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INDECOMPOSABLE GENERALIZED WEIGHT MODULES OVER THE

ALGEBRA OF POLYNOMIAL INTEGRO-DIFFERENTIAL OPERATORS

V. V. BAVULA, V. BEKKERT AND V. FUTORNY

Abstract. For the algebra I1 = K〈x, d

dx
,
∫
〉 of polynomial integro-differential operators over a

field K of characteristic zero, a classification of indecomposable, generalized weight I1-modules
of finite length is given. Each such module is an infinite dimensional uniserial module. Ext-
groups are found between indecomposable generalized weight modules, it is proven that they
are finite dimensional vector spaces.

Key Words: the algebra of polynomial integro-differential operators, generalized weight mod-
ule, indecomposable module, simple module.

Mathematics subject classification 2000: 16D60, 16D70, 16P50, 16U20.

1. Introduction

Throughout, ring means an associative ring with 1; module means a left module; N := {0, 1, . . .}
is the set of natural numbers; N+ := {1, 2, . . .} and Z≤0 := −N; K is a field of characteristic zero

and K∗ is its group of units; P1 := K[x] is a polynomial algebra in one variable x over K; ∂ := d
dx ;

EndK(P1) is the algebra of all K-linear maps from P1 to P1, and AutK(P1) is its group of units
(i.e. the group of all the invertible linear maps from P1 to P1); the subalgebras A1 := K〈x, ∂〉
and I1 := K〈x, ∂,

∫

〉 of EndK(P1) are called the (first) Weyl algebra and the algebra of polynomial
integro-differential operators respectively where

∫

: P1 → P1, p 7→
∫

p dx, is the integration, i.e.
∫

: xn 7→ xn+1

n+1 for all n ∈ N. The algebra I1 is neither left nor right Noetherian and not a domain.

Moreover, it contains infinite direct sums of nonzero left and right ideals, [2].

In Section 2, a classification of indecomposable, generalized weight I1-modules of finite length is
given (Theorem 2.5). A similar classification is given in [1] for the generalized Weyl algebras where
a completely different approach was taken. Properties of the algebras In := I

⊗n
1 of polynomial

integro-differential operators in arbitrary many variables are studied in [2] and [5]. The groups
AutK−alg(In) are found in [3]. The simple I1-modules are classified in [4].
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his visit and to Fapesp for financial support (processo 2013/24392-5). The third first author is
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2. Classification of indecomposable, generalized weight I1-modules of finite

length

In this section, a classification of indecomposable, generalized weight I1-modules of finite length
is given (Theorem 2.5).

As an abstract algebra, the algebra I1 is generated by the elements ∂, H := ∂x and
∫

(since
x =

∫

H) that satisfy the defining relations, [2, Proposition 2.2] (where [a, b] := ab− ba):

∂

∫

= 1, [H,

∫

] =

∫

, [H, ∂] = −∂, H(1−

∫

∂) = (1−

∫

∂)H = 1−

∫

∂.

The elements of the algebra I1,

eij :=

∫ i

∂j −

∫ i+1

∂j+1, i, j ∈ N, (1)

1
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satisfy the relations eijekl = δjkeil where δjk is the Kronecker delta function. Notice that eij =
∫ i

e00∂
j. The matrices of the linear maps eij ∈ EndK(K[x]) with respect to the basis {x[s] :=

xs

s! }s∈N of the polynomial algebra K[x] are the elementary matrices, i.e.

eij ∗ x
[s] =

{

x[i] if j = s,

0 if j 6= s.

Let Eij ∈ EndK(K[x]) be the usual matrix units, i.e. Eij ∗ xs = δjsx
i for all i, j, s ∈ N. Then

eij =
j!

i!
Eij , (2)

Keij = KEij , and F :=
⊕

i,j≥0 Keij =
⊕

i,j≥0 KEij ≃ M∞(K), the algebra (without 1) of
infinite dimensional matrices.

Z-grading on the algebra I1 and the canonical form of an integro-differential op-

erator, [2]. The algebra I1 =
⊕

i∈Z
I1,i is a Z-graded algebra (I1,iI1,j ⊆ I1,i+j for all i, j ∈ Z)

where

I1,i =











D1

∫ i
=

∫ i
D1 if i > 0,

D1 if i = 0,

∂|i|D1 = D1∂
|i| if i < 0,

(3)

the algebra D1 := K[H ]
⊕⊕

i∈N
Keii is a commutative non-Noetherian subalgebra of I1, Heii =

eiiH = (i + 1)eii for i ∈ N (notice that
⊕

i∈N
Keii is the direct sum of non-zero ideals of D1);

(
∫ i

D1)D1
≃ D1,

∫ i
d 7→ d; D1

(D1∂
i) ≃ D1, d∂

i 7→ d, for all i ≥ 0 since ∂i
∫ i

= 1. Notice that

the maps ·
∫ i

: D1 → D1

∫ i
, d 7→ d

∫ i
, and ∂i· : D1 → ∂iD1, d 7→ ∂id, have the same kernel

⊕i−1
j=0 Kejj .
Each element a of the algebra I1 is the unique finite sum

a =
∑

i>0

a−i∂
i + a0 +

∑

i>0

∫ i

ai +
∑

i,j∈N

λijeij (4)

where ak ∈ K[H ] and λij ∈ K. This is the canonical form of the polynomial integro-differential
operator [2].

Let vi :=











∫ i
if i > 0,

1 if i = 0,

∂|i| if i < 0.
Then I1,i = D1vi = viD1 and an element a ∈ I1 is the unique finite sum

a =
∑

i∈Z

bivi +
∑

i,j∈N

λijeij (5)

where bi ∈ K[H ] and λij ∈ K. So, the set {Hj∂i, Hj,
∫ i

Hj , est | i ≥ 1; j, s, t ≥ 0} is a K-basis for
the algebra I1. The multiplication in the algebra I1 is given by the rule:

∫

H = (H − 1)

∫

, H∂ = ∂(H − 1),

∫

eij = ei+1,j ,

eij

∫

= ei,j−1, ∂eij = ei−1,j, eij∂ = ∂ei,j+1,

Heii = eiiH = (i+ 1)eii, i ∈ N,

where e−1,j := 0 and ei,−1 := 0.
The algebra I1 has the only proper ideal F =

⊕

i,j∈N
Keij ≃ M∞(K) and F 2 = F . The

factor algebra I1/F is canonically isomorphic to the skew Laurent polynomial algebra B1 :=
K[H ][∂, ∂−1; τ ], τ(H) = H + 1, via ∂ 7→ ∂,

∫

7→ ∂−1, H 7→ H (where ∂±1α = τ±1(α)∂±1 for all
elements α ∈ K[H ]). The algebra B1 is canonically isomorphic to the (left and right) localization
A1,∂ of the Weyl algebra A1 at the powers of the element ∂ (notice that x = ∂−1H).
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An I1-moduleM is called a weightmodule ifM = ⊕λ∈KMλ whereMλ := {m ∈ M |Hm = λm}.
An I1-module M is called a generalized weight module if M = ⊕λ∈KMλ where Mλ := {m ∈
M | (H − λ)nm = 0 for some n = n(m)}. The set Supp(M) := {λ ∈ K |Mλ 6= 0} is called the
support of the generalized weight module M . For all λ ∈ K and n ≥ 1,

∂nMλ ⊆ Mλ−n and

∫ n

Mλ ⊆ Mλ+n.

Let 0 → N → M → L → 0 be a short exact sequence of I1-modules. Then M is a generalized
weight module iff so are the modules N and L, and in this case

Supp(M) = Supp(N) ∪ Supp(L).

For each I1-module M , there is a short exact sequence of I1-modules

0 → FM → M → M := M/FM → 0 (6)

where
(i) F · FM = FM , and
(ii) F ·M = 0,
and the properties (i) and (ii) determine the short exact sequence (6) uniquely, i.e. if 0 →

M1 → M → M2 → 0 is a short exact sequence of I1-modules such that FM1 = M1 and FM2 = 0
then M1

∼= FM and M2 ≃ M .
Notice that

FM ≃ K[x]I , (7)

i.e. the I1-module FM is isomorphic to the direct sum of I copies of the simple weight I1-module
K[x]. Clearly, M is a B1-module.

The indecomposable I1-modules M(n, λ). For λ ∈ K and a natural number n ≥ 1, consider
the B1-module

M(n, λ) := B1 ⊗K[H] K[H)/(H − λ)n. (8)

Clearly,
M(n, λ) ≃ B1/B1(H − λ)n ≃ I1/(F + I1(H − λ)n). (9)

The I1-module/B1-module M(n, λ) is a generalized weight module with SuppM(n, λ) = λ+ Z,

M(n, λ) =
⊕

i∈Z

M(n, λ)λ+i and dimM(n, λ)λ+i = n for all i ∈ Z. (10)

For an algebra A, we denote by A−Mod its module category. The next proposition describes
the set of indecomposable, generalized weight I1-modules of finite length M with FM = 0.

Proposition 2.1. (1) M(n, λ) is an indecomposable, generalized weight I1-module of finite
length n.

(2) M(n, λ) ∼= M(m,µ) if and only if n = m and λ− µ ∈ Z.
(3) Let M be a generalized weight B1-module of length n (i.e. let M be a generalized weight I1-

module such that FM = 0, by (6)). Then M is indecomposable if and only if M ≃ M(n, λ)
for some λ ∈ K.

Proof. 1. Since (B1)K[H] = ⊕i∈Z∂
iK[H ] is a free right K[H ]-module, the functor

B1 ⊗K[H] − : K[H ]−Mod → B1 −Mod, N 7→ B1 ⊗K[H] N,

is an exact functor. The K[H ]-module K[H ]/(H−λ)n is an indecomposable, hence the B1-module
M(n, λ) is indecomposable and generalized weight of length n.

2. (⇒) Suppose that I1-modules M(n, λ) and M(m,µ) are isomorphic. Then Supp(M(n, λ)) =
Supp(M(n, λ)), i.e. λ+ Z = µ+ Z, i.e. λ− µ ∈ Z. Then n = m, by (10).

(⇐) Suppose that k := λ− µ ∈ Z and n = m. We may assume that k ≥ 1. Using the equality
(H − λ)n∂k = ∂k(H − λ− k)n = ∂k(H − µ)n, we see that the B1-homomorphism

M(n, λ) = B1/B1(H − λ)n → M(n, µ) = B1/B1(H − µ)n, 1 +B1(H − λ)n 7→ ∂k +B1(H − µ)n,

is an isomorphism with the inverse given by the rule 1 +B1(H − µ)n 7→ ∂−k +B1(H − λ)n.
3. (⇐) This implication follows from statement 2.
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(⇒) Each indecomposable, generalized weight B1-module M is of the type B1 ⊗K[H] N for an
indecomposable K[H ]-module N of length n. Notice that N ≃ K[H ]/(H − λ)n for some λ ∈ K.
Therefore, M ≃ M(n, λ). �

Lemma 2.2. Let M be an indecomposable, generalized weight I1-module. Then Supp(M) ⊆ λ+Z

for some λ ∈ K.

Proof. Let M = ⊕µ∈Supp(M)M
µ be a generalized weight I1-module. Then

M =
⊕

µ+Z∈Supp(M)/Z

Mµ+Z

is a direct sum of I1-submodules Mµ+Z := ⊕i∈ZM
µ+i where Supp(M)/Z is the image of the

support Supp(M) under the abelian group epimorphism K → K/Z, γ 7→ γ + Z. The I1-module
M is indecomposable, hence M = Mλ+Z for some λ ∈ K, i.e. Supp(M) ⊆ λ+ Z. �

The next lemma describes the set of indecomposable, generalized weight I1-modules M with
FM = M .

Lemma 2.3. Let M be an indecomposable, generalized weight I1-modules M . Then the following
statements are equivalent.

(1) FM = M .
(2) M ≃ K[x].
(3) Supp(M) ⊆ N.

Proof. (1) ⇒ (2) : If FM = M then M ≃ K[x](I) for some set I necessarily with |I| = 1 since
M is indecomposable, i.e. M ≃ K[x].

(2) ⇒ (3) : Supp(K[x]) = {1, 2, . . .} ⊆ N.
(3) ⇒ (1) : Suppose that Supp(M) ⊆ N. Using the short exact sequence of I1-modules

0 → FM → M → M := M/FM → 0 we see that Supp(M) = Supp(FM) ∪ Supp(M). Since
Supp(FM) = Supp(K[x](I)) = {1, 2, . . .} and Supp(M) is an abelian group, we must have M = 0
(since Supp(M) ⊆ N), i.e. M = FM . �

The following result is a key step in obtaining a classification of indecomposable, generalized
weight I1-modules of finite length.

Theorem 2.4. Let M be a generalized weight I1-module of finite length. Then the short exact
sequence (6) splits.

Proof. We can assume that FM 6= 0 and M 6= 0. It is obvious that FM ≃ K[x]s for some

s ≥ 1 and the B1-module M ≃
⊕t

i=1 M(ni, λi) for some ni ≥ 1, λi ∈ K and t ≥ 1. It suffices to
show that

Ext1
I1
(M(n, λ),K[x]) = 0 (11)

for all n ≥ 1 and λ ∈ K. If λ ∈ Z we can assume that λ = 0, by Proposition 2.1.(2).
(i) F (H − λ)n = F : The equality follows from the equalities eij(H − λ)n = eij(j + 1− λ) and

the choice of λ.
(ii) M(n, λ) = I1/I1(H − λ)n: By (i), I1(H − λ)n ⊇ F (H − λ)n = F . Hence,

M(n, λ) = I1/(F + I1(H − λ)n) = I1/I1(H − λ)n.

(iii) The equality (11) holds: Let M = M(n, λ). By (ii), the short exact sequence of I1-modules

0 → I1(H − λ)n → I1 → M → 0 (12)

is a projective resolution of the I1-module M since the map

·(H − λ)n : I1 → I1(H − λ)n, a 7→ a(H − λ)n,

is an isomorphism of I1-modules, by the choice of λ. Then

Ext1I1(M,K[x]) ≃ Z1/B1

where Z1 = HomI1(I1(H − λ)n,K[x]) ≃ K[x] and B1 ≃ (H − λ)nK[x] = K[x], by the choice of λ.
Hence, the equality (11) holds. The proof of the theorem is complete. �
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The next theorem is a classification of the set of indecomposable, generalized weight I1-modules
of finite length.

Theorem 2.5. Each indecomposable, generalized weight I1-module of finite length is isomorphic
to one of the modules below:

(1) K[x],
(2) M(n, λ) where n ≥ 1 and λ ∈ Λ where Λ is any fixed subset of K such that the map

Λ → (K/Z), λ 7→ λ+ Z, is a bijection.

The I1-modules above are pairwise non-isomorphic, indecomposable, generalized weight and of
finite length.

Proof. The theorem follows from Theorem 2.4, Proposition 2.1 and Lemma 2.3. �

Corollary 2.6. Every indecomposable, generalized weight I1-module is an uniserial module.

Proof. The statement follows from Theorem 2.5.�

Homomorphisms and Ext-groups between indecomposables.

Proposition 2.7. (1) Let M and N be generalized weight I1-modules such that Supp(M) ∩
Supp(N) = ∅. Then HomI1(M,N) = 0.

(2) HomI1(M(n, λ),K[x]) = 0.
(3) HomI1(K[x],M(n, λ)) = 0.
(4) HomI1(M(n, λ),M(m,λ)) ≃ HomK[H](K[H ]/((H − λ)n), (K[H ]/((H − λ)m)) ≃

K[H ]/((H − λ)min(n,m)).

Proof. 1. Statement 1 is obvious.
2. Statement 2 follows from the fact that FM(n, λ) = 0 and Fp = K[x] for all nonzero elements

p ∈ K[x] (sinceK[x] is a simple I1-module, F is an ideal of the algebra I1 such that FK[x] = K[x]).
3. Statement 3 follows from the fact that FK[x] = K[x] and FM(n, λ) = 0: f(K[x]) =

f(FK[x]) = Ff(K[x]) = 0 for any f ∈ HomI1(K[x],M(n, λ)).
4. The first isomorphism is obvious. Then the second isomorphism follows. �

Proposition 2.8. (1) Ext1
I1
(K[x],K[x]) = 0.

(2) Ext1
I1
(M(n, λ),K[x]) = 0.

(3) Ext1I1(K[x],M(n, λ)) = 0.

(4) Ext1
I1
(M(n, λ),M(m,µ)) =

{

K if λ− µ ∈ Z,

0 if λ− µ 6∈ Z.

Proof. 1. Let 0 → K[x] → N → K[x] → 0 be a s.e.s. of I1-modules. Then FN = N (since
FK[x] = K[x]), and so N is an epimorphic image of the semisimple I1-module F ⊕ F . Hence,
N ≃ K[x]⊕K[x] (since I1F ≃ K[x](N)).

2. See (11).
3. Let 0 → M = M(n, λ) → L → K[x] → 0 be a s.e.s. of I1-modules. Since FM = 0,

we have FL = FK[x] ≃ K[x] is a submodule of L such that FL ∩ M = 0 (since otherwise
FL ⊆ M by simplicity of the I1-module FL ≃ K[x], and so 0 6= K[x] ≃ FL = F 2L ⊆ FM = 0, a
contradiction). Then FL⊕M ⊆ L. Furthermore, FL⊕M = L since lI1(FL⊕M) = lI1(L). This
means that the s.e.s. splits.

4. Let 0 → M1 → M → M1 → 0 be a s.e.s. of generalized weight I1-modules. If Supp(M1) ∩
Supp(M2) = ∅, it splits. In particular, Ext1I1(M(n, λ),M(m,µ)) = 0 if λ − µ 6∈ Z. If λ − µ ∈ Z

we can assume that λ = µ (sine M(m,λ) ≃ M(m,µ)). Using (12), where we assume that λ = 0 if
λ ∈ Z, we see that Ext1

I1
(M(n, λ),M(m,λ)) ≃ M(m,λ)/(H − λ)M(m,λ) ≃ K. �

Since the left global dimension of the algebra I1 is 1, [6], Proposition 2.7 and Proposition 2.8
describe all the Ext-groups between indecomposable, generalized weight I1-modules. This is also
obvious from the proofs of the propositions.
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