). Then

0 R 0 R
ter(oty) 2 kerm (o) @B () 12) 2 () 12) = ernCo
This contradicts to the maximality of kerg(-s).

(iii) R12 = 0: Let a1z = (8 (%2) € Ri5. Since Rq1s C a, there is an element ¢t = (til :) es
0 tiiai

such that 0 = ta1s = (O .

). We must have a2 = 0 since t11 € Rjy, by (ii).
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(iv) a = <RO RO > = (1 — e1)R: The second equality is obvious. By (ii) and (iii), a C
21 1t

0 0 0 0 0 0
(R21 R22). By @A), s (R21 R22> = 0. Hence, a = (R21 R22>'
(v) Se; = {1,e1} € Deny(R,a) and S;'R~ R/(1—e1)R = R/a~ S™'R are R-isomorphisms:

By (iii), (iv) and Proposition B} Se, € Den;(R,a) and S;,'R ~ R/a (an R-isomorphism). By
Lemma 11(2), S™'R ~ R/a, an R-isomorphism.

2. (a) Trivial.

(c) The first two equalities of the statement (c) follow from statement 1 and Proposition B}
the last equality follows from (ii).

(b) Suppose that a # 0. Let e = e; and ea = 1 —e7 be as above. By LemmaBIl a = (1 —e1)R,
hence a Z rad(R) (otherwise, 0 # e = 1 — eg € rad(R), a contradiction). Notice that rad(R) =

rad(R11 ) 0 and
R21 I‘ad(RQQ)

(a+ rad(R))/rad(R) = (8 o /r;’d (Rm)) c (Rn/r%d(Ru) . /ra?d(Rzz)) = Rjrad(R).

Therefore, &2 = ez + rad(R) = 1p(q) +rad(R) and € = e; +rad(R) = 1 — 17(q) + rad(R) =
lorgay + rad(R). Hence, e2 = uljqu" and e; = ulcymu ' for some unit v € R*. Then
a=u"ltau=u"tesRu = 1rR. O

An idempotent e of a ring R is called a left triangular idempotent if eR(1 — e) = 0. So,
g; R(;2) is left triangular iff
Se = {1, e} € Den;(R), by Proposition Bl iff e is a left denominator idempotent of R.

Let R be a left Artinian ring with (I3). Let

an idempotent e of R is a left triangular iff the ring R = (

I :=TI/(R) := {er := Z 1; | erR(1 —er) =0} and Z}'(R) :=Z;(R)\{1} (19)
icl

where I is a nonempty subset of {1,...,s}. Notice that 1 —e; = ecy where CT := {1,...,s}\I
and ey := 0. Clearly, 1 € Z]. The set Z] is a finite nonempty set that consists of left triangular
idempotents of the ring R. The set Z;(R) is one of the most important objects as far as left
denominator sets and left localizations of R are concerned (Theorem [6]).

Let, for a moment, R be an arbitrary ring. For a ring A € Loc;(R), let [A] be the isomorphism
class of A. We usually drop the brackets. Let Loc;(R)/ ~ be the set of isomorphism classes of left
localizations of the ring R. The groups Aut(R) and Inn(R) act on the sets Den;(R) and Loc;(R) in
the obvious way: the action of an automorphism o € Aut(R) on S € Den;(R) and S~!R is defined
as 0(9) and o(S)"'o(R) = 0(S)"!R. Let Den;(R)/G and Loc;(R)/G be the sets of G-orbits of
the groups G = Aut(R), Inn(R) in Den;(R) and Loc;(R), respectively. Every Aut(R)-orbit is a
union of Inn(R)-orbits. Every isomorphism class [A] € Loc;(R)/ ~ is a union of Aut(R)-orbits
and of Inn(R)-orbits.

By Lemma [A11(4), for a left Artinian ring R the group Inn(R) acts trivially on Loc;(R), i.e.
each element of Loc;(R) is an Inn(R)-orbit. Recall that the set Loc;(R) consists of R-isomorphism
classes of left localizations of the ring R and if two left localizations S™'R and SR are R-
isomorphic we write S™'R = S'"'R.

The following theorem shows that, for a left Artinian ring R, up to isomorphism, there are
only finitely many left localizations. Moreover, there are only finitely many left localizations up
to R-automorphism, i.e. the set Loc;(R) is finite. The set Ass;(R) is explicitly described and it is
also a finite set.

Theorem 4.6 Let R be a left Artinian ring. Then
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1. The map Z](R) — {ass(S.) |e € I/(R)}, e ass(Se) = (1 —e)R is a bijection.
2. The map Z](R) — Z;(R)/ ~, e — [e] is a bijection.
3. The map I;(R) — Loc¢i(R), e — S;'R = R/(1 — e)R, is a bijection. So, Loc(R) =

{S:'R|e € Z/(R)}, |Loci(R)| = |Z](R)| < oo and up to isomorphism there are only finitely
many left localizations of the ring R.

4. Lete, f € Z)(R). Then S;'R = S’f_lR iff ass(Se) = ass(Sy) iff e=f.

5. Let e, f € I)(R). Then e > f iff [e] > [f] iff the map S;'R — SJTlR, er —e'r =1, is
well-defined iff ass(S.) C ass(Sf).

6. The map I/ (R) — Assi(R), e — (1—e)R, is a bijection, i.e. Ass;(R) ={(1—e)R|e € Z/(R)}
is a finite set, |Ass;(R)| = |Z/(R)| < oc.

Proof. 1. By the very definition, if the idempotents e; and e are distinct elements of the set
Z/(R) then ass(Se, ) # ass(Se, ).

2. Statement 2 follows from Theorem [£5] Lemma [3.5] and statement 1.

3. Statement 3 follows from Theorem [L5] and statement 1.

4. Statement 4 follows from statements 1 and 3.

5. It is obvious that e > f iff [e] > [f]. By Lemma B4, e > f iff the map S;'R — S/ 'R,
elr — e'r, is well-defined. By Lemma B4l e > f iff ass(S.) C ass(Sy).

6. Statement 6 follows from statement 1 and Theorem 5 (1). O

Remark. Theorem shows that not every ideal of a left Artinian ring R belongs to Ass;(R).
The core of a left denominator set of a left Artinian ring.

Definition, [4]. Let R be a ring and S € Ore;(R). The core S, of the left Ore set S is the set
of all the elements s € S such that ker(s:) = ass(S) where s- : R — R, r — sr. If S, # () then
SS. C Se.

The next theorem is an explicit description of the core of a left denominator set of a left
Artinian ring. In particular, it is a non-empty set.

Theorem 4.7 Let R be a left Artinian ring, S € Deny(R,a) and a # 0. We keep the notation of
0

Theorem[.5. Then S. = {s € S|(1 —e)s(1 —e) =0} #0, i.e. Sc={s= (21 O) € S}, see
(14).

Proof. Let s = (811
S21 S

!/
(511 9) € S. Then

/
S21 S22
! !
S 0 S11 0 S11511 0
S9SIS=</11 />< 0 +8'shy = (71 0)-
521 821 S21 *

Therefore, S, :={s€ S| (1 —e)s(l —e) =0} # 0 as s's € S. Clearly, S. C S, since a = 2 O).

0

) € S. Then s92 € a and so s’syp = 0 for some element s’ =
22

*

Conversely, if s = su 0 € S. then 0 = s 00y _ (0 0 , .e s € S’. Therefore,
S21 S22 01 0 s22 ‘
S.=5..0

The maximal left denominator sets of a left Artinian ring. By Theorem [£.6] the posets
(Z],>) and (Z;/ ~,>) are isomorphic via the map e — [e]. If e;,e; € I/ then ey > e; iff I D J iff
(1—er)RC(1—eys)R (Lemma[37). Let minZ] be the set of minimal elements of the poset Z;.
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Lemma 4.8 Let R be a left Artinian ring and Z] be as above.
1. Ifer,ey € Z] and erey # 0 then erey = erng = ejer € I;.
2. Ifer,e; € Z) with INJ =0 then ejuy = er + ey € I].
3. If ey € minZ] and ey € I] then either I C J or otherwise I N.J = 0.
4. Ifer,ey € minZ] and ey # ey then erey =0 and INJ = 0.
5. Ifer,ey € minZ] and er # ey then efRey = 0.

Proof. 1. Tt is obvious that ere; = ejny = eger. In view of Proposition B.I], we have to show
that the equalities e R(1 —ey) = 0 and e;R(1 — ey) = 0 imply the equality eye;R(1 — ejey) = 0:

6[6JR(1—6]€J) ZGIGJR(1—6J+6J—€]€J) =€J61R(1—61)€J:0.
2. Since INJ = (), we have efe; =ejey =0and 1 —ey —e; = (1 —er)(1 —ey). Then
(€[+€J)R(1_€]_€J):(€]+€J)R(1_€[)(1_€J):O.

By Proposition Bl e; + e € Z;.

3. Suppose that I NJ # (. Then, by statement 1, e;ny = ejey € Zj, and er > ejny. By the
minimality of ey, we must have the equality e; = ejn s, i.e. I C J.

4. Statement 4 follows from statement 3.

5. Using statement 4 and the fact that e; R(1—e;) = 0, we see that 0 = e;R(1—ej)ey = erRey.

O
Changing, if necessary, the order of the idempotents 11, . .., 15 we may assume that minZ; (R) =
{en,,...,er,} where
t—1 t
L={1,...,d}, L={d+1,....dy +do},..., I :{Zdi—i—l,...,Zdi} (20)
i=1 i=1
for some positive natural numbers dy, ..., d;. The set

t

{61 =€y €L = 6L, L1 = 1- § ei}

=1

is the set of orthogonal idempotents of the ring R such that 1 = ey + -+ e; + €441 (it is possible
that e;y1 = 0). By Lemma L8 (5), the ring R can be seen as a matrix ring

t+1
R = @ Rij where Rij = eiRej.
i,j=1
By Lemma A8 (5), R;; = 0 for all ¢ # j such that 1 < 4,5 < ¢. Hence, R;;+1 = ¢;R(1 —e; —
Z#i ej)=0fori=1,...,t. So, the ring R has the form

Ri1 0 0 0
0 Roo 0 0
R= (21)
0 0 Ry 0
Rivi1 o0 Rigi—1 Rigip Rigi+

Proposition 4.9 Let R be a left Artinian ring and Z] be as above. Let I1,...,I; be non-empty
subsets of {1,..., s} such that I; NI; = 0 for alli # j. Then minZ|(R) = {er,,...,er, } iff the ring
R has the form (Z1) and none of the rings Ri1, ..., R is a left triangular and, for each nonempty
subset T C{1,...,s}\ U;Zl I;, erR(1 —ej) #0.
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Proof. (=) Obvious.

(<) The conditions that the ring R has the form (2I)) and none of the rings Rii,..., Ry are
left triangular show that minZ/(R) O {er,,...,er, }. Then the last condition of the proposition
means that minZ/(R) = {ey,,...,er,} (if the equality does not hold then there exists an element
er € minZj(R)\{er,,...,er,}, and so erR(1—er) = 0. By LemmalL.8(4), I C {1,...,s}\Uj-, I,
but this is impossible since e;R(1 — er) # 0, by the assumption). [

The next theorem provides a description of the maximal left denominator sets of a left Artinian
ring.

Theorem 4.10 Let R be a left Artinian ring. Then
1. max.Deny(R) = {T.|e € minZ/(R)} where T. = {u € R|u+ (1 —¢)R € (R/(1 —e)R)*}.
2. |max.Den;(R)| < s (s is the number of isomorphism classes of left simple R-modules).
3. |max.Den;(R)| = s iff R is a semisimple ring.

Proof. 1. By Proposition 2.4 max.Ass;(R) = ass.max.Den;(R). By Theorem [M.61(1,5),
ass.max.Den;(R) = {(1 —e)R|e € minZ} and for each element e € minZ], S;'R ~ R/(1 —¢)R
is a largest left quotient ring S’(*ll_e) rt where S(1_c)g is the largest left denominator set with
a’SS(S(l—e)R) = (1 — G)R By Theorem (3), S(l—e)R = Te.

2. Statement 2 follows from Lemma [48(4).

3. Statement 3 follows from statement 1 and Lemma [4.81(5). O

Corollary 4.11 Let R be a left Artinian ring, S € Deny(R,a), e € R be an idempotent such that
Se € Deny(R,a) and so S;'R ~ R/a ~ S™'R (by Theorem[{.5.(1) and Proposition [31]), and M
be an R-module. Then

1. a®? =a.

2. a is a projective right R-module.

3. STIM =0iffaM =M iff (1 —e)M = M iff eM = 0.
4. For all a,a’ € Assi(R), aa’ =ana =d'a.

Proof. 1. We keep the notation of Theorem 5l Then a = Ra; + Ra2 and a? = RagRa1 + R3y =
Ro1 + Roe = a.

2. Since a = (1 — e)R, we have R = a ® eR, and so the ideal a is a projective right R-module.

3.8 IM =0iff S;'M = 0iff M = torg, (M) iff eM =0iff M = (1—e)M = (1—e)RM = aM.

4. By Theorem[.6(6), a = (1—e)R and o’ = (1—¢)R for some idempotents e, ¢’ € Z/(R). The
idempotents 1 — e and 1 — e’ commute. So, ana’ =(1—¢)(1—€e)R=(1—¢)a’ = (1—¢)Ra’ = aa’.
([

Duality. Let R be an Artinian ring and R°P be its opposite ring. Then Den, (R) = Den;(R°P).
Using this fact we have analogous results for right denominator sets of R. We replace the subscript
‘I’ by ‘r’ everywhere when dealing with ‘right’ concepts. For example, Z/(R) := Z;(R°) and
T)!(R) := Z/'(R°P). Recall that Z;'(R) = {er|erRecr = 0 where §) # I G {1,...,s}}. Similarly,
Z)(R) = {es|ecsRe; = 0 where ) # J G {1,...,s}}. Then the map

II/I(R) — I;I(R), ey — 1-— ey = eciy, (22)

is an order-reversing bijection of posets. Let minZ (R) and maxZ/ (R) be the sets of minimal and
maximal elements of the poset Z)/(R) where * = [,r. The map (22]) induces the bijections

minZ,(R) - maxZ'(R), e; — 1 —e; =ecy, (23)
maxZ;'(R) - minZ(R), e; — 1 —er =ecy. (24)
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Clearly,

Loa(R\[R] = {[R/(1-er)R]=[R/eciR||I€I](R)} ={[R/esR]|J € T}(R)},
Loc,(R\[R] = {[R/R(1—ey)]=[R/Rec,]|J € T/(R)} = {[R/Re;] | € Z]'(R)}.

These equalities and the bijections (23) and 24]) imply the next theorem.

Theorem 4.12 Let R be an Artinian ring. Then the map
Loci(R)\[R] — Loc, (R\[R], [R/(1—enR] = [R/R(1—ec)],

is an anti-isomorphism of posets (i.e. an order reversing bijection). In particular, |Loc;(R)| =
|Loc,(R)|.

The left localization radical [z of a left Artinian ring R. The next theorem gives an

explicit description of the left localization radical [ = [g of a left Artinian ring R and a criterion
for [ # 0.

Theorem 4.13 Let R be a left Artinian ring. Then

L= ﬂeeminI{(R)(l - G)R = HeeminI{(R)(l - G)R = (1 - ZeeminIl’(R) G)R ].f; in addition, R
is a right Artinian ring then R = HijmaXI,,(R) fiR.

5 (= O R #£0 if 14 ZeGminIl’(R) 2
0 otherwise.

3. 2 =1 and | is a projective right R-module.
4. I Crad(R) iff L=0.

Proof. 1. The first equality follows from Theorem [I0l(1). The minimal idempotents e €
minZ;(R) are orthogonal idempotents. Hence, Neeminz)(r)(1 — )R = (HGEminZ{(R)(l —e))R =
(1= ccmin TI(R) e)R. The last equality in statement 1 follows from (23)).

2. Statement 2 follows from statement 1 and (2I]) since e;y1 =1 — Zeemn 7/(R) &

3. Statement 3 follows from statement 1.

4. The radical rad(R) is a nilpotent ideal. So, statement 4 follows from statement 3. [J

Corollary 4.14 Let R be a left Artinian ring and e := 3 o . T/(R) e’. Then
1. S, € Deny(R).
2. ass(S.) = [g.
3. e is the least upper bound of the set min Z/(R) in Z](R).

Proof. 1. By Lemma [4.8](4), €’e” = 0 for all distinct idempotents ¢’, ¢” € min Z;(R). Hence,
l—e=]lvemin I;(R)(l —e')and so eR(1—e) = (3 . cpmin I/(R) )R- 1leremin I{(R)(l —e")=0.
Hence, S. € Den;(R), by Proposition Bl

2. By statement 1 and Proposition Bl ass(S.) = (1 — e)R = [ (Theorem 131 (1)).

3. Clearly, e > ¢ for all ¢ € min Z/(R). Given f € Z/(R) such that f > ¢’ for all ¢ €
min Z/(R), then f > e, by Lemma[£.8(3,4), and statement 3 follows. O
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5 Structure of left Artinian rings with zero left localization
radical

In this section, a characterization of left Artinian rings with zero left localization radical is given
(Theorem [B.5]). A criterion is given for a left Artinian ring to be a left localization maximal ring
(Theorem [5.3]). For an Artinian ring, it is shown that if the left localization radical is zero then
so is the right localization radical, and vice versa (Theorem [5.0]).

The left localization maximal rings. These are precisely the rings in which we cannot
invert anything on the left.

Definition, [2]. A ring A is called a left localization mazimal ring if A = Q;(A) and Ass;(A) =
{0}. A ring A is called a right localization mazimal ring if A = Q,(A) and Ass,(A) = {0}. A ring
A is called a localization mazimal ring (or a two-sided localization mazimal ring) if A = Q,(A)

and Ass;,(A) = {0}.

Ezample. Let A be a simple ring. Then Q;(A) is a left localization maximal ring and @, (A)
is a right localization maximal ring. In particular, a division ring is a (left; right; and two-sided)
localization maximal ring. More generally, a simple Artinian ring (i.e. the matrix ring over a
division ring) is a (left; right; and two-sided) localization maximal ring.

The next theorem is a criterion for a left quotient ring of a ring to be a maximal left quotient
ring.

Theorem 5.1 [2] Let a ring A be a left localization of a ring R, i.e. A € Loc;(R,a) for some
a € Assi(R). Then A € max.Loci(R) iff Qi(A) = A and Assi(A) = {0}, i.e. A is a left localization
mazximal ring.

Corollary 5.2 The left localization maximal rings are precisely the localizations of all the rings
at their mazimal left denominators sets.

Proof. The statement follows from Theorem [2Z.51(6) and Theorem Bl O

Criterion for a left Artinian ring to be a left localization maximal ring. The next
theorem is a criterion for a left Artinian ring to be a left localizable maximal ring.

Theorem 5.3 Let R be a left Artinian ring. Then the following statement are equivalent.
1. R is a left localization maximal Ting.
2. I/(R) = {1}.
3. Either s =1 or, otherwise, for every proper subset I of {1,...,s}, etR(1 —ej) #0.

Proof. (1 < 2) Theorem .6 (3).
(2 & 3) Proposition 311 O
Theorem shows that ‘generically’ every left Artinian ring is left localization maximal.

Left-right symmetry of localization maximality for Artinian rings. For Artinian rings,
the concept of ‘localization maximality’ is left-right symmetric as the next theorem shows.

Theorem 5.4 An Artinian ring is left localization mazximal iff it is right localization mazximal.

Proof. The result is obvious if s = 1. If s > 1 then, by Theorem [5.3] R is a left localization
maximal iff e; Recy # 0 for all proper subsets I of {1,...,s} iff ecrRes # 0 for all proper subsets
Iof {1,...,s}iff R is a right localization maximal ring. O

Structure of left Artinian rings with zero left localization radical.
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Theorem 5.5 Let R be a left Artinian ring and | be its left localization radical. Then

1. The ring R is a direct product of left localization maximal rings iff | = 0 iff | is a nilpotent
ideal of R.

2. If R is a direct product of left localization mazimal rings then the direct product is unique
up to order, i.e. if R = szl A = H;Zl A} are two such direct products then t =t and
A; = A;(i) foralli=1,...,t where o is a permutation of the set {1,... t}.

Proof. 1. By Theorem [4.13] [ = 0 iff [ is a nilpotent ideal. It remains to establish the first ‘iff’
in statement 1.

(<) If [ = 0 then R is a finite direct product of localization maximal rings, by Theorem
[£13(2), Theorem B3 and (21)).

(=)IfR= H’;:l A; is a direct product of left localization maximal (necessarily left Artinian)
rings A;. Then [4, =0 and [ = [])_, l4, = 0, by Corollary 271

2. Letl=e;+---+e and 1 =€)+ - -+e¢}, be the sums of central idempotents that correspond
to the direct products R = H§:1 A; and R = H;;l A% By Theorem B3] for each i = 1,...,t
there is a unique j = o(i) such that e; = e;e}. Then, by symmetry, ¢ =t and ¢; = e’a(i) for some

permutation o of the set {1,...,¢}. O

Theorem 5.6 Let R be an Artinian ring, | and v be the left and right localization radicals of R,
respectively. Then [ =0 iff vt = 0.

Proof. 1=0iff R = [[;_, A; is a direct product of left localization maximal rings (Theorem
BA(1)) iff R =T];_, A; is a direct product of right localization maximal rings (Theorem [(.4) iff
t =0 (Theorem E1). O

Remark. In general, for an Artinian ring R, [ # v (Corollary [[.13).

6 Characterization of the left localization radical of a left
Artinian ring

The aim of this section is to introduce the little left localization radical of a ring and to give a
characterization of it and of the left localization radical of a left Artinian ring (Theorem [E5). A
right ideal a of a ring R is called an idempotent right ideal if a = f R for some idempotent f € R. A
left ideal b of a ring R is called an idempotent left ideal if b = Re for some idempotent e € R. Let
IZ;(R) and ZZ,(R) be the sets of left and right idempotent ideals of the ring R, respectively, and
ZT(R) and ZT . (R) be the sets of left and right idempotent ideals that in addition are two-sided
ideals, respectively.

Lemma 6.1 Let R be a ring and f, f' be idempotents of R. Then fR = f'R iff R(1 — f) =
R(1—f").

Proof. In view of left-right symmetry it suffices to prove that the implication (=) holds. The
equality fR = f'R yields the equality f = f'f (f = f'r for some r € R, hence f'f = f"?e = f'r =
f). Then 1= YA —-f)=1—-f'—f+ff=1—f,andso R(1— ') C R(1 — f). By symmetry,
RA1-f)=R(1-f). 0O

Lemma 6.2 Let R be a ring and f be an idempotent of R. Then fR is an ideal iff (1— f)Rf =0
iff 1 — feDi(R) iff R(1— f) is an ideal.

Proof. Notice that R = fR® (1 — f)R. Then fR is an ideal of R iff (1 — f)RfR C fRiff

(1-f)Rf=0iff (1 - f) e Z)(R), by [@. Similarly, R=Rf ® R(1 — f). So, R(1 — f) is an ideal
it R1-f)RFCRA—-f)if (1—f)Rf=0.01
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Corollary 6.3 Let R be a ring.
1. The map IZ,(R) — IZ;(R), fR+— R(1— f), is a bijection with the inverse Re — (1 —e)R.
2. The map IT (R) = ZT(R), fR+— R(1—f), is a bijection with the inverse Re — (1 —e)R.

Proof. 1. By Lemma [61] the maps fR — R(1 — f) and Re — (1 — e)R are well-defined.
Clearly, they are mutually inverse.
2. Statement 2 follows from statement 1 and Lemma 6.2] [

Corollary 6.4 Let R be a ring.
1. The map ;(R)/ ~— IT,(R), [e] = (1 — e)R, is a bijection with the inverse fR — [1 — f].
2. IT,(R) = {ass(Se)|Se € IDen;(R)}.

Proof. 1. Statement 1 follows from Lemma and Lemma
2. Statement 2 follows from statement 1. [

Let R be an arbitrary ring. The intersection

V=1 = ﬂ a

acAss; (R)\{0}

is called the little left localization radical provided Ass;(R)\{0} # 0 and I' :== 0, otherwise. The
set (ZT»(R), <) is a poset. For an arbitrary poset (P, <), we denote by Max(P) and Min(P) the
sets of maximal and minimal elements of P, respectively.

Characterization of the (little) left localization radical of a left Artinian ring.
Theorem 6.5 Let R be a left Artinian ring and | be its left localization radical of R. Then

L= ﬂaeMax(Zﬂ(R))\R a= HaeMax(ITT(R))\R a.

2. Suppose tha;tITr(R) 7é {0} Then [/ = HGEITT(R)\{O} a= maEITT(R)\{O} a= maeMin(ZTT(R))\{O} a=
HueMin(ITT(R))\R a.

Proof. Statements 1 and 2 follow from Corollary [6.41(1) and Corollary [411] O

7  Description of left denominator sets of a left Artinian
ring

In this section, a description of left denominator sets of a left Artinian ring R is given (Theorem
[[H), the sets of left localizable and non-localizable elements are described (Proposition and
Proposition [3)). Theorem [[4lis a criterion for the powers of a non-nilpotent element to be a left
denominator set. Theorem [(7] describes the set C;(R) of completely left localizable elements of R.
Theorem is a criterion for C;(R) = R*.
The set of left localizable elements of a left Artinian ring.

Lemma 7.1 Let S € Den(R,a) (respectively, S € Den(R,a)), 0 : R — S™'R, r— %, and G :=
(STLR)* be the group of units of the ring ST*R. Then S’ := 0~ 1(G) € Den;(R,a) (respectively,
S":=0"YG) € Den(R,a)) and ST'R~ S’ 'R.
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Proof. Tt suffices to prove the statement for S € Den; (R, a). Clearly, S” is a multiplicative set.
(i) S” € Ore;(R): We have to show that for given elements s’ € S” and r € R there are elements
s €8 and r’ € R such that s"r =1's’.

o(r) = o(r)o(s')lo(s') = a(s1) " o (r)o(s))

for some elements s; € S and 1 € R. Hence, s3(s17 — r18’) = 0 for some element s, € S. Tt
suffices to take s” = s9s1 and 1’ = so7;.

(ii) ass(S’') = a: If s'a = 0 for some elements s’ € S and a € R then o(s')o(a) = 0 and so
a € ker(o) = a since o(s') € G.

(iii) S’ € Den;(R,a): If as’ = 0 for some elements a € R and s’ € S’ then o(a)o(s’) = 0 and
so a € ker(o) = a since o(s') € G.

(iv) S’"'R ~ S~1R: By the universal property of left localizations, the map S’"'!R — S™1R,
s~ 'r = s71r, is a well-defined ring homomorphism which is obviously an epimorphism. Its kernel
is equal to zero: if s71r = 0 then 7 € a = ass(S) = ass(9’), and so s~!r =0. O

Definition, [4]. An element r of a ring R is called a left localizable element if there exists a left
denominator set S of R such that r € S (and so the element * # 0 is invertible in the ring S™'R),
equivalently, if there exists a left denominator set T' of R such that the element 7 is invertible in
the ring 77! R (Lemma [T1)). The set of left localizable elements is denoted £;(R).

Clearly,
Li(R) = U S. (25)
S€max.Den; (R)

Similarly, a right localizable element is defined and let £,(R) be the set of right localizable
elements of the ring R. The elements of the set of left and right localizable elements,

L1-(R)=L(R)NL(R),

are called left and right localizable elements. An element r € R is called a localizable element if
there exists a (left and right) denominator set S € Den(R) such that r € S, equivalently, if there
exists a (left and right) denominator set 7' € Den(R) such that the element { is invertible in the
ring T7'R (Lemma [T1). The set of all localizable elements of the ring R is denoted by L(R).
Clearly,
L(R) g LZ,T‘(R)'
The sets
NL(R) := R\Li(R), NL,(R) :=R\L,(R), NLi,(R):=R\L;,(R), NL(R) := R\L(R),

are called the sets of left non-localizable; of right non-localizable; of left and right non-localizable;
of non-localizable elements, respectively, [4]. The elements of these sets are called correspondingly
(eg, an element r € N'L;(R) is called a left non-localizable element).

The next corollary is an explicit description of the set £;(R) of left localizable elements for a
left Artinian ring.

Proposition 7.2 Let R be a left Artinian ring. Then Li(R) = {r € R|r+(1—e)R € (R/(1—e)R)*
for some e € minZ](R)}.

Proof. Let R be the RHS of the equality of the corollary. Notice that
orR= |J s= U ==

Semax.Den;(R) ecminZ](R)
by Theorem [£10l(1). O
The set of left non-localizable elements of a left Artinian ring. The next proposition

describes the set of left left non-localizable elements of a left Artinian ring and gives a criterion
when it is an ideal.
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Proposition 7.3 Let R be a left Artinian ring. Then

1. The set NLi(R) of left non-localizable elements of R is equal to the set {r € R|r+(1—e)R &
(R/(1 —e)R)* for all e € minZ/(R)}.

2. R-NLi(R)-RCNL/(R). In particular, NL;(R) - NL;(R) CNL(R).

3. NLi|(R) is an ideal of the ring R iff the ring R/(1 — e)R is a division ring for all e €
minZ;(R).

Proof. 1. Statement 1 follows from Proposition [(2l

2. Statement 2 follows from statement 1 and the fact that in a left Artinian ring every one-sided
invertible element is a unit.

3. (<) Trivial.

(=) In view of statement 2, we have to show that N'L;(R) + NL;(R) € NL;(R). Suppose
that the ring A = R/(1 — e)R is not a division ring for some idempotent e € minZ} (R), we seek a
contradiction. Then, up to order, the ring A := A/rad(A) = [[\~, R; is a direct product of matrix
rings R; = M,,,(D;) where m < n. Notice that an element r € R is a unit iff » + rad(R) € R is a
unit.

Case m = 1 and ny > 2. Then the elements a = E11(1) and b = >, E;;(1) belong to N'L;(R)
but their sum does not, a + b &€ N'L;(R), a contradiction.

Case m > 2. Then the elements a = 1; and b = .., 1; belong to N'£;(R) but their sum,
a + b, does not, a contradiction. [

Criterion for the powers of an element to be a left denominator set. For a left
Artinian ring R, the following theorem is an explicit criterion for the powers of a non-nilpotent
element of R to be a left denominator set.

Theorem 7.4 Let R be a left Artinian ring, Z/(R) be as above, s € R be a non-nilpotent element
of R, e = e(s) be the idempotent associated with the element s, Se = {1,e} and Ss = {s"|i € N}.
The following statements are equivalent.

1. 8, € Deny(R).
2. S. € Deny(R) and (1 —e)s(1 — e) is a nilpotent element.
3. eR(1—e) =0 and (1 —e)s(1 —e) is a nilpotent element.

If one of the equivalent conditions holds then ass(Ss) = (1—e)R and S;'R~ S;'R~ R/(1—¢€)R,
the core Ss.. of the left denominator set Ss is equal to {s'|i € N, (1 —e)s’(1 —e) = 0}.

Proof. (2 < 3) Statements 2 and 3 are equivalent by Lemma 311

(1 = 2) Suppose that Sy € Den;(R). By Theorem [H] there exists Se, € Den;(R) such that
S;'R~S; 'R~ R/(1—e1)R and ass(S,) = ass(Se,) = (1—e1)R =: a. With respect to the matrix
decomposition R = 69127 j—1Ri; associated with the idempotent ey, the ring R is left triangular, i.e.

Ri12 = 0 and the element s has the form s = (Z 3}) where u € R}, (Theorem[4.D]). For all i > 1,

i_ (w0 - _ _ . (00
st = ('Ui wl> where v; € Roy. Since e :=1—¢€1 € a = eaR, 0 = s'es = (O wi> for some
i>1, and so w* = 0. _

u* 0

(i) Re; = Rs' for alli > 1 such that w® = 0: Since s* = v 0

. fut 0\ (1 O i e pai 1 0y . a 0\ /(1 0\ _
Since s —(O 1) (vi O) and u* € R}y, Rs _R(vi O)—Rel since (b O) (Ui O>_

(i o)

€ Rey, we see that Re; O Rs'.
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i i+1
(ii) If w* = 0 then Rs' = Rs'"l: Since st = ss' = <u 0> <u 0> = <u ' O>, have
VoW v; 0 vig1 O
Rs'tt = Re; = Rs?, by (i).

(iii) Re; = Re: By (i) and (ii), Re; = Rs' = Re.

(iv) Se € Deny(R, a): By (iii) and Lemma[6Il a = (1 —e1)R = (1 — e)R. Since (1 —e)R is an
ideal of R, we must have eR(1 —¢) CeRN (1 —e)R =0, i.e. eR(1 —e) = 0. By Proposition B}
Se € Deny(R, a).

Clearly, S;'R = R/a~ S;'R. The ring R can be seen as the matrix ring associated with the

/ / I
idempotent e, see [@), R = (Rii R922>. Then s = (Z, £,> and s’ = (1;, u?”) foralli >1

3

where v) € R),. Since 1 — e € a we must have 0 = s(1 —¢) = (8 u(J)’i for some ¢ > 1, ie.

w' = (1 —e)s(1 — e) is a nilpotent element.
(1 < 2) This implication and all the statements of the theorem is a particular case of Lemma
a

R 0

Lemma 7.5 Let R be a left triangular matriz ring R =
Ro1 Rao

) where Ri1 and Ros are

arbitrary rings and Ray is an arbitrary (Raa, R11)-bimodule. Let s = (Z 3}) € R where u € R},

and w a nilpotent element of the ring Raa. Then the set Sy = {s'|i € N} is a left denominator

set of the ring R such that ass(Ss) = (RO RO ), S;7'R ~ R/ass(Ss) ~ Ri1 and the core Ss . of
21 Iz

Ss is equal to {s'|i € Nyw' = 0}.
Proof. First, we prove all the statements but the one about the core. Then, the statement

. _ J
about the core will follow, see (v). Fix a natural number j such that w? = 0, and so s7 = <1f|< 8) .

Notice that for each natural number k& > 1, Sy € Deny(R) iff S« € Den;(R); and if Sy € Deny(R)
then ass(S,) = ass(S,x) and S; 1R ~ S’S}lR. We may assume that w = 0 from the very beginning,

ie.s=(" 0 . Notice that ¢ = 1_1 0 € R* and
v 0 —vu 1

R O TAR K, e N

Every ideal of the ring R is invariant under the inner automorphisms. So, by replacing the element

s by w(s) we may assume that s = g 8 .
(i) Ss € Ore;(R): We have to show that for given elements s* € S5 and r = Z 2) € R, there

/
are elements s/ € S, and ' = <Z, g,) € R such that s’r = r's’. Notice that

_{ua 0\ _ [(uwau™® 0\ ;
=Lo o/"\ 0o o)

So, it suffices to take j = 1.

(ii) ass(Ss) = ker(s-) = a where a := 0 0 since u € RYy.
Ro1 R
(ifi) S, € Demy(R, a): ker(-s) = (0 Y ) ca.
0 Roa

(iv) S;'R ~ R/a ~ Ry since u € R};. _
(v) Coming back to the most general situation, then st = (i 181) € S iff w'Roy = 0 iff
w!=0. 0
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Classification of all the denominator sets of a left Artinian ring. The next theorem
gives a criterion for a multiplicative set of a left Artinian ring to be a left denominator set, also it
is an explicit description of all the left denominator sets of R.

Theorem 7.6 Let R be a left Artinian ring and S be a multiplicative set of R. The following
statements are equivalent.

1. S € Den(R).

2. There is a nonzero idempotent e € R such that eR(1 —e) =0, S C (Rll RO
21 Rao
Ry O

Ro1 Roo

) and there

is an element s € S such that s = (Z 8) where R = ( ) 18 the matriz ring

associated with the idempotent e.

3. There is a unit X € R*, an idempotent e € I/(R) and an element s € S such that ASA™' C
(g; R(;2> and A\sA\™t = (:j 8) where R = (g; R(;2) is the matriz ring associated
with the idempotent e.

4. There is an element s € S such that Sy € Den;(R) and the images of all the elements of S
in the ring SR are units.

If one of the equivalent conditions holds then ass(S) = kergr(s-) in cases 2 and 3 regardless of the
choice of s.

Proof. (1 = 2) The existence of the idempotent e follows from Theorem EH(2). Since e :=

1 — e € aass(S), there exists an element s = <u O) € S such that 0 = sepx = <O O>, ie.
vow 0 w

w = 0.

(2 < 3) This implication is obvious due to the fact that every idempotent e € R such that
eR(1 — e) = 0 is conjugate to an idempotent of the set Z.(R)’.

(2 = 4) Using the inner automorphism w; as in (26]), and replacing the element s by w;(s) we
g 8), ie. v =0 in statement 2. By Theorem [(4], S5 € Den;(R) and
S71R ~ Ry;. So, the images of all the elements of S in the ring S; 'R are units.

(4 = 1) This implication is a particular case of Proposition .21(2) where a = ass(S;s) =
U;>1ker(s*). In particular, S € Den;(R, a). O

may assume that s = (

Theorem [7.6] gives the following algorithm of obtaining all the left denominator sets S of a left
Artinian ring R. Choose an idempotent e of Z/(R), there are only finitely many of them. Then we

B 0 > associated with the idempotent

have the triangular decomposition of the ring R =
Ro1 Ra

e. Choose an arbitrary element s = <Z 8) with v € R};. Choose an arbitrary set of elements

§; = Zl 12), i € I, where u; € Ry, for all i € I. Consider the monoid S’ generated by the set
{s,s;|i € I}. Then an arbitrary left denominator set S of R is of the type A\S’A~! where A € R*.

The set of completely left localizable elements of a left Artinian ring.

Definition, []. For an arbitrary ring R, the intersection

Ci(R) == N s

Semax.Den; (R)
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is called the set of completely left localizable elements of R and an element of the set C;(R) is called
a completely localizable element.

By Proposition 28 S;(R) C C;(R). In general, this inclusion is strict, see Theorem [.9l
Moreover, Theorem is a criterion for S;(R) = C;(R) for a left Artinian ring R (notice that
Si(R) = Cr = R*). The next theorem describes the set of completely left localizable elements of
a left Artinian ring.

Theorem 7.7 Let R be a left Artinian ring. Then Ci(R) ={r € R|r+(1—e)R € (R/(1—e¢)R)*
for alle € minZ/(R)}.

Proof. The theorem follows from Theorem O

A left Artinian ring R is a strongly left triangular if there is an idempotent ey = ), ., 1; for
some proper subset I of {1,...,s} such that e;R(1 — e;) = 0. This definition does not depend on
the choice of the idempotents 11, ..., 15 since any two sets of them are conjugate. A left Artinian
ring R which is not a strongly left triangular is called a non-strongly-left-triangular.

Lemma 7.8 Let R be a left Artinian ring. Then

1. The ring R is a non-strongly-left-triangular ring iff T(R) = {1} iff Z/(R) = {1} iff R is a
left localization mazximal Ting.

2. If the ring R is non-strongly-left-triangular then C;(R) = R*.

Proof. 1. Theorem
2. This follows from statement 1, Theorem [7.7 and Theorem B3 as Z;(R) = {1}. O

The next theorem is a criterion for C;(R) = R*.

Theorem 7.9 Let R be a left Artinian ring. We assume that (20) and (21) hold. In particular,
minZ/(R) = {er,,...,er,}. Then the following statements are equivalent.

1. C(R) = R*.
2. Ul_ L ={1,...,s}.

4. R is a direct product H:,:l R; of (necessarily left Artinian) non-strongly-left-triangular rings
R;.

5 Ig=0.
If one of the equivalent conditions holds then t =t' and, up to order, R; ~ Ry fori=1,...,t.

Proof. (2 < 3) Obvious, see (21)).

(3=4) Lemma[l8

(1 = 2) Suppose that statement 2 does not hold, we seek a contradiction. In view of the
decomposition (2II), an element r = (r;;) € R = @ffglleij isaunitiff r;; € R}, fori=1,...,t+1.
By Theorem [T, the element a = (a;;) which is a diagonal matrix with a;1 = 1,...,a, = 1 and

a¢4+1,4+1 = 0 is a non-zero element which is not a unit but belongs to C;(R), a contradiction.
(4 = 1) By Theorem 2.6]

t’ t’
maX.Denl(H R;) = H max.Den;(R;).

i=1 =1
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By Lemma [(8(2), max.Den;(R;) = {R;}. Hence, C;(R) = R*, by Theorem Therefore,
statements 1-4 are equivalent.

The fact that ¢ = ¢’ follows from Lemma[Z.8 (1) and Lemma Since none of the rings R;;
and R; where i = 1,...,t, is a product of rings then it is well-known and easy to prove that, up
to order, R; ~ R;; (even the equality hold) for all i.

(3 < 5) This equivalence follows from Theorem [5.5, Lemma [7.8] (1) and the equivalence 1 < 3.
O

Lemma 7.10 Let R =[], R; be a product of left Artinian rings R;. Then
1. T(R) ={ey, +---+e|e; € L(Ry),i,v=1,...,n}.
2. minZ;(R) =[], minZ;(R).

Proof. Straightforward. [J

The rings of lower and upper triangular matrices over a division ring. Let D be a
division ring, L, = L,(D) and U,, = U, (D) be the rings of lower and upper triangular matrices,
respectively, when n > 2. Let E;; be the matrix units where 7,5 = 1,...,n. The decomposition
(@3] takes the form 1 =17 + ---+ 1,, where 1; := Ej;.

Lemma 7.11 Letn > 2 and lg) = E11+ -+ Ess. Then
1 Ty(Ly,) = {1[q|[s] ={1,...,s},s =1,...,n} and minZ(L,) = {E1}.
2. max.Deny(L,,) = {Tg,,} and TEuLn ~ SElan ~ D (see Theorem[{-10}(1)).
3. 1y, =ass(Tg,,) = (1 — E11)L,.

Proof. 1. Statement 1 is obvious.
2. Statement 2 follows from statement 1, Theorem [£.10 and Proposition [3.1]
3. Statement 3 follows from statements 1 and 2. [

Corollary 7.12 Letn > 2. Then
1. ,(U,) = {1[51/ |[s] :={s,s+1,...,n},s=1,...,n} and minZ;(U,) = {Enn.}.
2. max.Deny(U,) = {Tg,,} and Ty, UnzS Up~D.
3.y, =1 —E,)U,.
Proof. The D-homomorphism
U,— L, Ej—=Eit1i—in+1—j, t=1,...,n,

is a ring isomorphism, and the results follows from Lemma [[. 11l [

Let D°P := {d° | d € D} be the division ring opposite to the division ring D, i.e. d{d3 := (dad;)°.
The map D — D°, d — d°, is a ring anti-isomorphism. The map

Ty : Ln(D) = Un(D°), > dijEij = dYEjs, (27)
is an anti-isomorphism. Let Z/.(R) be the right analogue of Z](R):
Z/(R) := {er | (1 — er)Rer = 0}. (28)
Let vz be the right localization radical of a ring R.

Corollary 7.13 Let n > 2. Then
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1L T.(Lp) = {1 | [s) :=={s,s+1,...,n},s=1,...,n} and minZ/(Ly,) = {Enn}.

2. max.Den,(L,) = {Tf, } and LnTI/E:i ~ LnSEin ~ D where Ty, s the right analogue of
T., see Theorem[{.10 (1).

3. v, =Ln(1—Epn,) and Iy, #vp,.
Proof. These follows from Corollary and 7). O
Corollary 7.14 Let n > 2. Then
1. (Un) = {15y | [s] = {1,...,s},s = 1,...,n} and minZ/(U,) = {E11}.
2. max.Den,(R,) = {Tg, } and U, T ~ U, Sg! ~ D.
3. tw, =Un(1—FE11) and ly, # vy,

Proof. These follows from Lemma [ 1T and (217). O

8 Localizations of Artinian rings

This section is about (left and right) denominator sets, Den(R), and localizations Loc(R) :=
{S7'R = RS™!|S € Den(R)} of an Artinian ring R. The results of this section are analogous
to their left versions but much more simpler due to Corollary Their proofs follow from
the left analogues in a straightforward manner and are left for the reader as an easy exercise.
For the two-sided (i.e. left and right) concepts we use the same notations but the subscript ‘1’ is
dropped, eg max.Den(R) is the set of maximal (left and right) denominator sets of R and Ass(R) =
{ass(S) | S € max.Den(R)}. Briefly, for (left and right) denominator sets and localizations of
Artinian rings, the central idempotents play a crucial role.

Let R be a left Artinian ring. It can be uniquely (up to permutation) presented as a direct
product of rings

R= f[ R; (29)

where R; are necessarily left Artinian rings none of which is a direct product of two rings. Let

1= e (30)

i=1
be the corresponding sum of central idempotents and let
I(R) ={e;|i=1,....t} and T'(R) ={e; =Y e |0 #ATC{l,...,t}}. (31)
i€l

Clearly, R; = e; R and none of e; is a sum of two nonzero central idempotents of R.
The first statement of the following theorem shows that every localization of an Artinian ring
is a (central) idempotent localization.

Theorem 8.1 Let R be an Artinian ring and S € Den(R, a). Then

1. There exists a central idempotent e € R such that S, := {1,e} € Den(R,a) and the rings
STIR and S;'R are R-isomorphic.

2. (a) If a =0 thene=1.
(b) If a #0 then a = (1 —e)R £ rad(R).
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(c)
(R O (0 0 Ry, 0
R= < 0 R22>, a= <0 R22> and S C ( 0 Ru) (32)
where R;; = e;Rej, e1 =e and ea =1 —ey.

The following theorem shows that, for an Artinian ring R there are only finitely many left
localizations. Moreover, there are only finitely many left localizations up to R-automorphism, i.e.
the set Loc(R) is finite. The set Ass(R) is explicitly described and it is also a finite set.

Theorem 8.2 Let R be an Artinian ring. Then
1. The map T'(R) — {ass(Se) |e € Z(R)}, e ass(S.) = (1 —e)R is a bijection.

2. The map T'(R) — Loc(R), e — S;'R = R/(1 — e)R, is a bijection. So, Loc(R) =
{S:'R|e € T'(R)}, |Loc(R)| = |T'(R)| = 2! — 1 < oo and up to isomorphism there are
only finitely many left localizations of the ring R.

3. The map T'(R) — Ass(R), e — (1 —e)R, is a bijection, i.e. Ass(R)={(1—e)R|e€I'(R)}
is a finite set, |Ass(R)| = |Z'(R)| = 2" — 1 < <.

Let R be a ring and S € Ore(R). The core S, of the Ore set S is the set of all the elements
s € S such that ker(s:) = ker(-s) = ass(S) where -s: R — R, r — rs. If S. # () then SS.S C S..
The next theorem is an explicit description of the core of a denominator set of an Artinian ring.
In particular, it is a non-empty set.

Theorem 8.3 Let R be an Artinian ring, S € Den(R,a) and a # 0. We keep the notation of

Theorem 81l Then S, ={se€ S|(1—e)s=0}#0, i.e. S.={s= (S(l)l 8) € S}, see (32).

Theorem 8.4 Let R be an Artinian ring and Z'(R) be as above. Then

1. there are precisely 2t — 1 idempotent (left and right) denominator sets. Moreover, the map
T'(R) — IDen(R), ey — Se, = {1,er},
is a bijection where ass(Se,) = R(1 —er) and S;'R~ R/R(1 —es) ~ [[,c; Ri.

2. max.Den(R) = {S;:=Ri1 X+ X Ri_1 X RIXRiy1x---x Ry |i =1,...,t} and max.Loc(R) =
{R;|i=1,...,t}.

3. The (left and right) localization radical Ngemax.Den(r)2SS(S) of R is equal to zero.

4. The set C(R) := Nt_S; of completely (left and right) localizable elements of R is the group
R* of units of R.

5. The set of (left and right) localizable elements L(R) = U’;:l S; is equal to {r = (r1,...,m:) €
Hf:l R;|r; € Rf for some i}.

6. The set of (left and right) non-localizable elements N'L(R) := R\L(R) is equal to {(r1,...,rn) €
Hle R;|7; is a zero divisor of R; fori=1,...,t}.

7. (a) Ewvery (left and right) denominator set S € Den(R) contains precisely one central idem-
potent ey where ) # I € 2Z(R) sych that ass(S) = R(1 — ej).

(b) Every (left and right) denominator set S € Den(R) contains precisely one central idem-
potent e; where O # I € 27(R) such that S~'R ~ S:'R is an R-isomorphism.

8. FEvery (left and right) denominator set S of R is obtained in the following way: fize; € T'(R)
and take a multiplicative submonoid S of (R, ) such that for all elementsr = (r1,...,m,) € S,
r; € R} fori € I, and there exists an element v’ = (r},...,7;,) € S with v} =0 for all j ¢ I.
Then S € Den(R).
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Theorem 8.5 Let R be an Artinian ring and r = (r1,...,7¢) € Hle R; be a mon-nilpotent
element. Then S, = {r;|i € N} € Den(R) iff each r; is either a unit or a nilpotent element.

Corollary 8.6 All the denominator sets of R consists of units iff 1 is the only central idempotent
of R.

9 Rings with left Artinian left quotient ring

The aim of this section is to show that if the left quotient ring Q;(R) of a ring R is a left Artinian
ring then |max.Den;(R)| < oo (Theorem [0.11(1)). Recall that the largest left quotient ring Q;(R)
of R is a left Artinian ring iff the (classical) left quotient ring Q; «i(R) := Cx'R is a left Artinian
ring, and in this case S;(R) = Cg, [3].

Let R be a ring, S € Den;(R), M be an R-module and N, L be submodules of M. We say
that N and L are S-equal in M and write N S5 LifS'N=S5"1Lin S~ M. Clearly, N and L
are S-equal iff, for each pair of elements n € N and !l € L, sn € L and tl € N for some elements
s,tes.

Theorem 9.1 Let R be a ring such that Q;(R) is a left Artinian ring and s be the number of
iso-classes of simple left Q;(R)-modules. Then

1. the map max.Den;(R) — max.Den;(Q;(R)), S — SQi(R)*, is a bijection with the inverse
T — TNR. In particular, |max.Den;(R)| = |max.Den;(Q;(R))] < s < 0.

2. |max.Den;(R)| = s iff Qi(R) is a semisimple ring iff R is a semiprime left Goldie ring.

3. The map max.Ass;(R) — max.Ass;(Qi(R)), a — S;(R)™a, is a bijection with the inverse
b— bNR. In particular, |max.Ass;(R)| = |max.Ass;(Qi(R))] < s < c0.

4. For all ideals a,a’ € max.Ass;(R), ad’ Sand 2 daanda?a.

Proof. 1. Statement 1 follows from Proposition 2.8 and Theorem

2. Statement 2 follows from Theorem 10 (3).

3. Statement 2 follows from the equality max.Ass;(R) = {ass;(S5)|S € max.Den;(R)} (Propo-
sition [2Z4]), statement 1 and the fact that the largest left quotient ring @Q;(R) is a left Artinian
ring.

4. Statement 3 follows from the fact that for all ideals b, b’ € Ass;(Q;(R)), bb’ =bNb’' =0'b
(Corollary L11]). O

Lemma 9.2 Let R be a ring such that Q;(R) is a left Artinian ring, S; = S;(R) and Ass;(R, S]) :=
{a € Assi(R)|an S, = 0}. Then for all ideals a,a’ € Assi(R),

1. a22q.

2. a0 Zana ZLaa

Proof. The ring Q; := Q;(R) is a left Artinian ring. So, for all ideals a of R, S™'a are ideals
in Q;. Clearly, S~™'a = Q; iff aN S; # (). So, if one of the ideals in statements 1 and 2 meets S,
then statements 1 and 2 hold. We can assume that a,a’ € Ass;(R, S;). Choose S € Den;(R, a) and
S’ € Deny(R, a’). Let Q} be the group of units of the ring @Q;. Then SQ; € Den;(Q;,b := S; 'a)
and S'Q; € Deny(Qq, b := Sl_la’). By Corollary E11] bb’ = b N b’ = b’b. Then statements 1 and
2 follow. [
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